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Preface

If Al is ever to become a respectably hard science,
then a firm, formal basis is needed.

—Derek Partridge (1991)
Philosophy

Teaching an AI course presents a problem. The field is so broad that an
attempt to cover most of it is bound to result in a fairly shallow survey
course. Nevertheless, it is important to discuss some important tools of Al
in some depth. The tools can be roughly divided into three types: tools for
implementing a plan (e.g., Lisp, microprocessors), tools for designing a plan
(e.g., algorithms), and tools for designing tools.

A hands-on approach based on implementing plans is often pursued in
computer science. Unfortunately, toy AI problems are of limited pedagogical
use while real Al problems are often on such a scale that programming only
one of them is a major project. Moreover, a hands-on approach often gives
students the ability to implement some plans without giving them the ability
to understand or develop the tools on which such plans are based.

As a result, I believe it’s critical to focus on tools for designing Al tools.
Since Al is a young science, we must to some extent anticipate what these tools
will be. Mathematics has been the major tool designing tool in the sciences;
therefore, I am persuaded that Al will not be an exception.

Possible Courses

It’s popular to say that a book does not require much formal mathematics,
but does require some mathematical maturity. That’s true here. Much of the
material can, in theory, be read and understood with no more background than
high school algebra. In practice, however, students need more than this or they
will be overwhelmed by the need to think mathematically. Furthermore, after
the first ten chapters, some background in calculus is needed.

This text can be used for an introductory course in Al for upper-division
or graduate students who have had a standard lower-division calculus course.
Many courses are possible, depending on the time available, the capabilities
of the students, and the interests of the instructor. All courses should include

XV



xvi Preface

at least Chapter 1 and most of Chapters 2, 3, 5, and 10. Possible supplements
are (a) logic from Chapters 4 and/or 6; (b) neural nets from Chapter 11;
(c) probability and its uses from Chapters 7, 8, and 9; and (d) material from
Chapter 14. The more mathematical exercises and proofs can be emphasized
or deemphasized as circumstances dictate.

This text can also be used for a second course in Al for students interested
in Al research. Many monographs and research papers are inaccessible to such
students because they assume a mathematical background not provided by
standard Al courses. The mathematics in this text helps bridge that gap.

Instructors may obtain a TEX diskette containing solutions to many of
the exercises from Computer Society Press.

The following diagram illustrates some dependencies among all chapters
but the last, ranging from weak (dotted lines) to nearly complete dependency
(solid lines). Dashed lines indicate that only some sections are essential. More
details on dependencies are found at the end of each chapter introduction.
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Dear Student

History teaches that new technology will require new mathematics.
... The question is: Which mathematics to use?

—Monique Pavel (1989)

Many introductory AI texts give the impression that AI is a collection
of heuristic ideas and data structures implemented in Lisp and Prolog.
The prognosis for such a discipline would be grim. Fortunately, AI re-
searchers use mathematics and are developing new tools. Unfortunately,
most of what you need is found in monographs and research articles—
inappropriate material for a beginning course. This text is my attempt to
fill the gap.

Since some of the mathematics used in Al is not part of a standard un-
dergraduate curriculum, you’ll be learning mathematics and seeing how it’s
used in Al at the same time. As with most mathematically oriented texts,
this one isn’t easy. I’ve written the next couple of pages to help you through
it. Please read them.

Goals

In this text I hope to introduce you to some mathematical tools that have
been important in AI and to some of their applications to the design of al-
gorithms for Al Since expert systems (broadly interpreted) comprise a large
part of AI and have been the main focus of mathematically based tools, I have
centered the book around the expert system idea.

As a result of studying this text, you should be in a much better po-
sition to read the technical literature in AI and should be able to easily
fill in gaps in coverage by reading one of the more broadly based survey
texts.



xviii Dear Student

Reading Mathematics

Many people learn mathematics the way I learned history in high school. The
exams contained two columns and the goal was to match each date in col-
umn A with one of the persons, places, and events in column B. Being lazy, I
learned the “whens” of history but never the “whys.” I missed a whole world
of ideas.

When mathematics is taught and learned by rote, students miss a world
of ideas. Mathematics should be learned as an aid to thinking, not as a re-
placement for it. Learning mathematics is a skill that’s seldom taught. If, like
many students, you haven’t mastered it, the following comments should be
helpful.

The key is to work on understanding—not on memorization. How can you
do this?

Let’s begin with definitions. Whenever you meet a new concept, develop
an understanding of it by relating it to ideas you already know and by look-
ing at what it means in specific cases. For instance, when learning what
a polynomial is, look at specific polynomials; when learning what continu-
ity is, see what it means for a specific function like z2. The importance of
understanding the general through the specific cannot be overemphasized—
even by using italics. The discussions and examples that immediately pre-
cede and follow definitions are often designed to foster understanding. If
a definition refers to an earlier, unclear concept, stop! If you proceed, you
may end up wandering aimlessly in a foggy landscape filled with shad-
owy concepts and mirages. Go back and improve your understanding of
the earlier concepts so that they’re practically solid objects that you can
touch and manipulate. Finally, ask yourself why a definition has been in-
troduced: What is the important or useful concept behind it? You may
not be able to answer that question until you’ve read further in the text,
but you can prepare your mind to recognize the answer when you see
it.

What about theorems? The comments for definitions apply here, too:
Look at specific examples, try to relate the theorem to other things you
know, ask why it’s important. Be sure you’re clear on what the theorem
clatms and on what its words mean. In addition, attempt to see why the re-
sult seems reasonable before you read the proof. Reading and understand-
ing the proof is the last step. If the proof is long, it may be helpful to
make an outline of it. But don’t mistake the ability to reproduce a proof
for understanding. That’s like expecting a photograph to understand a scene.
There are better tests of understanding: Do you see where all of the as-
sumptions are used? Can you think of a stronger conclusion than that in
the theorem? If so, can you see why the stronger conclusion is not true,
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or at least why the proof is insufficient to establish the stronger conclu-
sion?

Examples play a key role in mathematics. In practically every mathemat-
ics text, they fall into three categories.

e The type that aren’t in the text: They’re the ones you create by following
the preceding advice.

e The obvious ones that are labeled “example” in the text. They’re usu-
ally illustrations of definitions, algorithms, or theorems. Sometimes they
develop related ideas.

e The type that comes from homework problems: These examples are
the solutions to the problems you do yourself, not the problems them-
selves.

If you neglect any of these three types of examples, your mathematical text
will be most useful to you as a doorstop.

Navigation Aids

Here’s some information to help you navigate this text.

e A chapter introduction usually tells what’s in the chapter, why it’s there,
and how the chapter is laid out. The overview it provides will help you
organize the chapter in your mind.

o Numerous quotations highlight ideas and controversies, offer insight, pro-
voke thought, and perhaps provide comic relief.

e Starred material either is more difficult than the text in which it is em-
bedded or is peripheral.

o A remark that’s somewhat off the track may appear as an Aside set in
smaller type. Asides can be skipped without losing the thread of the discus-
sion.

e There are four types of exercises. Here they are in order of difficulty.

— Some exercises are lettered and some numbered; for example, 2.4.A
versus 2.4.1. The purpose of lettered exercises is to make sure you
absorbed the basic ideas. Their solutions can be found by rereading
the preceding material. You should do all lettered exercises. It’s of-
ten necessary to know the answers to these exercises before reading
further.

— A few numbered exercises are there to be sure you’ve picked up basic
ideas that are needed soon. The answer to such an exercise is given
immediately after the exercise section. You should do all these ez-
ercises, then read the solutions. If you’ve made an error, study the
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section further or ask for help. It’s important to understand how to
do these exercises before reading further.

— The solutions to most exercises are neither very simple nor very dif-
ficult. Many you’ll be able to do. Ask for help on those that baffle
you.

— Starred exercises are ones that I consider difficult or that refer to
starred material.

A few exercises don’t have just one right answer. They may ask for
your opinion or they may ask for you to construct an example of

something. If an exercise asks for a proof, use full sentences. Read
your proof aloud—it’ll help you catch mistakes and incoherent think-

ing.
Enjoy your exploration of Al and its mathematical foundations.

Sincerely,
Ed Bender



First Things

Anyone teaching a course [on Al] ... will have to decide what
artificial intelligence is, even if only because inquiring minds
want to know.

—Stuart Russell and Eric Wefald (1991)

“Can machines think?” [is] as ill-posed and uninteresting as
“Can submarines swim?”

—Edsger W. Dijkstra (ca 1970)

Our minds contain processes

that enable us to solve problems we consider difficult.
“Intelligence” is our name

for whichever of those processes we don’t yet understand

—Marvin Minsky (1985)

Introduction

From golems to androids, manmade intelligences have been a dream and night-
mare of mankind for centuries. In the 1950s, electronic brains led to the birth
of the science of artificial intelligence. Will Al as the field is commonly called,
fulfill its promise to convert mankind’s fantasies into reality?

We’ll begin exploring the nature of Al by examining its goals, tools, and
accomplishments, and some of the debates it has engendered. Such an exami-
nation should give us a revealing picture of the current state of this promising
discipline.

Next, we’ll discuss the why’s and wherefore’s of this text. Why the em-
phasis on mathematics? What do future chapters hold in store?

The final sections introduce two important topics: the computation prob-
lem and expert systems. The computation problem permeates Al, but is not

1
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Chapter 1  First Things

always evident. Meeting it face to face now is important because overlooking
its presence is a ticket to disaster. Expert systems provide a unified way of
viewing most of Al.

1.1 Delimiting Al

We’ll examine Al from three different viewpoints, or “coordinates”:

goals,
methods or tools and (1.1)
achievements and failures.

For example, your goal may be to understand what Al is all about; your
method, talking to AI researchers; and your achievement, a new overview of
Al Some parts of Al (such as machine learning) are primarily defined by
goals, others (such as neural networks) primarily by methods. Achievements
and failures give information on how a field has progressed.

Some Goals of Al

When you read the following list, interpret words like “reasoning” and “under-
standing” as referring to the results, not the methods. In other words, focus on
a program’s output rather than its algorithm. (Mimicking human algorithms
is a concern of cognitive science, not Al.)

e Reasoning: Given some general knowledge together with some specific

facts, deduce certain consequences. For example, given knowledge about
diseases and symptoms, diagnose a particular case on the basis of infor-
mation about the symptoms. The most difficult type of reasoning is based
on what people call “common sense.”

Planning: Given (a) some knowledge, (b) the present situation, and (c) a
desired goal, decide how to reach the goal; that is, use goal-directed rea-
soning. How do planning and reasoning differ? They overlap, but, roughly,
reasoning seeks the answer to What?; planning seeks the answer to How?
For example, “What sort of student am I?” versus “How can I be an A
student?”

Learning: Acquiring knowledge (learning) is a central issue since knowl-
edge must be acquired before it can be used. In some situations, it is
feasible to build knowledge into a system. In others, it is infeasible or un-
desirable. Then we want a system that can repeatedly extend its knowl-
edge base in a coherent fashion by acquiring new facts and integrating
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them with previous knowledge, often by some process of abstraction. For
example, if a system is exposed to various examples of chairs, how can it
abstract the concept “chair”?

The previous goals are rather general in nature and are relevant to many parts
of AI. We now look at goals that may be viewed as more specific. Although
they draw on results in the previous areas, they are very much separate parts
of AI with their own tools and problems.

e Language Understanding and Use: Obviously, this relies heavily on reason-
ing and learning, but it deserves a separate category. “Common sense”
plays an important role in language. Unfortunately, common sense is an
extremely elusive topic that appears to require a considerable knowledge
base. Attempts to understand spoken language must face additional com-
plications.

o Processing Visual Input: Vision is only one type of sensory input that
must be processed, but it is by far the most complex. Abstracting useful
information from visual input is proving very difficult.

o Robotics: Robotics must marry AI with engineering. In all but the sim-
plest industrial settings, reality is dauntingly complex. The Al techniques
used in robotics must produce results in real time and, for an autonomous
robot, must not require excessive computer power.

Some Tools of Al

Knowledge about knowledge is the focus of AI. Knowledge is given either
declaratively—in declarative statements—or procedurally—by procedural rules.
Specific knowledge tends to be represented declaratively and general knowl-
edge procedurally. (The situation is not this cut-and-dried, but the distinction
is still useful.) Declarative knowledge is stored in what is called a knowi-
edge base. Knowledge about knowledge provides tools for interacting with the
knowledge base:

e Knowledge Organization Tools: Data structures and algorithms facilitating
the organization of the knowledge base.

e Knowledge Manipulation Tools: Methods for extracting new knowledge
from the knowledge base; for example, reasoning and planning.

e Knowledge Acquisition Tools: Methods for incorporating new knowledge
into the knowledge base or modifying the tools (“learning”). The border
between acquisition and manipulation is fuzzy.

In many areas of computer science, algorithms are primary and data struc-
tures are secondary. In contrast, knowledge representation is a central problem
in AI. The form of declarative knowledge (the data structures) limits what
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we can state and the ease with which we can manipulate it. AI’s declarative
knowledge is seldom considered “just data.” Thus, the tools of Al could be
thought of in terms of what can be incorporated in the data structures. Here
are some data structures and where to find them and their tools.

e Limited Structure: Relatively unstructured search spaces are attractive
because they impose few restrictions. Sadly, the lack of structure makes
computations overwhelming for all but the simplest problems (Chapters 2
and 13).

e Mathematical Logic: Mathematical logic allows us to represent facts about
the world in a form that can be manipulated (Chapters 3-6).

o Logic-like Representations: Representational awkwardness and other hand-
icaps motivated some researchers to seek alternatives. Some approaches,
such as rule-based systems and semantic nets, can be recast in the frame-
work of logic (Chapter 6). Other approaches, such as reasoning by anal-
ogy as in case-based reasoning, use other methods and are lightly touched
upon in Chapter 14.

o Numerical Information: Numerical information can play a central role in
describing uncertainty about the world, as in “a 40% chance of rain”
(Chapters 8 and 9).

o Nonsymbolic Structures: The previous structures are designed to repre-
sent and manipulate information symbolically. A growing number of re-
searchers have questioned this approach (Chapters 10, 11, and 13).

On another level, we could say that the tools of Al are those things that
provide the basis for creating the knowledge tools. They tend to fall into four
areas:

e Hardware: Al makes heavy use of computers for developing and testing
ideas. Some parts can benefit from special-purpose devices.

e Software: AlI’s large software systems make it an important developer and
consumer of programming tools.

e Mathematics: Some parts of mathematics have proven useful in AI. (Every
formal manipulation of concepts is a part of mathematics.)

e Heuristics: Sometimes called “rules of thumb,” heuristics are empirical
principles. Heuristics may use mathematics, but often do not.
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What Has Al Given the World?

Many of AI’s contributions contain no Al: They are simply tools that were
developed to aid Al research. We’ll begin with these spinoffs and move on to
results that do contain some AI. There is no consensus on where to draw a
line between contributions containing little or no Al and those with signif-
icant amounts. Many draw the line just before or just after “game-playing
programs.”

Timesharing: Much early work on timesharing was done by MIT’s project
MAC—a dual acronym meaning either “machine-aided cognition” or
“multiple-access computing.” (Some wags called it “man against com-
puter.”)
Windows and Graphical User Interfaces: These were developed at Xerox’s
Palo Alto Research Center to provide easier computer access for Al re-
searchers.
Programming Paradigms: These include

e constraint propagation (now used in spreadsheet programs),

e object-oriented programming,

e functional programming (the basis of Lisp), and

e logic, or declarative, programming (the basis of Prolog).
Fuzzy Controllers: “Fuzzy logic” leads to more stable and flexible means
of regulating machines.
Game-Playing Programs: Game playing was a favorite topic in the early
years of AI research. By 1995, the best artificial chess player could beat
all but the best human players. Backgammon programs achieved a sim-
ilar level: One beat the world champion because lucky rolls of the dice
compensated for somewhat inferior play.
Expert Systems: Commercial expert systems have been proliferating in
recent years and many businesses are using special-purpose software to
write expert systems for in-house use.
Natural Language Interfaces: A limited ability to understand natural lan-
guage is providing friendlier user interfaces for some programs.

Dictation Systems: Systems able to transcribe speech have begun to ap-
pear on the market. So far, vocabulary and speed are rather limited.

The flip side of achievement is failure—the skeleton in the closet. Here

are three of them.

Wild Optimism: The seeds of a variety of failures were planted in the
1950s—the early, heady years of Al when almost everything was “just
around the corner.” In the 1980s, a minor relapse into unbridled optimism
was caused by the rebirth of neural networks—a methodology inspired
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by the highly interconnected, self-modifying nature of biological neural
systems.

e Game-Playing Programs: Many hoped that studying games would lead to
significant progress in AI. The rate of return has been low, however—
perhaps because competitions tend to focus on immediate improvement
rather than new ideas.

o Ad Hoc Developments: Much research has been based on ad hoc methods
rather than solid foundations. People argue about whether seat-of-the-
pants design is inherent in the subject matter of Al or just a passing
stage. Advocates of ad hoc methods are called scruffies; advocates of
theoretical methods are called neats.

Results versus Methods: Cognitive Science

Artificial intelligence is an invention.
In contrast, a theory of human intellect is a discovery.

—Morton Wagman (1991)

For some, a major goal of Al is the construction of an artificial intelligence
having human-level abilities. Progress has certainly been made, but the goal
is still far away, if not impossible. Other people are concerned with the meth-
ods humans use to achieve their abilities. As noted earlier, these people are
cognitive scientists.

Like AI, cognitive science is an umbrella field related to “intelligence.”
Cognitive science, which includes topics like cognition and consciousness,
seems to be striving to achieve many of the goals listed for AI. Unlike Al,
cognitive science focuses on learning how human minds achieve such goals
rather than on creating artificial methods for achieving them. There are a
variety of introductions to cognitive science; for example [14] and [49].

Allen Newell [32] was a major advocate for developing unified theories of
cognition that can be tested and expressed through programs. He argues co-
gently that both cognitive science and Al will profit from such attempts in
the short term, but will go their separate ways in the long term [32, p.57]. To
see why this might be so, consider a crude parallel—a slightly fictional his-
tory of flight. Cognitive science corresponds to understanding bird flight, and
Al to creating artificial flight. Understanding and adapting some aspects of
bird flight informed the early development of artificial flight. Conversely, at-
tempts at artificial flight provided tests for the understanding of bird flight.
Major progress required an understanding of the principles of aerodynamics,
at which point the methods employed by birds were no longer relevant. (Ac-
tually, studying flying fish may have been more productive for early attempts
at flying.)
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Exercises

1.1.A. What are some goals of AI?
1.1.B. What are some general tools of AI?
1.1.C. What are some contributions of AI?

1.1.D. What is the difference between AI and cognitive science?

1.2 Debates

There is nothing which is not the subject of debate, and in which
men of learning are not of contrary opinions. The most trivial
question escapes not our coniroversy, and in the most
momentous we are not able to give any certain decision.

—David Hume (1740)

Consciousness is a subject about which there is little consensus,
even as to what the problem is. Without a few initial prejudices
one cannot gel anywhere.

—Francis Crick (1994)

One of the ongoing debats in Al is the definition of the Al field itself. Actually,
the variety in the field probably makes it impossible to give a concise definition
that is neither too broad nor too narrow. To see why this is so, try the much
simpler problem of defining what is meant by a sport. Your definition should
include bowling and recreational cycling, but not chess or dancing.

Here are three debates that provide some insights about Al

Consciousness and Intelligence

A better understanding of cognitive science topics like intelligence and con-
sciousness could benefit AI research. Thus we’ll look briefly at these debates,
even though they do not belong in Al

A question like “Can machines think?” is difficult. We often start from the
premise that we understand what this question means when, in fact, ongoing
debates show that we have not yet figured out what we’re talking about.
Even the first step—agreeing on the definition of “intelligence” —has not been
taken. Some people believe that the most famous proposed test for machine
intelligence, the Turing test, should be regarded as a definition of intelligence.
Other people disagree. (See Exercise 1.2.1.)
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Perhaps thought and intelligence are the wrong issues to address. Instead,
consciousness may be a more fundamental issue. We seem to know less about
this subject than some experts would like to believe. The study of conscious-
ness belongs to philosophy, psychology, and cognitive science. If this line of
study appeals to you, you may find the books by Churchland [8], Dennett [12],
and Moody [31] of interest.

The range of beliefs (or hopes) regarding intelligence and consciousness
is quite broad.

o At one extreme, strong Al supporters maintain that it is possible to cre-
ate an intelligent, conscious machine and that something like the Turing
test (Exercise 1.2.1) is adequate to determine if the machine is intelligent
and conscious. One expression of this is the physical symbol hypothesis of
Newell and Simon [33]. They define a physical symbol system to be some-
thing that is capable of manipulating physical patterns (such as data in
a computer or strengths of connections among neurons) and hypothesize
that such a system is necessary and sufficient for implementing general
intelligent behavior.

e At the other extreme are those who maintain either (a) that intelligent,
conscious behavior has a nonphysical component (as in Cartesian dual-
ism) or (b) that it involves something inherently biological. These people
conclude machines will never achieve such behavior.

Given the current state of Al, researchers need not worry about such issues
any more than the Wright brothers needed to worry about the sound barrier.

Symbols versus Connections

The symbols versus connections debate might also be described as “intelli-
gence by design” versus “intelligence as an emergent property.”

The traditional approach to AI has been symbolic; that is, knowledge
is represented at a symbolic level comprehensible to us. The strict symbolic
viewpoint is that the way to make real progress in Al is through the develop-
ment of powerful data structures and algorithms for the representation and
manipulation of knowledge on a symbolic level. Most defenders of this view
believe the symbolic approach mimics conscious human reasoning. The choice
of a symbolic framework has been debated. Some want to base the symbolic
approach on mathematical logic; others insist that numerical methods should
play a central role.

There has recently been a revival of the connectionist approach. Like
much of Al, this approach was born amidst the rosy predictions of the 1950s.
It nearly disappeared in 1969 after Minsky and Papert [30] emphasized the
limitations of the methods then available. Interest blossomed anew in the
1980s. Since then, considerable research has been done using simulations of
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networks of simple interconnected processors, that is, neural networks. Strict
connectionists believe that one should design complex networks of simple pro-
cessors and then train these networks. Intelligence, they maintain, will emerge
as a consequence, but won’t be found in the parts of the network separately.
This is the sort of internal representation and manipulation of knowledge that
the human brain apparently uses on the physiological level, with neurons as
ProCessors.

Which approach is better? The answer may depend on the application.
It may be best to combine the approaches—people are experimenting with
hybrid systems. At any rate, it’s too soon to tell.

The Role of Theory

The word “theory” encompasses mathematics as well as such things as the
theory of general relativity. It does not include simple facts and rules of thumb
based on them. For example, the commonsense advices “get a good night’s
sleep before an exam” is not a theory. It’s a heuristic rule based on personal
observation. What, then, is the practical relevance of theory for AI?

“The theory ¢s the program” view of some nontheorists is at one extreme.
This attitude should not be confused with the idea that computer programs
in AI (should) play the role of experiments—no one claims that a theory is
an experiment. In contrast, “The theory is the program” means you may ask
how well the program works but you can’t ask for a foundation on which the
program is based.

At the other extreme is the ultra-logicist claim that, ultimately, AI will
succeed by employing a theoretically justified system of symbolic reasoning.

Naturally, most researchers’ beliefs lie between these two extremes. The
issue then is “What is the best blend between heuristics and theory?” The
answer to this question depends on the researcher, on the subject, and on its
state of development: On the researcher, because abilities vary from person
to person; on the subject, because simpler areas are more easily fit into a
theoretical framework; and on the state of development because mathematics
is gradually making greater inroads into various areas of Al

*Exercises

To the student: These exercises are likely to be time-consuming. Most instructors
(myself included) won’t assign any because of time pressure. Read them anyway—
they provide food for thought.

To the instructor: See above.
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1.2.1.

1.2.2.

1.2.3.
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The Turing test [51]: An evaluator E is allowed access to two subjects W (a
woman) and X (not a woman) only through a remote terminal. The experi-
menter tells E that exactly one of W and X is a woman and instructs E to
determine which it is by whatever method E wishes using the remote ter-
minal. Each of W and X attempts to react like a woman when responding
to E’s questions. If E decides that X is a woman, then E has been deceived.
By averaging over many E’s, W’s, and X’s, we can obtain a success rate for
deception. In particular, we can compute the deception rate when X is a
man—the deception rate for men. We can also compute the deception rate
for a computer program. In the Turing test, the program is declared to pos-
sess intelligence if its deception rate is at least as great as the deception rate
for men.

(a) Consider the following statement: “The Turing test is based on the idea
that the ability to misrepresent oneself is a measure of intelligence.” Do
you agree? Why? If you agree with it, do you think that ability is a
measure of intelligence? Why?

(b) In some statements of the Turing test, the deception rate for a computer
program is simply required to exceed some value. Which version do you
think is better? Why?

(c) Suppose a species as intelligent as humans were found. (Intelligence in
this sentence does not refer to the Turing test, but to a “commonsense”
assessment.) Do you think such aliens could pass the Turing test? Why?

(d) Given the existence of an intelligent alien species, suggest and defend a
less species-biased test for computer intelligence.

(e) As stated, passing the Turing test depends on the computer’s possess-
ing extensive knowledge of the nature of human beings, both physical
and psychological, as well as their culture, history, literature, and so
forth. Suggest and defend modifications of the Turing test that would
reduce the need for such knowledge. To what extent can such a need be
eliminated without affecting the validity of the test?

(f) More generally, can you formulate a better test?
Suppose we are considering cognitive skills, learning abilities, or some other
human skill that is relevant to Al. Imagine a three-sided debate:

1. The (nearly) best way to achieve this skill has been found by evolution.

2. By reason and experiment, we’ll be able to improve considerably on
human skills.

3. Neither of the two previous views is correct.

Come to class prepared to carry out such a debate. (You may be assigned a
particular viewpoint to defend.)

For each of the three sides of the debate in the previous exercise, describe
the implications for AI work on a particular skill if the side is correct.
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1.2.4. Newell [34, p.19] lists a variety of things a mind is able to do, many of which
are reproduced below. Which of these abilities do you think a computer
program should have in order to deserve being considered a major Al project?
Explain your choices.

Hint. There is a wide latitude for acceptable answers, but you may have to
decide what you mean by Al in order to answer.
(a) Behave flexibly as a function of the environment
(b) Exhibit adaptive (rational, goal-oriented) behavior
(c) Operate in real time
(d) Operate in a rich, complex, detailed environment
o Perceive an immense amount of changing detail
o Use vast amounts of knowledge
o Control a motor system of many degrees of freedom
(e) Use symbols and abstractions
(f) Use language, both natural and artificial
(g) Learn from the environment and from experience
(h) Acquire capabilities through development
(i) Operate autonomously, but within a social community

(j) Be self-aware and have a sense of self

1.3 About This Text

The paradoz is now fully established that the utmost
abstractions are the true weapons with which to control our
thought of concrete fact.

—Alfred North Whitehead (1925)

Understanding in mathematics cannot be transmaitted by
painless entertainment any more than education in music can
be brought by the most brilliant journalism 1o those who have
never listened intensively. Actual contact with the content of

living mathematics s necessary.

—Richard Courant (1941)

Teach nothing that pupils can teach themselves.
—Amos Bronson Alcott (1799-1888)

Mathematics is the term we use to describe the process of symbolically deduc-
ing conclusions from conceptual assumptions, whether these be the axioms of
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geometry, the laws of physics, or the assumptions in economics’ utility the-
ory. Mathematics with bad assumptions is useless; with good assumptions, it
is a wonderful tool.

Heuristics is the term we use to describe empirical principles and tech-
niques, such as “Avoid the use of GOTO,” “The best offense is a good de-
fense,” and “graphical user interfaces.” Good heuristics whose limits are well
understood are very useful.

Programming is a means of testing ideas, creating tools, and generating
information that may spark new research. Because of AI’s complexity, we often
use special languages (most notably Lisp and Prolog) or simulator packages
(especially for neural nets).

Programming, heuristics, and mathematics are all important in Al

Because Al is a large field, textbook authors must make choices. Most
authors emphasize heuristics and relatively simple programming exercises.
Since writing large programs and studying mathematics are time-consuming,
this approach allows the broadest coverage of topics. After learning some Lisp
or Prolog and taking a course that involves a large programming project, you
should be able to study AI programming methods and write such programs.
On the other hand, it’s much harder to study mathematics on your own.

My goal is to provide an introductory Al course based on the most im-
portant mathematics and its applications. To keep the length manageable,
material must be cut. My algorithm is simple: Focus on important Al topics
that involve the most broadly applicable mathematics and cut back on oth-
ers. What does that leave? The main mathematical tools for representing and
manipulating knowledge symbolically are (a) various forms of logic for qual-
itative knowledge and (b) probability and related concepts for quantitative
knowledge. The main tools for manipulating knowledge nonsymbolically, as
in neural nets, are optimization methods and statistics. I've organized that
material as follows.

e Trees and Search: Since search plays a central role in Al, elementary
aspects of search trees are discussed in Chapter 2. Some additional aspects
of search are briefly discussed in Chapter 13 after the necessary probability
theory has been introduced in Chapter 12.

o Classical Mathematical Logic: First-order predicate logic, the starting
point for the use of logic in Al, is presented in Chapters 3 and 4. Prolog
is introduced to show how the concepts and results can be implemented
in a programming language. The reasoning engine in Prolog combines a
search strategy with a deductive method from logic. (You won’t, however,
learn how to program in Prolog from this brief introduction.)

e Uncertainty in Reasoning: Al systems based on classical mathematical
logic have various shortcomings. Among these are the following:

e We can’t easily allow for general rules that have exceptions (for exam-
ple, “mammals have legs” and “whales are mammals without legs”).
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e We can’t allow for uncertain statements (for example, “When the
barometer is falling, it often rains by the following day.”)

Qualitative approaches based primarily on extending logic are discussed
in Chapter 6. Quantitative approaches are discussed in Chapters 8 and 9
after the necessary probability theory has been introduced in Chapter 7.

Automatic Classification: An alternative to incorporating knowledge-based
rules into expert systems is to design programs that develop their own
“rules” from examples. These are called pattern classifiers and are dis-
cussed in Chapters 10, 11, and 13. After discussing neural nets and opti-
mization in Chapter 11, I digress to introduce some probability, statistics,
and information theory in Chapter 12. This is applied to neural nets and
decision trees in Chapter 13.

Other Things: The previous material omits important areas of Al. One is
robotics, in which sensory-input processing (especially vision) and motion
planning involve considerable mathematics. Another is language, where
linguistics and speech processing use mathematics. The final chapter con-
tains brief introductions to these omissions and to some less mathematical
topics so that you’ll have a bit of background and some references for fur-
ther study.

1.4 The Computation Problem in Al

Any program that will successfully model even a small part of
intelligence will be inherently massive and complez. Consequently
artificial intelligence continually confronts the limits of modern
computer-science technology.

—J. Michael Brady, Daniel G. Bobrow, and Randall Davis (1993)

Designing algorithms is a central problem in almost any computer oriented
field, and Al is no exception. Unfortunately, algorithms are particularly trou-
blesome in AI. Three reasons for this are as follows.

e Complexity: Problem complexity makes designing and implementing al-
gorithms difficult.

e Time: Algorithms frequently explore potential solutions in the course of
searching for an acceptable one. For problems of realistic size, a simple
search process may take too long because of combinatorial explosion—
a rapid growth in the number of possible solutions. Unfortunately for
algorithm design in Al

Very rapid growth is typical in Al problems.
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e Impossibility: It may be impossible to design an algorithm for the given
problem. Here’s a specific example. We would like to design an algorithm
that takes as input (a) a computer program in some suitable language
and (b) some data for the program. The algorithm must determine if
the program will stop or run endlessly—the halting problem. In designing
the algorithm, we imagine an abstract computer having infinite storage.
(Of course, compromises will have to be made when we get around to
implementing the algorithm.) In a classic paper in 1935, Turing proved
that no such algorithm can exist. Thus, the problem is impossible.

Here are some ways of dealing with these problems.

e Find a much better algorithm: This is the ideal solution. Unfortunately,
we often cannot find a much better algorithm.

o Settle for an algorithm that sometimes fails: These are algorithms that
sometimes fail either by stopping with no solution or, worse, by giving
an incorrect solution. It’s possible to create such an algorithm by impos-
ing a time limit on another algorithm. For example, the famous simplex
algorithm in linear programming has a very bad worst-case time and a
very good average-case time [6]. Thus, an intelligently designed time limit
would lead to a solution in most cases. For this approach to be useful, we
must know from theory or experience that failure is relatively rare.

o Settle for an approximate solution: Such a solution is often good enough.
Simon coined the term satisficing for finding a good enough solution.
Sometimes, obtaining good approximate solutions may be as difficult as
the original problem.

o Replace the problem with an easier one: Solving the easier problem may
produce useful results. Also, exploring the easier problem may lead to
ideas for the original problem.

e Give up: No comment.

All of these approaches are used in Al often in combination. Inventing com-
promise algorithms is a tricky, creative business. Mathematics may help in
inventing and assessing compromises, but is seldom sufficient. The final weigh-
ing of gains and losses in a compromise is a value judgment based on your
goals.

How much time should an algorithm be allowed to take? More time often
means a better result. On the other hand, speed of response is important;
for example, a user is less likely to use a sluggish expert system than a quick
one. Figure 1.1 illustrates this idea. Unfortunately, the information needed to
construct the curves in the figure is seldom available. In this case, an anytime
algorithm can be quite useful. This is an algorithm that can be interrupted at
any time to obtain an approximate answer. Here’s a simple example of such
an algorithm. Suppose we know that f is continuous on the interval [a,b],
that f(a) < 0, and that f(b) > 0. We want to obtain an estimate for an



1.4 The Computation Problem in Al 15

value

AT

____________ calculation

// net value

» time

cost of delay .

~

Figure 1.1 The typical effect of response time. The vertical scale measures value
in some unspecified manner. The upper dashed curve shows how the value of a result
varies with computation time. It ignores the costs of time delay. The lower dashed
curve shows the cost of delay in response time. The middle curve, which combines
the two, shows the net value of the response. Computation should end at the middle
curve’s maximum: Even though more calculation would give a better result, the cost
of delay outweighs the gain.

z € (a,b) such that f(z) = 0. Simply repeat the following two steps: Let
c = (a+b)/2.If f(c) <0, let a = c; otherwise, let b = ¢. Whenever the
algorithm is interrupted, it returns the estimate ¢ for z.

NP-Hard Problems

Theoretical computer scientists consider an algorithm to be fast if its running
time can be bounded by a polynomial in the number of bits needed to express
the input and the output. This means that, even in the worst case, the algo-
rithm is reasonably fast on very large problems. It says nothing about average
running time. Indeed, it may be very difficult to define an average running
time since it may be unclear what to average over.

In the theory of algorithms, a certain class of problems is called NP-
complete. Hundreds of problems of interest to computer scientists have been
shown to be NP-complete. It has been proved that either a fast algorithm
exists for all NP-complete problems, or no fast algorithm exists for any NP-
complete problem. Since no fast algorithm has been found after many years
of research, it seems unlikely that any exists.

An NP-hard problem is one that is at least as difficult as an NP-complete
problem. Even when a problem is NP-hard, there may well be an algorithm
that works well on the situations that arise in actual usage—that is, the worst
cases simply don’t arise in practice. (Of course, as soon as you decide this-and
release your program to the world, Murphy’s law dictates that someone will
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come up with a use where the worst cases occur.) In other words, the relevant
time is the average running time over inputs that will actually occur. Unfor-
tunately, this time is usually difficult or impossible to determine theoretically.

Polynomial time algorithms and NP-complete algorithms are the bottom
levels of a whole series of increasingly more difficult problems that are studied
in complexity theory. Some Al problems are NP-complete. Many more are
even more difficult. As a result, compromises of some sort are often needed.

Aside. Here’s a technical note for those who want to know a bit more about NP-
complete. Let |y| denote the number of bits needed to describe y. We say that an
algorithm is (at most) “g time” if the running time of the algorithm with input z is
bounded by g(]z]).

Suppose we want to determine whether certain things in a set S have some
property F. This is called a recognition problem. A recognition problem is in the
class P if there exists a polynomial time algorithm that can determine if F(z) is
true or false. For example, § could be the positive integers and F' could be “com-
posite” (not a prime). In this case, F(z) is true if and only if z is not a prime. No
polynomial time algorithm is known for this example.

It may be much easier to verify that F(z) is true for a given z if we’re given
some additional information. This added information is called a certificate. Thus, a
certificate could change a hard problem into an easy one. (Of course, it might be
very hard to create such a certificate.) Note that this makes no provision for veri-
fying that F(z) is false. For the composite number example, a certificate ¢(z) for =
could be a factor of z. To verify that F(z) is true, all we need to do is check that
z/c(z) is an integer between 1 and z.

A certificate-checking algorithm is NP if it is polynomial time and |c(z)| is
bounded by a polynomial in |z]|. “NP” stands for “nondeterministic polynomial.”
It should be clear how polynomial applies to the definition, but where does non-
deterministic come in? An algorithm that makes lucky guesses could do the hard
part—that is, create c¢(z) in polynomial time by guessing. Guessing is a nonde-
terministic process. Combining this with the certificate-checking algorithm gives a
nondeterministic polynomial time algorithm for F(z). A recognition problem is in
the class NP if there exists an NP algorithm for it.

Suprisingly, there exists a class of “hardest” recognition problems in NP. These
are the NP-complete problems. In what sense are they hardest? Suppose we have a
g time algorithm for a problem. We say another problem is no harder than this if it
has a g(p) time algorithm for some polynomial p. This says that, to within a polyno-
mial adjustment, all NP-complete problems have the same running time bound and
no NP recognition problem has a larger bound. Let’s put this another way. Suppose
that P is a recognition problem that has a polynomial time certificate checking al-
gorithm and let g be the running time for the best possible noncertificate algorithm
for some NP-complete problem. Then the best noncertificate algorithm for P is at
most g(p) time for some polynomial p.

Since a polynomial time algorithm can check if F(z) is true in polynomial time
even without a certificate, any problem in the the class P is contained in the class
NP. It’s not known if the two classes are equal; however, this seems very unlikely.
Why? NP-complete problems have been studied extensively and no polynomial time
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algorithm has been found. (On the other hand, it hasn’t been proven that a poly-
nomial time algorithm cannot exist.)

A problem is NP-hard if it is at least as hard as an NP-complete problem. An
NP-hard problem need not be a recognition problem.

Goals, Difficulties, and Compromises

Computation problems often force compromises—we saw some possible ones
earlier. In fact, compromise is a pervasive aspect of Al. Being aware of this
will help your understanding and creativity, so develop the habit of asking the
following questions:

What are the goals?
What are the difficulties?
What are the compromises?

Try going back to the previous section and picking out the goal(s), problem(s),
and compromise(s) involved in my writing of this text.

Exercises

1.4.A. Why are algorithms particularly troublesome in AI?

1.4.B. What are some ways of dealing with the problems to which algorithms in AI
often lead?

1.4.C. Roughly speaking, what are NP-complete and NP-hard problems?
1.4.D. Why may it not be too important that a problem is NP-hard?

1.4.1. Prove that the anytime algorithm for finding a solution to f(z) = 0 has
the following three properties. Assume that there is no roundoff error in the
computations.

(i) There is always such an z € [a,b).

(i) After n iterations, the length of the interval [a, ] is 27" times its original
length.

(iii) No matter how close to a solution of f(z) = 0 we want to be, we can get
that close if we allow the algorithm to run long enough.
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1.5 Expert Systems

“You really are an automaton—a calculating machine,” I cried.
“There is something positively inhuman in you at times.”

—Arthur Conan Doyle (Watson to Holmes) (1889)

Ezpert system research has, by general consensus, not been as
successful as its most vehement proponents still claim and it is
open to us to wonder just why. My view is that it is due to the

divergence between formalised rule and the social nature of being
an ezpert.

—Philip Leith (1990)

Definition 1.1 Expert System

As a rough working definition, an ezpert system for some special field is
an artificial system that

e exhibits abilities in that field,
e accepts input regarding a specific problem,

e delivers advice, actions, or something similar as its output, not just
organized data, and

e uses domain-specific knowledge.

The traditional AI definition was more restrictive. It required that the ex-
pert system obtain its results by a process akin to abstract reasoning, that
it be able to explain how it reached its conclusions, and that it exhibit abil-
ities at least comparable to those of a human being. The abstract reasoning
requirement probably arose from a combination of the desire for explanations
and an intellectual prejudice concerning how Al should be done. The desire
for explanations was based on the observation that people often insisted on
checking the computer’s “reasoning” before accepting its conclusions. Finally,
if the system was not at least as good as a human in its area of expertise, no
one would use it.

The broader definition given here allows for expert systems that are
not based on a symbolic manipulation of data, for example, neural nets.
It also allows for systems in areas where humans exhibit little if any con-
scious reasoning, for example, in processing visual input. Finally, it allows
for useful systems that are less capable than humans but are still valuable
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Expert System Shells

Reasoning Hybrid Pattern Classification
Qualitative Quantitative Rule Decision  Neural Networks
o Logic o Bayesian Extraction Trees o Hopfield-like
e Production Rules e Fuzzy Logic o Feed Forward
¢ Semantic Nets e Other o Other

o Other

Figure 1.2 Possible engines for expert system shells. “Other” signifies the most
blatant omissions. “Rule Extraction” develops input for “Reasoning” systems. “Hy-
brid” refers to systems that use more than one method, a practice that is becoming
more common.

in research or applications, for example, natural language processing sys-
tems.

Closely related to the notion of an expert system is that of an ezpert
system shell, which is important in the development of commercial systems.
Roughly speaking,

An expert system shell is to an expert system
as

a compiler or interpreter is to a program.

In this analogy, program statements correspond to domain-specific knowledge,
which is often expressed declaratively either in rules or in examples. Just like
interpreters and compilers, expert system shells tend to fall into two cate-
gories:

e Rule-based knowledge is normally used at run time in a symbolic reason-
ing process.

e Example-based knowledge is normally used at compile time in a pattern
classification process.

Figure 1.2 illustrates some of the possibilities for expert system shells.



20 Chapter 1  First Things

Constructing an Expert System

There are various steps to constructing an expert system. One possible break-
down is

e selection of a tractable problem,
e selection of an appropriate shell,
e acquisition and preparation of knowledge, and

e testing.

Actually blending and feedback take place among the steps. For example,
we might defer the shell choice until we have acquired some knowledge, or,
in the process of testing, we might decide that the knowledge base is inade-
quate.

Step 1. The Problem: To begin with, you must have a “good” problem, that
is, one for which an expert system is likely to be useful. How can you tell if
this is the case?

Best performance is usually obtained by choosing a narrow subject; that
is, one in which the knowledge base is well delimited. In particular, we should
avoid problems that involve “common sense.” Some Al problems, like natural
language understanding, are plagued by the need for common sense.

Performance has generally been disappointing in areas where evolution
has apparently led to some “hard wiring” in human brains. The foremost
example is expert systems related to vision. Successful expert systems in such
areas have generally been limited to very specific problems such as identifying
handwritten Zip codes.

Step 2. Shell Selection: Once you’ve clearly stated the problem and gained
some understanding of the field, you should choose a method of implementa-
tion. You can program a system from scratch, but using an approriate shell
is usually much more efficient.

Step 3. Knowledge Acquisition: It is generally difficult to obtain accurate in-
formation from experts—they misstate the rules they use, forget important
factors, contradict themselves (and each other), and estimate numerical val-
ues poorly. Furthermore, their knowledge is probably poorly organized for use
in an expert system shell. Although the art of obtaining information from
experts is important in building an expert system, we won’t study it.

In some areas, such as vision processing, experts do not use conscious
methods. In this case, you must either attempt to discover rules yourself or
you must abandon rules and create the expert system from a collection of
“typical” examples.

Step 4. Testing: Testing is often referred to as validation. You can expect
problems that will send you back to Step 3 repeatedly. It is hard to decide
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when a system has finally passed the testing phase and is ready for use. In the
first place, users typically come up with situations that software designers did
not anticipate. Second, we often do not expect 100% success, so it is hard to
judge the failures we observe. In this case, systems that provide explanations
are quite helpful—the reasons given for a wrong answer can help us decide if
we want to attribute it to a design error or to a limitation that we cannot (or
do not want to) overcome.

Examples of Expert Systems

To give you a more concrete appreciation, I’ll briefly discuss a few of the many
expert systems that have been written. My choices were motivated by a desire
for breadth not by the commercial success, if any, of the system. Inevitably,
the brevity of the descriptions has led to some distortion.

LOGIC THEORIST (1956)

In the early years of the twentieth century considerable effort was devoted to
providing a solid foundation for mathematics. The most massive attempt was
Whitehead and Russell’s Principia Mathematica (1910).

Aside. This search for a solid foundation is one of the modern impossibility problems.
Its impossibility was proved by Gaodel in 1931. He showed that any system based on
the usual methods of logical reasoning and arithmetic must contain true theorems
that could not be proved within the system (“incompleteness”). In another paper,
he showed that the real numbers could not be completely specified in such a system
(“independence of the continuum hypothesis”). The classical impossible problems
are the trisection of the angle, the doubling of the cube, and the squaring of the
circle. The Renaissance impossible problem is the solving of the general fifth-degree
equation by radicals. The proof that r is transcendental established the impossibility
of squaring the circle. Galois theory was used to establish the impossibility of the
other three problems.

Since the framework provided by Whitehead and Russell allows theorems
to be proved with no “understanding” of the concepts, it’s a reasonable candi-
date for symbolic manipulation by computer. Newell, Simon, and Shaw took
up this task and produced LOGIC THEORIST.

As you’ve undoubtedly discovered, it’s not always clear what steps must
be taken to prove a theorem. Because of this, LOGIC THEORIST used an
ad hoc trial-and-error method. An essential part of a trial-and-error method
is deciding what to try. The program used two approaches:

e Suppose the goal is to prove Z and we have an axiom or theorem that
says, “If A is true, then Z is true.” We can attempt to prove A.
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e Suppose the goal is to prove that “If A is true, then Z is true.” We can
try to find M such that one of the two statements

“If A is true, then M is true.” and “If M is true, then Z is true.”

is either an axiom or a theorem. Then we try to prove the other of the
two statements.

This method is related to the reasoning engine used in the Prolog language.
Unlike LOGIC THEORIST, Prolog has a theoretical foundation that pro-
vides power and clarifies its limits. On the other hand, the construction and
arrangement of Prolog statements are more critical to its success.

Few, if any, researchers claim that the formal methods of LOGIC THE-
ORIST and Prolog are used in day-to-day human reasoning. Nevertheless, a
large number of researchers believe that extensions of these ideas will prove
adequate for much of the reasoning needed in Al

Mathematical logic and Prolog are discussed in Chapters 3, 4, and 6.

MYCIN (1972)
Beginning in 1972 at Stanford, Shortliffe and others developed MYCIN, which
is one of the best known expert systems. In its area of competence, MYCIN
was able to diagnose illnesses as well as or better than most physicians. It
was also able to explain how it reached its conclusions. Nevertheless, it never
received more than token acceptance from the medical community.

MYCIN is a rule-based system with uncertainty. In real life, many rules
are not certain. An example of such a rule is “If you do not study, then you
will get a bad grade.” However, you might happen to be lucky, so the rule
may be valid only 95% of the time. A typical MYCIN rule has the form

If the result of test A is R4 and ... and the result of test Z is Rz,
then there is evidence that the disease organism is D.

Included with the rule is a numerical value in the interval [—1,+1], called a
certainty factor (CF). This value is intended as a measure of the strength of
the rule’s conclusion, given that its hypotheses are satisfied. In particular

—1, given the evidence, D is certainly wrong;

+1, given the evidence, D is certainly correct;
CF =
0, the evidence gives no information about D.

The meaning of intermediate values is not so clear.

The MYCIN reasoning engine proceeds from diagnostic evidence toward
causes, eventually producing certainty factors for various diagnoses. In the
process, certainty factors are combined using an ad hoc rule. More recently,
certainty factors have been given a probabilistic interpretation, and Bayesian
nets have provided less ad hoc (but more complex) methods for combining
certainty factors.

Although numerical methods like that used in MYCIN provide ways of
incorporating uncertainty into reasoning, it is unlikely that human reasoning
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is based on such processes—people are notoriously poor at assigning numerical
values to evidence. On the other hand, the use of numerical methods might
lead to Al systems that reason more accurately than humans do.

Bayesian nets and certainty factors are discussed in Chapter 8.

NETtalk (1986)

DECtalk is a complicated rule-based system for converting written English
to spoken English. Sejnowski and Rosenberg developed the neural network
NETtalk to do the same thing. In contrast to DECtalk, NETtalk contains no
rules. Instead, it contains about 100 interconnected units (neurons). The net-
work was given paired samples of written and spoken English from which it
trained itself, using a process that adjusts the strengths of the connections be-
tween the neurons. NETtalk uses the seven most recent text symbols (letters,
punctuation, and spaces) to drive a digital speech synthesizer.

Networks have trained themselves for a variety of tasks. In contrast to
the more cognitive approaches used in the other examples, networks have no
cognitive information built in. Researchers believe that neural networks mimic
somewhat the low-level behavior of biological networks of neurons. As a result,
they believe that this approach may hold the key to designing Al systems that
have some of the capabilities of biological systems.

Neural nets are discussed in Chapters 11 and 13.

DEEP THOUGHT (1990)

Game-playing programs were a favorite research area in the early years of Al
For various reasons, research interests have since moved in other directions,
but the area has not been completely abandoned.

Chess is the most actively researched game. Programs are available that
will easily beat average players. Thanks to faster processors, special-purpose
devices, and improvements in programs, the top silicon-based players are now
nearly as good as the top human players.

DEEP THOUGHT, by Hsu, Anantharaman, Browne, Campbell, and
Nowatzyk uses special-purpose hardware to search the possibilities for several
moves into the future. The quality of each possible position is evaluated and,
sometimes, further search is carried out. DEEP THOUGHT's strength lies in
the depth to which it can search. In contrast, Nitsche’s MEPHISTO searches
less and spends more time assessing the positional aspects of the situation.
DEEP THOUGHT plays at or near the grandmaster level and MEPHISTO
plays at a slightly lower level.

Search plays a major role in Al, but brute-force search has very limited
application owing to combinatorial explosion. Some researchers believe that
combining search techniques with “heuristic evaluations” and “methods of
abstraction” will prove important in some parts of Al.

Search is discussed in Chapter 2 and briefly in Chapter 13.
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CHATKB (1992)

Hekmatpour and Elkan developed CHATKB is an expert system to aid users
of certain VLSI design tools. The rapid acceptance of this system is in marked
contrast to that of others such as MYCIN. The difference may be due to the
fact that CHATKB users are already using computers on a regular basis for
other high-level activities such as CAD.

When faced with a user problem, CHATKB determines the category to
which it belongs. This is done by an iterative questioning process similar
to the game of Twenty Questions. Such processes are called decision trees.
Nonautomated decision trees have been used for many years in natural history
field guides for classifying plants and animals.

Each category contains a data base of previously analyzed problems.
CHATKRB finds the closest matching problem in the data base for the current
problem’s category. It then presents that problem and its solution to the user.
If the user rejects this solution, CHATKB presents the second best match,
and so on. Matching in this manner is a form of case-based reasoning.

Some researchers believe that this type of dichotomous approach—classify
then look for similar cases—is typical of higher level day-to-day human rea-
soning. Consequently, they expect some such method to play an important
role in the design of intelligent systems.

Decision trees are discussed in Chapter 13. Case-based reasoning is men-
tioned very briefly in Chapter 14.

Exercises

1.5.A. What is an expert system?

1.5.B. What are the steps in building an expert system?

Notes

Crevier [10] has written an informative, lively, nontechnical book on the his-
tory of Al based on his own background and on extensive interviews with
major researchers. He brings the participants to life and accurately explains
important concepts and achievements in layman’s terms. You would probably
enjoy it.

If my brief treatment in Section 1.1 left you dissatisfied, you may wish
to look at other AI texts such as those by Charniak and McDermott [7],
Firebaugh [15], Ginsberg [18], Rich and Knight [39], Russell and Norvig [41],
and Winston [53].
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For a discussion of topics that I've slighted, or for a less mathematical
discussion of those I've covered, consult some of the available textbooks and
surveys. The texts by Dean, Allen, and Aloimonds [11], Charniak and Mc-
Dermott [7], Firebaugh [15], Ginsberg [18], Rich and Knight [39], Russell and
Norvig [41], and Winston [53] are all broad-based introductions to AI, but
the discussions of neural networks may be limited. Of these, I particularly
recommend Ginsberg’s and Russell and Norvig’s texts. More mathematical,
but less broad, are those by Dougherty and Giardina [13], Lauriére [27], and
Shinghal [45].

Survey and expository articles can sometimes be found in journals and
in conference proceedings. Some journals, such as Artificial Intelligence: An
International Journal, publish special issues containing several such articles.
In addition, handbooks and surveys such as [3] and [46] and books such as
[38] appear from time to time. For briefer discussions, there is the encyclope-
dia [44].

Reading original sources in any field is often a good idea, but it can be
daunting because the authors usually assume readers are researchers with the
necessary background. A solution is provided by annotated collections, for
example, Morgan Kaufmann Publishers’ Readings in ... books, such as [9]. A
source in neurocomputing is [2].

I mentioned functional programming and logic programming as two of the
paradigms that AI brought to computer science at large. Logic programming
as implemented in Prolog will be discussed in Chapters 3 and 4 to help your
understanding of logic. Functional programming ideas were implemented by
McCarthy in Lisp. The theoretical foundation is provided by the lambda
calculus, developed primarily by the logicians Church and Kleene. I won’t
be discussing these topics, but some Al texts have a Lisp-based introduction
to the subject, which is good if your focus is understanding Lisp. On the
other hand, MacLennan [28] discusses the general methodology of functional
programming from both a concrete and an abstract viewpoint without relying
on Lisp. For texts on Lisp and Prolog, see the notes at the end of Chapter 3.

The discussion about what constitutes Al continues. Almost any textbook
will begin with a discussion of what Al is about and articles appear from time
to time in journals and magazines; see, for example, [43]. The nature of Al and
other topics of debate appear in the essays edited by Graubard [19]. These
were written for a general audience. The essays in Partridge and Wilks [36]
and in volume 47 of Artificial Intelligence (nos. 1-3, Jan. 1991) are more
technical. Material on the connectionist versus symbolic debate can be found
in [37] and in [40].

Al frequently employs complex nonlinear feedback systems. Their behav-
ior is often counterintuitive—at least until extensive experimentation leads
to the development of a new intuition. For the simplest such systems, mathe-
matical control theory has produced some theoretical results. Forrester has ex-
plored complex systems by simulating corporations, cities [16], and the entire
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world. Many other people have simulated complex systems and attempted to
obtain heuristic principles and theoretical results. Progress has been painfully
slow. It is quite possible that this area will remain intractable, but giving up
now would be extremely premature.

Turing’s proof of the impossibility of the halting problem depends on the
concept of finite automata. You can find a proof in Bender and Williamson’s
text [4, pp. 178-179)], any book on automata theory, or some texts on discrete
mathematics. The ideas relating to Figure 1.1 are discussed more thoroughly
by Russell and Wefald [42, Ch. 1]. For further discussion of NP-completeness,
see the texts by Papadimitriou and Steiglitz [35] and Wilf [52] or see the
article [20]. Garey and Johnson’s [17] classic book on the subject lists many
NP-complete problems, but the list is now much longer.

A discussion of expert systems can be found in many Al texts. There are
also books devoted to expert systems. These include Stefik’s [48] extensive
introduction; the text by Jackson [24], which covers a large part of the material
found in a standard Al course; the text by Lucas and van der Gaag [26],
which treats fewer topics but in greater depth; and the collection [50], which
discusses a variety of applications, devoting a few pages to each. The chapter
discussion passed quickly over the difficult problem of knowledge acquisition.
Many techniques, problems, and specific examples are discussed in [25].

Biographical Sketches

John McCarthy (1927-)
Born in Boston, he received a bachelor’s degree from Caltech and a doctorate
from Princeton, both in mathematics. He received the 1971 Turing Award.

McCarthy named the field; he invented the name “artificial intelligence”
when writing the proposal for the first AI conference. In 1957, he and Minsky
founded the Artificial Intelligence Group at MIT. While there, McCarthy
invented timesharing and Lisp. In 1963, McCarthy moved permanently to
Stanford, where he founded and directed SAIL (Stanford Artificial Intelligence
Laboratory). The MIT and Stanford groups have had a profound influence on
Al for many years.

His major concern has been understanding “commonsense” reasoning so
that it can be used in AI. As a result, he’s focused on achieving a funda-
mental understanding of knowledge and has advocated a publicly accessible
knowledge base for common sense.

Many interesting stories about McCarthy can be found in the biography
by Hilts [21, pp.197-287]. The sketch by Israel [23] provides more technical
information.
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Marvin Minsky (1927-)
Born in New York City, he studied at Harvard and Princeton, receiving a
doctorate in mathematics. As a postdoc at Harvard, he designed the first con-
focal microscope, a device which is now quite important in optical microscopy.
Minsky received the 1969 Turing Award.

In 1957, McCarthy and Minsky founded MIT’s Artificial Intelligence
Group, where he has continued to inspire excellent thesis research in a va-
riety of areas including

MACSYMA (the forerunner of Maple and Mathematica),
e analogical reasoning (A is to B as C is to which of the following?),

o language comprehension, and

e robot vision.

Minsky introduced the idea of “frames,” which are used in Al and, more
recently, in object-oriented programming languages. In 1969, Minsky and Pa-
pert dealt a blow to perceptrons—a type of neural network—by proving that
they were quite limited [30].

Recalling his student days, Minsky remarked that “The problem of intelli-
gence seemed hopelessly profound. I can’t remember considering anything else
worth doing.” [5, p.77]. His career has focused on learning what computers
are capable of doing on nonarithmetic problems.

Bernstein’s [5, pp.9-128] biographical account contains extensive quota-
tions from Minsky.

Allen Newell (1927-1992)
Born in San Francisco, he received a bachelor’s degree in physics at Stan-
ford and began a doctorate in (pure) mathematics at Princeton. Concerned
about a lack of breadth, he left Princeton for RAND where he met Herbert
Simon. Newell received a doctorate in industrial administration under Simon
at Carnegie Tech (now Carnegie-Mellon University), where he became a pro-
fessor. Newell and Simon received the 1975 Turing Award.

He and Simon began a long and fruitful cooperation in 1955 when, with
J. C. Shaw, they designed the list-processing language IPL and used it to write
the LOGIC THEORIST, a program that was able to prove results found in
Russell and Whitehead’s Principia Mathematica. As a result, Newell, Shaw,
and Simon are often called the parents of Al. The realization that computers
are more than just rapid arithmetic calculators—that they can be used to
manipulate symbols—was an important observation at the time and is now
taken for granted.

In 1956, Newell, Simon, Chomsky, McCarthy, Minsky, and others launched
cognitive science at a conference at MIT.

The focus of Newell’s career has been the formalization of problem solving
and complex task performance by human beings. The scope of this undertak-
ing has grown over the years, moving from attempts to model the performance
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in specific cognitive areas to a drive to model the entire cognitive process. This
has culminated in SOAR, a blend of AI and cognitive psychology. Theories of
how humans solve problems provide the motivation for this ongoing program-
ming project whose aim is to simulate significant aspects of human cognition.

More information about Newell and SOAR can be found in [29] and about
his interaction with Simon in [47].

Herbert A. Simon (1916-)

Born in Milwaukee, he studied at the University of Chicago, where he received
a doctorate in political science. In his autobiography [47, p. 85], he relates that
by this time he “had made a modest beginning in mathematics, a basis for
subsequent self-instruction.” Most of his career has been spent at Carnegie-
Mellon University (CMU). Newell and Simon received the 1975 Turing Award.
Simon received the 1978 Nobel Prize in Economics.

After being involved in the establishment of the CMU Graduate School of
Industrial Administration, he began his shift to Al and cognitive psychology in
1955. He contributed to the establishment of CMU’s fruitful interdepartmental
computer science program.

As the preceding biographic sketch mentioned, Simon and Newell worked
jointed for many years. But, unlike Newell, Simon has continued to focus on
more limited problem-solving simulations rather than on the entire cognitive
process.

Much of Simon’s career has focused on the implications of “bounded ratio-
nality” in economics and cognitive science. Traditional economics postulates
a very knowing and rational man; he has complete knowledge of all relevant
factors, including the details of his own preferences, and is able to carry out
any amount of reasoning (and computation). In the early 1950s, Simon broke
with this tradition and postulated bounded rationality—incomplete knowledge
of factors and preferences and limited reasoning abilities.

Simon’s autobiography [47] is part of the Alfred P. Sloan Foundation
Series—a growing collection of generally excellent autobiographies by promi-
nent contemporary scientists.

Alan M. Turing (1912-1954)

Born in London, he took his degrees in mathematics at Cambridge, where he
remained until joining the British war effort in 1938 as their first cryptanalyst.
There he played a major part in setting up the system for routinely decoding
the German Enigma code. After World War II, Turing spent time at the
National Physical Laboratory and at Manchester.

The ACM’s Turing Award is named after him, as are Turing machines and
the Turing test of Exercise 1.2.1 (p. 10). (The Turing Award lectures through
1985 are collected in [1].) Turing machines illustrate Turing’s focus on logic
and computation. A Turing machine is an elegantly simple abstract computer.
Using these simple computers, he showed that the halting problem for com-
puter programs has no computable solution. This was done in 1935, before
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the birth of the electronic computer. Using the lambda calculus, Church also
showed the existence of well defined noncomputable functions. This nonex-
istence result has implications for first-order logic, which is the subject of
Chapters 3 and 4.

Hodges [22] has published a thorough nontechnical biography of Turing.

For more information on Turing machines, consult a text on automata theory.
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Trees and Search

For ’tis a truth well known to most
That, whatsoever thing is lost,

We seek it, ere it comes to light,
In every cranny but the right.

—William Cowper (1731-1800)

Introduction

In AD’s youth, researchers hoped that much could be achieved by using very
general methods—so-called weak methods, as opposed to methods that make
significant use of particular knowledge in the problem area. General search
procedures are the most important weak methods in AI. Although knowledge-
intensive approaches are usually favored now, basic search ideas continue to
play a major role.

Some Examples

Search is something everyone does. Consider some examples from everyday
life.

o Simple Search: Also called brute-force search and British Museum search,
this simple method blindly looks everywhere until it finds a solution. This
is the method I might use if I've misplaced my keys somewhere at home,
but have no idea where. It’s impractical for many Al problems because
there are too many places to look. To avoid simple search, I need some
sort of additional information about the space being searched.

o Heuristic Search: I can improve on the brute-force key-finding algorithm by
using additional information called a heuristic. For example, it’s unlikely,
but possible, that I put my keys in a drawer. Thus, I'll give a higher
priority to searching on surfaces than to searching in drawers. Of course,
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if I don’t find them on a surface, I may end up looking in drawers after
all. A heuristic just helps me organize my search—it’s not a sure thing.

Pruning: This is a method that allows me to eliminate possibilities. As
I walk into the den, I see my briefcase in plain sight—just where I left
it before going to the university this morning. Thinking for a second, I
realize that because I misplaced my keys after coming home and because
this is the first time since coming home that I’ve seen my briefcase, my
keys can’t possibly be in the den. Thus I “prune” the den; that is, I don’t
search it.

Chess and Other Games: Sometimes it’s impossible to conduct a full search.
This is typical in games like chess, where the set of all possible ways
the game can proceed from its present position to its final end is too
large to examine. Players select moves because they “look good.” Thus
they must have some method of looking at board positions and deciding
which ones appear better. In other words, a player has a heuristic for
evaluating positions. To write a chess-playing program, we also need a
similar heuristic. An evaluation heuristic alone is not enough: It tells us
which lines of play to explore further, but it doesn’t tell us how far ahead
to look or how many lines of play to explore.

Doing Homework: Solving homework problems often involves search. The
method a student uses depends on the nature of the homework and on
the student. It may range from simple search—look for a formula in the
chapter that fits—to sophisticated applications of heuristics and pruning
to even more sophisticated planning methods. In fact, the mastery of
more sophisticated methods often distinguishes those who understand a
course from those who just barely make it through. Researchers have a
poor understanding of these methods. Consequently we don’t know how
to teach them well or how to do a good job of building them into Al
programs.

Evolution: Living organisms are quite complicated. Large random changes
in an organism are almost certain to be fatal—so much so that such
changes would not be able to form the basis for evolution. One key to
evolution’s ability to work is the fact that nearby states (such as mutations
and crossovers) often involve relatively small changes in the structure and
function of the organism. Another key is the recombination of genetic
material through mating or chromosome interchange. This allows useful
changes to be combined.

All these ideas except evolution are important in classical Al search. Evolu-
tion has appeared as a tool for Al under the name genetic algorithms. Let’s
postpone our discussion of genetic algorithms, planning, and those aspects of

search that require probability theory. The other aspects of search are dis-

cussed in this chapter.
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Chapter Overview

We begin by introducing some notions from combinatorics, namely directed
graphs and ordered trees. Next, induction and recursion are reviewed. This
provides the concepts for converting a search space into a search graph and
a search (or decision) tree. The remainder of the chapter is devoted to search
trees. Naturally, it begins with the three basic methods of simple search:
breadth-first, depth-first, and iterative-deepening.

The blindness of simple search limits its usefulness. In order to guide our
search, we need some sort of crystal ball to estimate the quality of a state
(vertex in the search tree). The crystal ball is called a heuristic and forms
the basis of heuristic search. The efficiency and success of the search depend
heavily on the nature of the heuristic. Designing a heuristic for a specific
problem is often a knowledge-intensive art and thus will not be discussed
here.

All other sections of the chapter deal with searching until a goal state is
found. In Al, this is often impossible or undesirable. The last section takes up
the important topic of partial search. Ideas in this area are based on heuristic
and iterative-deepening search.

Games are more fruitfully viewed in terms of a somewhat different search
tree structure called an AND/OR tree. Alpha-beta pruning is the classic method
for reducing the amount of work in searching AND/OR trees. Since this algo-
rithm is often misunderstood, we’ll develop it in stages.

Much of the material on search can be viewed from a recursive viewpoint.
In this chapter, recursion will appear in the definition of trees, in search algo-
rithms, and in proofs. Recursion and induction are reviewed in Section 2.2. If
you find recursive methods natural, you can skim or even skip this material.
If you find recursive methods difficult, don’t skim. You’ll only find yourself
in trouble later because the definitions and methods in logic rely heavily on
recursion and because many proofs in later chapters rely on recursion and
induction. In fact

Recursive methods permeate much of AIJ

Prerequisites: Since this is the first mathematical chapter, no earlier mate-
rial is needed.

Used in: The terminology on graphs in the first section is referred to in
various other chapters. Recursion, which is discussed in Section 2, plays a
central role in AI. Thus, you should read at least the first two sections of this
chapter. The material on Prolog in Chapters 3 and 4 requires the material on
depth-first force search in Section 4. Parts of Chapter 13 use material from
this chapter.
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2.1 Graphs and Trees

The term graph is used to describe two completely different concepts. The
concept we do not want is the one associated with the graph of a function.
Instead, we want the combinatorial concept, which is frequently used in com-
puter science. The graphs of greatest interest to us are directed graphs and
ordered trees. You’ve probably seen trees, at least informally, in other courses.
Figures 2.2 (p. 38) and 2.4 (p. 50) contain some examples. In this section, we’ll
develop a precise, recursive definition. After defining these concepts, we’ll use
them to discuss recursion and to provide a framework for search.

Unfortunately, there’s a lot of terminology to define, so let’s use this
section to define some important terms. If we define them as they’re needed,
we’d break up the discussion—and they’d be harder to locate later. You may
not remember it all at first, but you can always refer to this section while
reading the rest of the chapter.

Remember that, for two sets A and B, the Cartesian product A x B
consists of all ordered pairs of the form (a,b), where a € A and b € B.

Definition 2.1 Directed Graphs (Digraphs)

Let V be a set. A directed graph, or digraph, is V together with a subset
E of V x V. We refer to V as the vertices of the digraph and to F as
the edges of the digraph. We denote the digraph by (V, E). If (v,w) is an
edge, we call it an edge from v to w, call v its tail, and call w its head.

A digraph is represented pictorially as follows. The vertices v € V are indi-
cated by their names, possibly circled. An edge (u,v) € E is represented by a
line or a curve connecting the representations of » and v, with an arrowhead
indicating the direction from u to v. I’ll usually abuse terminology and refer
to such a representation as if it were the digraph. Since nothing matters for
a digraph except V and E, the shapes and positions of the representations
of the vertices as well as the shapes and crossings of the curves representing
the edges are irrelevant. Figure 2.1 contains pictorial representations of two
digraphs.

Definition 2.2 Paths and Cycles

Let D = (V,E) be a digraph. If vy, vs,...,v, are distinct vertices of D
and (vi,vi+1) € E for 1 <i < n, we call vy,...,v, a directed path in D.
If we require only that either (v;,vi+1) or (vi41,v;) be an edge, we have
an undirected path. If vy,...,v, is a directed path and (v,,v1) € E, we
call vq,...,vn,v; a directed cycle in D. (An undirected cycle is defined
similarly, but we must rule out repeated edges to avoid the triviality of a
two-vertex undirected cycle.)
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0,1

Figure 2.1 Pictorial representations of two directed acyclic graphs (DAGs). The
left-hand side shows two representations of a DAG that has V = {1,2,3,4} and
(u,v) € E whenever v < v. In the right-hand digraph, imagine a sequence of
dy,da, ... of zeros and ones. Each vertex u corresponds to two adjacent digits, say
d;—1,d;. By choosing the correct edge (u, v) leading out of u, we can move to d;, dj41.
For example, given the sequence 0,1,1,1,0,0, we would start at 0,1, go to 1,1, then
to 1,1 again, then to 1,0, and finally to 0,0.

It’s quite simple to define the notion of a rooted tree in terms of a directed
graph: It’s a directed graph (a) having no undirected cycles and (b) having
a special vertex r (called the root) such that there is a directed path from r
to every other vertex of the graph. One often needs an ordering for the edges
coming out of each vertex. Such a tree is called an ordered tree.

Here’s a geometric visualization of ordered trees: The topsy-turvy conven-
tion used by mathematicians and computer scientists usually places the root
at the top of the picture. For any vertex v, we draw the edges (v, z1), (v, z2), . ..
in a downward direction from v and in a left-to-right order according to their
ordering. This is the reason why rooted trees with the edges from each vertex
ordered are also called rooted plane trees—drawing a rooted tree in the plane
automatically gives a left-to-right ordering. Some ordered trees are shown in
Figure 2.2(a).

In many cases, it’s helpful to have a recursive definition of ordered trees.
Definition 2.3 gives us one. Although it’s long, it’s not really complicated if
you keep the geometric picture in mind. Part (b) corresponds to the following
picture. Draw the trees T3,...,T; so that their roots r1,...,7; lie in a line
from left to right. Place a new vertex r above the r;’s and draw lines connecting
7 to each of the r;’s. See Figure 2.2(b).
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(b)

Figure 2.2 Pictorial representations of (a) five ordered trees and (b) the recursive
construction step. The topmost vertex of each tree is its root. All are distinct ordered
trees, but the two five-vertex trees represent the same rooted tree. To avoid clutter,
the direction of the edges, which is always downwards, is not indicated. The new
edges in the recursive construction are dotted.

Definition 2.3 Ordered Tree

An ordered tree consists of four things: a set V of vertices, aroot r € V, a
set E of directed edges, and an ordering of the edges out of each vertex.
It is defined recursively as follows:

(a) f V ={r} and E = 0, calling r the root gives an ordered tree.
(b) Suppose that, for 1 < ¢ < k, T; is an ordered tree with root r; € V;

and edges E; which have been partially ordered. Suppose that the
Vi’s are disjoint; that is, V; NV; = 0 whenever i # j. Suppose further
that r ¢ V3 U --- U V;. The following defines an ordered tree.

k
V={r}u (U V,-> ,
=1
root = r, (2.1)
k
E=J{(rm)}uE)
i=1
and the orderings of the edges consist of the orderings of the edges

of the T;’s together with

(ryr1) < --- < (r,7p).

If v is a vertex in an ordered tree and there are no edges of the form
(v, ), we call v a leaf or terminal vertez. If we ignore the ordering
of the edges, we obtain simply a rooted tree. The r;’s are called the
sons or children of 7.
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Aside. There’s one problem with this definition for ordered trees: It doesn’t allow
us to construct infinite trees. I want to allow trees that may have infinitely long
paths; but rather than give a definition, I’ll assume that the concept is clear enough
without one. Of course, I don’t really want infinite trees; but they do occur and can
cause problems for programs.

Decision trees are a particular manifestation of ordered trees. They pro-
vide a useful way of thinking about search trees and are important in design-
ing expert systems that automatically classify data. The study of automatic
classification starts in Chapter 10.

Definition 2.4 Decision Tree

An ordered tree is viewed as a decision tree as follows. If v is a nonleaf
vertex and (v,21),..., (v, z,) are the edges from v, we call z, ..., z, the
possible decisions at v. We refer to ; as the ith choice at v and call ;44
the next choice after z;.

Abstractly, decisions at a vertex need not be ordered; however, in prac-
tice, they are ordered because a program studying a decision tree must
go through the decisions at a vertex in some order.

Aside. The meaning of “tree” without a modifying adjective varies from one discipline
to another and even within a discipline. In computer science, “tree” often means
“rooted tree” and sometimes means “ordered tree.” In mathematics, “tree” often
means “free tree,” which is essentially a tree without a root. This confusion won’t
affect us because the only trees we’ll need will be ordered trees and decision trees.

Exercises

At the beginning of many exercise sections, you’ll find exercises that are lettered
rather than numbered. Their purpose is to make sure you understand the basic
ideas in the text. Their solutions can be found by rereading the preceding material.

2.1.A. Define and give an example of a digraph. An ordered tree. A decision tree.

2.1.1. (Answer follows) Every workday I’m faced with some decisions. First, I must
decide if I think the weather may be bad. If so, I must decide whether to
take an umbrella or other rain gear. If not, I must decide whether to cycle in
or drive in. (In bad weather, I’ll certainly drive.) If I decide to drive, I must
decide whether to leave home early or late. Draw a decision tree and label
the vertices according to the states they represent.
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Answers

2.1.1. To avoid your inadvertently seeing the answer, I’ll list the edges instead of
drawing the tree. Let b and g refer to weather, © and o to rain gear, ¢ and
d to transportation and e and ! to timing. The edges are (r,b), (v, g), (b, u),
(b,0), (u,€), (u,1), (0,€"), (0,1), (g,¢), (9,d), (d,€"), and (d,1"), where I’ve

used primes to distinguish different vertices with the same labels.

2.2 A Review of Recursion and Induction

When [recursion] is first presented, students often react as if they
had just been exposed to some conjurer’s trick rather than a new
programming methodology. Given that reaction, many students
never learn to apply recursive techniques and proceed to more
advanced courses unable to write programs which depend on the
use of recursive strategies.

—Eric S. Roberts (1986)

The notion of recursion appears in definitions, algorithms and proofs. A re-
cursive definition normally consists of two parts:
e a description of the simplest items and

e a description of how to build up more items from other items.

This approach appears in the recursive definition of ordered trees (Defini-
tion 2.3). A recursive algorithm usually has a similar pattern:

e an algorithm for treating the simplest cases and

e an algorithm for treating the present case based on the results for simpler
cases.

Example 2.1 Two Recursive Ordered-Tree Algorithms

Suppose we want to list the vertices in an ordered tree. Given an ordered tree
T, let r(T') be the root of T', let k = k(T") be the number of ordered trees that
were joined to r in the recursive step to form T', and let T3,...,T; be those
ordered trees. Here’s an algorithm:
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List(T)
Output (7).
If 7(T) is not a leaf, then
For i=1,...,k, List(T}).
End if.
End.

Now suppose that we want to “parse” an arithmetic expression that is
built using the binary operations of +, —, x, and /. Given an expression, we
want the function last_op that returns the last operation needed to perform
the calculation. For example, the last operation in (a+ 1) X (a —b) is the mul-
tiplication. We also want functions 1eft and right to return the expression
to the left and right of an operation.

Parse(exp)
If exp contains no operation, then
Return an ordered tree with one vertex, labeled exp.
Else
op = last_op(exp).
T = Parse(left(exp,op)).
Ty = Parse(right(exp,op)).
Return the ordered tree built from 77 and 75
with root labeled op.
End else.
End. W

Inductive, or recursive, proofs follow the same format as definitions and
algorithms.

Example 2.2 A Recursive Ordered-Tree Proof

Let’s prove that every ordered tree contains one more vertex than edge. Let
v(T) and e(T") be the number of vertices and edges, respectively, of the ordered
tree T'. It’s now simply a matter of using Definition 2.3. In part (a), v(T) = 1
and e(T) = 0, so the result is true. In part (b), it’s simply a matter of applying
the counting functions v and e to (2.1):

k k
o(T) =14 o(T:) and e(T) = (1+e(Ty)).

i=1 i=1

Since the construction is recursive, we may assume that v(T;) = 1+¢(7;), and
so it follows from the equations above that v(T) = 1 + e(T'). This completes
the proof. W



42 Chapter 2 Trees and Search

It may almost seem that we got something for nothing: Why can we
assume that v(T;) = 1 + ¢(7;)? Don’t we need to find some n to induct on?
The answer is yes and no. Let’s look at proof by induction and recursive
definitions more closely.

In the simplest form of proof by induction, we have some statement that
depends on a positive integer =, call it A(n). Proof by induction then consists
of two parts: First, show that .4(1) is true. Second for n > 1, show that,
whenever A(n — 1) is true, so is .A(n). In a slight generalization of this, the
second step is replaced by another step: For n > 1, show that, whenever .4(m)
is true for m < n, so is A(n). '

You should’ve seen all this in previous mathematics courses. However, you
may not have seen a proof that induction is a valid method of proof. Here’s
one possible argument. Suppose that A(n) is false for some value of n. Then
there is a smallest value of n for which it is false, say n = ng. We cannot have
ng = 1 because the induction proof showed that A(1) was true. On the other
hand, we cannot have no > 1 because (i) A(m) is true for m < no by the
definition of no and (ii) the induction proof showed that then .A(ny) must be
true.

The key point in this argument is that, if A(n) is not always true, then
there must be an ng where it is false, but for every case smaller than ng it
is true. Now, don’t limit your thinking of “smaller than” to the integers. In
particular, look at the recursive definition of ordered trees. We can think of
the trees Ty, ..., T} that are used to construct T as all being smaller than T
The smallest case (corresponding to n = 1) is the ordered tree consisting of a
single vertex. In this sense of smaller, we can have two trees, neither of which
is smaller than the other, for example, /I\ and A This does not cause
any difficulty for the proof that induction works. We can even have several
“smallest” cases—although we had only one here.

Admittedly, the previous discussion is rather sketchy. The important point
is that a recursive definition (or algorithm) automatically provides the frame-
work for proofs by induction. This is important, so here it is again.

Principle: Suppose a concept is defined recursively and suppose that
you want to prove something about the concept. Almost certainly, 2.2)
an inductive proof will be required. The simplest inductive proof will )
probably be based on upward recursion paralleling the definition.

Following this principle will lead to clearer inductive proofs and will help you
find them more rapidly. Of course, there are situations in which no recursive
algorithm or definition is at hand. In that case, the principle is useless in
creating an inductive proof.

Here’s a more complicated proof for ordered trees to illustrate proof by
induction again. The result is almost intuitively obvious, but it’s not clear
how to prove it.
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Example 2.3 Another Recursive Ordered-Tree Proof

Claim: In an ordered tree, there is exactly one undirected path be-
tween any two distinct vertices.

To prove this, note that it is trivially true for the single-vertex case—there
aren’t two distinct vertices. However, it will be convenient to think of a single
vertex r as a path from r to itself containing no edges. Then the condition
that the vertices be distinct can be removed.

Now let u and v be the vertices and suppose that T is constructed from
r and the ordered trees Ty,...,T;. How can we possibly use induction here?
We must somehow reduce the study of paths to the study of paths in the
individual T;’s. The key to doing this is the observation that the only edge
between T; and the rest of the tree is (r,7;). Another useful remark is that no
path can contain 7 twice or r; twice.

To prove the inductive step, there are three separate types of paths to
consider.

e u,v € V;: By the previous paragraph, any path between u and v not lying
wholly in T; would contain »; twice, a contradiction. Therefore, the only
possible paths are wholly in T; and, by induction, there is exactly one
such path.

e u =71, v € V;: Any such path cannot enter another tree T; because it
must leave it, thereby using the edge (r,7;) twice. Thus any such path
consists of (r,7;) and a path between r; and v wholly in T;. Again, there
is exactly one such by induction.

e u€V;,veV,i+# j Any such path must consist of a path wholly in
T; from u to r;, the edge (r,;), the edge (r,7;), and a path wholly in Tj
from r; to v. Again, uniqueness follows by induction.

This completes the proof.
The principle (2.2) can be adapted to help develop recursive algorithms:

Notice how the recursive form of the algorithms in Example 2.1 follows that
of the definition for ordered trees.

Exercises

I hear and I forget. I see and I remember. I do and I understand.

—Chinese Proverb

2.2.A. What is the structure of a recursive definition? A recursive algorithm?

2.2.B. What is the usual relationship between recursive concepts and proofs that
involve them?
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2.2.1. A binary rooted (or ordered) tree is a rooted (or ordered) tree in which, for
every v € V, the number of edges with tail v is either 0 or 2.

(a) Prove that all binary ordered trees are obtained by changing the defini-
tion of ordered trees so that k = 2.

(b) Prove that the number of vertices in a binary ordered tree is one less
than twice the number of leaves.

2.2.2. A decision tree in which all decisions are yes/no is a binary rooted tree. (See
previous exercise.) Let d(v) be the number of decisions needed to reach the

leaf v. Prove that the sum of 27 %) over all leaves v equals 1.

2.2.3. A directed graph is called acyclic if it has no directed cycles. (In this exercise
you’re asked to prove a property of such graphs which is useful in Chapter 8.)
Let V be a finite set, let (V, E') be an acyclic directed graph, and let n = |V|.

(a) Prove that there is some vertex vn such that there is no edge of the
form (vn,w); that is, for some vn € V, we have (vn,w) ¢ E for all
weV.

(b) Prove, by induction on n using part (a), that the vertices V can be
ordered vy,...,vn so that there is no edge (v;, v;) with i > j.

2.3 Problem Spaces and Search Trees

Rational search within a problem space is not possible until the
space itself has been created, and is useful only to the ertent that
the formal structure corresponds effectively to the situation.

It should be no surprise, then, that the area in which artificial
intelligence has had the greatest difficulty is in the programming
of common sense.

—Terry Winograd and Fernando Flores (1986)

The concept of a problem space provides the starting point for defining a
search tree. A problem space is where the search is carried out by moving
from one state to another using operators in the problem space. We asso-
ciate a directed graph with the search space. Then we convert the graph into
a decision tree—the search tree. This tree provides the framework for our
investigations in this chapter.
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Definition 2.5 Problem Spaces and Goals

A problem space consists of a set S of states and a set F of operators. An
operator is a function whose domain is a subset of S and whose range is
S.Ifs€ S, f € F, and f(s) is defined, then f(s) is a state that can be
reached directly from s. Goals are a set G C S. A search procedure is a
method of looking for one or more goals by moving around in the problem
space using F.

Let F(s) be the set of all t € S such that f(s) =t for some f € F.In
other words, F(s) are the vertices that can be reached directly from s.
By ezpanding s, we mean generating F(s) somehow.

Don’t be put off by the term operator; it just tells us one way to get from
some states to other states.

From now on, we assume that F(s) is finite for all s.

Definition 2.6 Search Graph

A directed graph D = (8, E) can be associated with a problem space.
The vertices are the states S. We have (s,t) € E if and only if t € F(s)
(that is, f(s) =t for some f € F). This graph is called a search graph.
In search, we are given a vertex r € S. Search techniques start at » and
traverse the edges of D in an attempt to reach a vertex that is a goal
state.

Imagine that we are standing at a vertex on a picture of the search graph.
To carry out a search, we must select one of the edges leading out from our
present vertex. In other words, we must make a decision. This leads to the
idea of associating a decision tree with the problem space.

Definition 2.7 Search Tree

A search tree is associated with a problem space as follows. Let (S, F) be
a problem space with goals G C S and a starting state » € S. Order the
elements of each F(s) somehow. The search tree will be a decision tree
whose vertices will be labeled using the elements in §. Vertices can have
the same labels; that is, an element in S might be used to label many
vertices of the ordered tree. The root is labeled with r. Suppose that we
have constructed a vertex v in the search tree with label s and that s is
not a goal. Order the elements F(s) and let k = |F(s)|. Construct k new
vertices z; and k edges (v,z;). Label z; with the ith element of F(s).
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Figure 2.3 (a) The search graph and (b) a search tree corresponding to the prob-
lem space § = {r,a,b,c,d}. The operators in F might have been defined in many
ways. One possibility is F = { f1, f2} as given'in the tables-shown in (c). The decision
tree has a branching factor equal to 2.

We could also have derived the search tree from the search graph. (You should
see how to do this.) Figure 2.3 shows a simple search graph and a correspond-
ing search tree.

Because a vertex label may appear many times in a search tree, the tree
may be much larger than the search graph. It may even be infinite. For exam-
ple, if the search graph contains the edges (s,t) and (2, s), then the sequence
of decisions s to ¢ to s to ¢ to s to ... produces an infinite path. Yes, it is a
path: Although s and ¢ appear many times in the path, each appearance cor-
responds to a new vertex in the search tree. The names s and t are simply
labels associated with vertices—they are not actually the vertices of the search
tree. Nevertheless, people often abuse terminology and refer to the vertex s.

Since a search tree associated with a search graph can be much bigger than
the graph, why should we use a decision tree instead of a graph? Paradoxically,
using a decision tree usually requires much less storage.

The entire search tree or search graph is not stored. Instead, we gen-
erate information as needed and store only what may be needed for
future use.
In using a decision tree, we might retain only the path from the starting state
r to the current vertex. In a search graph, we need to remember which vertices
the search has visited. If we did not, we would allow vertices to be revisited
and this essentially amounts to converting (part of) the search graph to a
decision tree.

Definition 2.8 Depth and Branching Factor

Let a decision tree be given. The number of decisions needed to reach
a particular vertex in the decision tree is its depth. In particular, the
depth of the root r is 0. Alternatively, the depth of a nonroot vertex is
the number of edges in the path from the root to the vertex.

If each nongoal vertex of the decision tree has b possible decisions, we
call b the branching factor of the tree.
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The branching factor plays a crucial role in analyzing search algorithms. It’s
possible to formulate a notion of (average) branching factor for more general
decision trees, but it’s tricky to define and use. Although results that refer to
a branching factor will be rather useless as exact statements—such branching
regularity is seldom seen—they are suggestive of what happens in general.

Exercises

2.3.A.

2.3.B.
2.3.1.

2.3.2.

2.3.3.

What is a search tree? Explain the idea informally without invoking the
concept of a problem space or a search graph.

Define depth, branching factor, and expanding a vertex.

Suppose that a search graph is finite. Find a necessary and sufficient con-
dition on the search graph for the corresponding search tree to be finite,
too; that is, a condition which is true on the graph if and only if the tree is
finite.

Suppose we have a search tree with branching factor b and suppose that
every goal has depth exceeding n.

(a) Show that there are at most b¥ vertices of depth k and that this is
exactly the number when & < n.

(b) Show that there are at most (5¥+! —1)/(b—1) vertices of depth at most
k and that this is exactly the number when k < n.

The game of fox and hounds is played on a checkerboard. There are four
hounds, which are placed along the bottom row on the black squares. There
is one fox, which is placed on any black square in the top row. Placing the fox
is the first move of the player called FOX. Thereafter, players alternate moves.
FOX must move the fox one square diagonally in any direction. The player
called HOUNDS must move whatever hound he desires one square diagonally
upward. If the fox reaches one of the squares along the bottom row, FOX
wins; otherwise HOUNDS wins. A state is a board position together with an
indication of who is to move. An operator produces a single move.

This game has too many states to conveniently list by hand. Therefore,
we will look at the case of only two hounds on a 4 x 4 board.

(a) Draw that portion of the search graph up through the time when FOX
has responded to HOUNDS’s first move. (This is three moves: FOX places
piece, HOUNDS moves, and FOX moves.)

(b) What is the portion of the decision tree associated with the portion of
the search graph in the preceding part? How many vertices are there at
depths 0, 1, 2, and 3?

(c) If the previous portion is extended by one more move, how many vertices
will be in the search graph? the search tree?
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2.3.4. In the previous exercise, order choices of the form F' — ¢ according to ¢ and
choices of the form Hi — j according to ¢ and then according to j; that is,
as the two-digit numbers ¢j are ordered. Order a vertex based on the move
that leads to it. Thus, the ordering of F(s) if s has depth 1 is based on the
move ordering H7 — 5, H8 — 5, H8 — 6. Give the ordering of F(s) for all
vertices of depth 2 in the tree. Do the same for all vertices of depth 3.

2.4 Three Simple Search Methods

Seek not out the things that are too hard for thee,
neither search the things that are above thy strength.

—The Apocrypha

We want to examine the search tree until a goal is found. One approach is
to examine all vertices at depth 1 by expanding the root, then all at depth
2 by expanding those at depth 1, and so on until a goal is found. This is
breadth-first search. A big drawback of this method is the amount of storage
required. Depth-first search avoids excessive storage by going to the opposite
extreme. It follows paths downward in the search tree until it finds a goal
or until it must go back because a dead end is reached. A big drawback of
depth-first search is that it may go much deeper than needed, perhaps even
running forever down a path that never ends. Iterative-deepening search is
a hybrid of the two methods. It saves storage by doing a depth-first search,
but it goes to a limited depth D;. If it fails, the depth limit is increased to
Dy > D; and the search is repeated. If it still fails, the search is repeated
with a depth limit of D3 > D, and so on until a goal is found. It’s similar to
a breadth-first search because it first examines all vertices at depth at most
Dy, then all at depth at most D3, and so on until a goal is found.

Breadth-First Search

Suppose we want to find the goal of least depth in the search tree—in other
words, that goal which can be reached by the fewest decisions starting at the
root. We can do this in a fairly simple manner.
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Algorithm 2.1 Breadth-First Search
If 7 is a goal state, publish r and stop. Otherwise

1. Create a list A containing the entry 7.

2. Remove the first entry s € A from A. (If there is no entry to remove,
the search has failed.)

3. For all t € F(s), if t is a goal state, publish ¢ and stop. Otherwise,
add ¢ to the end of the list.

4. Go to 2.

When the algorithm is executed, it first replaces the root by all vertices of
depth 1. Next, the vertices of depth 1 are replaced one at a time by the vertices
of depth 2. The algorithm proceeds in this manner through the decision tree.
It expands all vertices at a given depth before moving deeper. Pictorially, it
moves across the breadth of the tree whenever possible. The need to store all
of A is a serious limitation of breadth-first search. (See Exercise 2.4.3 (p.51).)

Of course, in using the algorithm, we would probably put more than just
the vertex on the list. For example, we’d probably want to know the sequence
of decisions that lead from the root to the vertex.

Aside. For those readers familiar with the terminology, our list is called a FIFO
(first-in/first-out) list or a queue.

There’s an inefficiency in Algorithm 2.1. Suppose that state ¢ was placed
on the list at some time. Since states can appear more than once in the search
tree, we may be instructed to place ¢ on the list at some later time. If we do
so, we’ll cause duplicate work. By never placing ¢ on the list twice, we can
avoid such duplication. In effect, this converts the algorithm from one that
traverses the search tree to one that traverses the search graph. Here’s the
modified algorithm

Algorithm 2.2 More Efficient Breadth-First Search
If r is a goal state, publish r and stop. Otherwise
1. Create a list A containing the entry r. Mark all vertices except r as

unvisited.

2. Remove the first entry s € A from A. (If there is no entry to remove,
the search has failed.)

3. For all t € F(s), if t is a goal state, publish ¢ and stop. Otherwise, if
t is unvisited, add ¢ to the end of the list and mark it as visited.

4. Go to 2.
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Figure 2.4 A trivial maze: (a) Its search graph and (b) part of its search tree.
Asterisks indicate vertices not added to A by Algorithm 2.2.

Keeping a list of all vertices to mark as visited/unvisited may be impracti-
cal. Instead, one could keep track of them by dividing A into two parts—
removed /unremoved—and checking A before adding ¢.

Example 2.4 A Trivial Maze

Figure 2.4 shows a trivial maze. It has six junctions (vertices) labeled r, s,
t, u, v, and z. We start at r and attempt to reach the goal 2. Although this
example is absurdly simple, it allows us to see several of the ideas in this
chapter in action. The figure also includes the search graph. Those vertices in
the search tree having depth at most 5 are also shown. The goal closest to the
root has depth 5.

Simple breadth-first search (Algorithm 2.1) generates all thirteen vertices
of depth less than 5. How many of the ten vertices at depth 5§ must be gener-
ated depends on the order in which vertices at depth 4 are expanded. If it’s
done alphabetically, the total number generated is 23.

The more efficient Algorithm 2.2 generates nine or ten vertices: Those
vertices marked with an asterisk have been encountered previously and so are
not be added to A. Whether nine or ten are generated depends on whether z
or u is generated first in F(v). W

Exercises

2.4.A. Give an algorithm for breadth-first search.



24.1.

2.4.2.

2.4.3.
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In this exercise youn prove that Algorithm 2.1 and Algorithm 2.2 are correct;
that is, prove that each always finds the way to reach the goal which requires
the fewest decisions. (It’s easy to convince yourself that the algorithm works,
but it’s a bit tricky to prove that it works.)

(a) Show that if Algorithm 2.2 is correct then so is Algorithm 2.1, and that
they find the same path to a goal.

(b) Change Algorithm 2.2 so that it doesn’t stop at a goal state. Show that
every vertex eventually appears on the A of the modified algorithm.

(c) For the modified algorithm, prove that A contains some initial list of
vertices at some depth d and a (possibly empty) final list of vertices at
depth d + 1.

(d) For the modified algorithm, conclude that depth is nondecreasing as
vertices are removed from A.

(e) Prove that the original algorithm works.

In this exercise, you are asked to consider the amount of storage required by
breadth-first algorithms when the decision tree has branching factor b.

(a) Assuming no dead ends, show that the length of the list A is always
increasing.

(b) Assuming no dead ends, show that when all the vertices of depth k — 1
have been expanded, the list A in Algorithm 2.2 contains b* entries.

(c) Assuming no dead ends or repeated vertices in the search tree, show
that when all vertices of depth k¥ — 1 have been expanded, Algorithm 2.2
will need to retain information concerning

pE+l

1+b+b2+...+bk=—b—_—l— vertices.

Amdahl’s Law states that a computer that can do about N instructions per
second has roughly N bytes of memory. This law holds for many computers
from original personal computers to supercomputers. Suppose we are given
an Amdahl Law computer and that expanding a vertex does not require much
computation. What can you say about the running time of Algorithm 2.1,
given that it reaches a goal without running out of memory?

You should at least read and think about the following exercise since it is referred
to in Section 2.5.
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Sometimes the number of decisions is not the appropriate measure to use in
looking for a goal. For example, suppose we have a map of highways with
mileages between highway intersections. The goal is to find the shortest route
between intersections A and B.

(a) Explain how a search graph can be constructed where the vertices are in-
tersections and each edge has a “cost” equal to the number of miles.

(b) Show how this leads to a search tree with (a) the root labeled A, (b) all
goals labeled B, (c) a cost for each edge equal to mileage, and (d) the
aim of finding that path from the root to a B for which the sum of the
edge weights is a minimum. We can associate with each vertex v a cost
C(v) that equals the sum of the edge weights on the path from the root
to v. (The path is unique since we are in a tree.)

(c) We can generalize the previous part to a search tree in which each vertex
v has an associated cost C(v) and costs increase as we move downward.
Modify the breadth-first algorithm to produce a “best-first” algorithm
that finds the least-cost goal.

Hint. Always remove the vertex with the least cost from A and do not
check whether a vertex is a goal until you remove it from A.

(d) Prove that the algorithm you have given does in fact find the least cost
goal.

The remaining exercises deal with a variant of breadth-first search called meet-in-
the-middle or bidirectional search. They may be omitted. Suppose that we have both
the starting state r and the desired goal state z. The problem is to find a path in
the search graph from r to z. Since z is known, we could branch backward from z
instead of forward from r—or we could do both and “meet in the middle.” To begin
with, assume that there is a branching factor. Actually, there are two, a forward
branching factor b and a backward branching factor 3.

2.4.5.

2.4.6.

24.7.

Show that if we start with either r or z and branch, it is best to begin with
rif b < B and with z if b > 8.

Suppose that b = § and the depth of z in the search tree is d = 26 where §
is an integer. We can branch forward from r to depth § and backward from
z the same distance. Suppose V(r) and V(z) are the sets of vertices reached
by the two branchings—each vertex with information on how it was reached.

(a) Explain how a path from r to z can be found by looking at V(r) N
V(2).
(b) Show that the number of vertices generated is roughly twice the square

root of the number generated if we simply do a breadth-first search
starting at r.

Design a bidirectional algorithm that does not require that the depth of z be
known. As in the previous exercise, you may assume that b = 3.
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*2.4.8. In this exercise, we look at how the previous results can be modified for the
case in which b # B. Actually, the final algorithm does not even assume a
branching factor.

(a) Suppose that the depth of z is d and that we branch forward from r to
a depth z and backward from z to that depth. Show that the number
of vertices generated is

b:z:+1 -1 ﬂd—z+1 -1
=1 v A-1

(b) Show that the number of vertices generated is near its minimum when
z is chosen so that b% ~ B9%.

(c) Using the previous result as a hint, design an algorithm for bidirectional
search given r and z, but no depth or branching factor.

Depth-First Search

Depth-first search avoids the storage bottleneck that plagues breadth-first
search. Unfortunately, simple depth-first search can fail to terminate or to find
a “good” solution. To overcome these defects, we look at an important modi-
fication called iterative-deepening. As its name suggests, depth-first search is
a search procedure which moves downward in the search tree whenever pos-
sible. To implement the search, we must keep track of the path from the root
to the current vertex. We need not retain any more vertices than that.

Algorithm 2.3 Depth-First Search

Let a potential search tree be given; that is, we know how to expand any
given vertex, but the expansion may not have been carried out ahead of
time. The following algorithm starts at the root » and attempts to produce
a goal. To use the algorithm, execute Depth First(r).

Depth First(v)
If v is a goal, publish v and stop all execution.
Expand v.
Set i =1.
While there is an ith decision z; at v
Call Depth First(z;).
Set i =1+ 1.
End While.
Return.
End.
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s

N
}

Figure 2.5 An arbitrary search tree with edges shown in heavy lines. The route
of an ant doing a depth-first traversal is shown by a thin line. Arrows indicate the
direction of the ant’s movement.

Example 2.5 Applying Depth-First Search

Let’s see how the algorithm works on Figure 2.3 (p.46). Assume that the
ordering of F(s) is alphabetic and that d is the goal. We begin by calling
Depth First(r). Since r is not a goal and the first decision at r is a, the al-
gorithm calls Depth First(a). This calls Depth First(b), which then calls
Depth First(c). Now, c is not a goal, but the while loop terminates imme-
diately because there are no decisions available. Control is then returned to
the calling procedure Depth_First(b), which now turns to the second deci-
sion at b and calls Depth First(d). Recognizing d as a goal, the procedure
publishes it and the program dies in a blaze of glory.

If there were no goals, the procedure would continue, returning control to
Depth First(b), which would then return control to Depth _First(a), which
would call Depth_First(c), and so forth. We can visualize the process whereby
control is passed as follows. Imagine an ant standing just to the left of ». It
starts walking toward a and keeps going, always keeping an edge on its left
side without stopping until it either reaches a goal or returns to its starting
position. This process is shown for an arbitrary tree in Figure 2.5.

Depth-first search is not always so well behaved. Suppose it’s applied
to the maze in Figure 2.4 (p.50) and that elements in F are examined in
alphabetic order. In this case, depth-first search will oscillate forever between
rand s. B

The following theorem shows that depth-first search always works on a
finite tree.

Theorem 2.1 Depth-First Search Sometimes Works

Suppose that the search tree is finite. If a goal exists, Algorithm 2.3 will
find a goal. If no goal exists, Algorithm 2.3 will examine all vertices in
the search tree.
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Proof: The proof follows the recursive definition of trees. The theorem is
obviously true for a single vertex. Suppose T is a search tree with root r. Let
the possible decisions at r lead to z;,...,z; which are roots of the search
trees T1,...,T;. By the induction hypothesis, the theorem is true for the T;.
There are three cases to consider:

e r is a goal, in which case the theorem is true;
e there is no goal;

e there is a goal and r is not a goal.

If there is no goal, when the algorithm reaches z;, it searches all of T; by the
induction hypothesis; then it moves to the next decision, if any, at r. Since
failure at r sends the algorithm to z;, it searches the entire tree.

Now suppose there is a goal in T; but in no T; with ¢ < j. A similar
argument shows that eventually 7} is reached. By the induction hypothesis,
the algorithm will find a goal in T;. ®

How much storage does depth-first search require? Except for some over-
head, the amount of storage is proportional to the depth of the vertex being
considered. This can be seen in various ways.

e One method is to convert the algorithm into a nonrecursive one that
simply works with the list of vertices on the path from the root to the
current vertex. If you haven’t had a course in data structures in which
you studied depth-first search, you may find this conversion an instructive
exercise.

e Another method involves Figure 2.5. By inspecting it, you can probably
convince yourself that there is one layer of Depth First for each vertex
on the path from the root to the current vertex.

e One can include depth as a parameter in the algorithm. Change the
procedure to Depth First(v,d), change the call within the procedure
to Depth First(z;,d + 1), and begin by calling Depth First(r,0). It is
then easy to see that the second argument will be the depth of the first
and that there will be one unfinished call for each d value from 0 through
the depth of the current vertex.

Obviously, depth-first search overcomes the storage problem associated with
breadth-first search—the amount of storage grows linearly rather than expo-
nentially with depth.
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Iterative-Deepening Search

Unfortunately, depth-first search introduces two new problems. First, there is
no guarantee that the algorithm will find an existing solution—it may progress
downward forever on an infinite branch of the search tree. Second, there is no
reason for the goal state found by depth-first search to be the one involving
the least number of decisions. [terative-deepening search provides solutions
to these problems. There is a price to pay—iterative-deepening search exam-
ines more states than breadth-first search. Before tackling iterative-deepening
search, let’s list the goals, difficulties, and compromises as suggested on
page 17.

o Goals: We want to find a general search procedure that is (a) as fast and as
reliable as breadth-first search and (b) as sparing in storage requirements
as depth-first search. Also, it would be nice if the algorithm found a
way to reach the goal that requires (nearly) the least possible number of
decisions.

o Difficulties: We’ve really already seen these—we have two algorithms that
don’t achieve the goals. (You should explain why breadth-first search and
depth-first search don’t achieve the goals.)

o Compromises: Except that the algorithm examines more vertices than
in breadth-first search, iterative-deepening search achieves the goals. One
compromise and difficulty that has been hidden is the fact that we use
the search tree rather than the search graph. As a result, some vertices
may be examined many times. There appears to be no way to eliminate
this repetition without seriously compromising the goals.

The basic idea of iterative-deepening search is simple. Let’s modify depth-
first search so that it will not go below some given depth D. If no solution is
found, we simply increase D and try again. This seems very wasteful—looking
at vertices over and over again. We’ll see that it’s not as bad as it looks, but
first we need an explicit statement of the algorithm.

Algorithm 2.4 Iterative-Deepening Search

Let a potential search tree and an increasing sequence of positive integers
Dy, D,,... be given. The following algorithm starts at the root r and
attempts to find a goal. To use the algorithm, execute the first line of
code.

For k=1,2,... call Iterative(r,0, D).
Iterative(v,d, D)

If v is a goal, publish v and stop all execution.
If d =D, return.
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Expand v.

Set i=1.

While there is an ith decision z; at v
Call Iterative(z;,d+ 1,D).
Set i=17+1.

End While.

Return.

End.

Note that, except for testing d = D, Iterative is the same as Algorithm 2.3.
Thus it is just depth-first search on a tree from which all vertices of depth
greater than D have been removed. Before analyzing the algorithm, let’s look
at it in action.

Example 2.6 Our Trivial Maze Revisited

We observed earlier that depth-first search never terminates when run on
the maze in Figure 2.4 (p.50), provided the elements in F are examined in
alphabetic order. If we use iterative-deepening search, we’ll eventually reach a
solution: As soon as D; > 5, the circled goal in Figure 2.4 will be in the search
tree of vertices with depth at most D;. Since the tree is finite, Theorem 2.1
tells us that depth-first search will find a goal. B

The result in the example is typical. If a solution is possible, iterative-
deepening search will always find it; furthermore, the solution will have a
nearly minimal depth.

Theorem 2.2 Iterative-Deepening Search Works

Let dmin be the minimum depthv of all goal states in the search tree rooted
at 7. Suppose that Dy_; < dmin < Dx (where Dy is taken to be —1).
Algorithm 2.4 will find a goal state whose depth is at most D,.

Proof: Consider Iterative(D). Since F(s) is assumed finite for all s and
since the tree examined by Iterative(D) has no vertices below depth D, the
tree is finite. According to Theorem 2.1, depth-first search will find a goal if
one exists.

By the definition of dpjn, the tree searched by Iterative(D) contains
a goal if and only if D > dpj,. Thus, no goal is found until the search with
D = Dy, at which time a goal will be found. Since the goal is in the tree, its
depth is at most D,. B
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Theorem 2.2 shows that iterative-deepening search overcomes two of the
problems of depth-first search—it always finds a solution if any exist and the
solution it finds is close to best possible. Like depth-first search, iterative-
deepening search overcomes the storage problems of best-first search. It ap-
pears, however, that there’s a severe running time penalty because some ver-
tices will be expanded many times if « is large. In fact, some vertices will be
expanded k times! Actually, the running time penalty for iterative-deepening
search is not at all severe: If |F(s)|] > 1 for all nongoal s and the Dy’s are
chosen in a reasonable manner, the number of vertices examined (counting
multiplicity) is no greater than a constant times the number examined by
breadth-first search. Even when the condition on F(s) is violated, iterative-
deepening search is usually fairly efficient.

Theorem 2.3 Iterative-Deepening Search Is Fast

Suppose that Dy = k and that |F(s)| > 1 for all nongoal vertices s. Let
I be the number of calls of Iterative until a solution is found. Let L
be the number of vertices placed on the list A by Algorithm 2.1 (p.49).
Then I < 3(L +1).

This result may seem counterintuitive at first since iterative-deepening ex-
amines some vertices many times. The key is that as long as a tree keeps
branching, the number of vertices at any given depth exceeds the number of
vertices above them. Here is a mathematical formulation of the claim.

Claim: Suppose that |F(s)| > 1 for any nongoal vertex s. Let « be
the least depth of any goal. Let d— (k) be the number of vertices in the
search tree at depth k and let d (k) be the number at depth less than
k. For k < k, it follows that d< (k) < d=(k) and d¢(k — 1) < 3d< (k).

(2.3)

The proof of this is left as an exercise. Let’s use it to prove the theorem.

Proof: Note that, as a consequence of (2.3),

de(k) < de(k+1) < (1) de(k+2) <--- < ()" Fde(w)  (24)

for k < k.

Suppose that the first goal encountered by breadth-first search is the nth
vertex at depth k. Then L = d<(k)+ n — 1 because the goal is not placed on
the list. The number of calls of Iterative for Dy = k < & is d<(k) + d=(k).
Thus, the total number of calls of Iterative is

-1

1= (de(k) +d=(k)) +de(x) +
k

k-1
=) d<(k+1)+de(k) +n
k=0
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x

de(k) +de(x) +n
k

> (3) T de(k) + de (k) +n by (2.4)
k=

IN
[ =1

K—1 .
= d<(k) Z (3) +d<(x)+n
i=0
<2 (k) +de(k)+n<3(L+1).

This completes the proof. B

Exercises

2.4.B. Give an algorithm for depth-first search and describe the order in which it
examines vertices.

2.4.C. Give an algorithm for iterative-deepening search.

2.4.D. What are the major good and bad points of breadth-first search and of
depth-first search? How does iterative-deepening search compare with these
good and bad points?

2.4.9. The purpose of this exercise is to prove Claim (2.3).

(a) For k+1 < k, show that d<(k+1) = d=(k)+d< (k) and that d=(k+1) >
2d=(k).

(b) Using (a) and induction, or otherwise, prove that d< (k) < d=(k).

(c) Using (a) and (b), or otherwise, prove that d<(k + 1) > 2d< (k).

2.4.10. In Exercise 2.4.4 (p.52), we considered generalizing breadth-first search to
allow a cost other than depth.

(a) Explain why it doesn’t make sense to try doing this for depth-first
search.

(b) Describe how to modify Algorithm 2.4 to make use of a more general
cost.
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2.5 Heuristic Search

It is a mark of insincerity of purpose to spend one’s time in
looking for the sacred Emperor in the low-class tea-shops.

—Ernest Bramah (1900)

This is a well-known Al lesson: knowledge reduces the need to search.
—Kenneth D. Forbus and Johan de Kleer (1993)

In the previous section, the best goals in the search tree were those of least
depth—cost was identified with depth. The possibility of a more general cost
was briefly discussed in Exercises 2.4.4 (p.52) and 2.4.10. In this section, we
assume that there’s a general cost. In addition, we’ll look at the possibility of
improving algorithms by including a guess about the future in our costs. This
idea leads to a cost function that combines some knowledge of the past with
a heuristic approximation to the future:

Definition 2.9 (Heuristic) Cost Functions

e g.(v) is the cost of going from u to v by moving down in the decision
tree.

We assume that g,(v) increases as v moves downward in the tree.

e C*(v) = min g, (z), where the minimum is taken over all goals z that
are reached by a path through v. This is the cost to reach a goal
through v. If there are no such goals, C*(v) = oo.

e h*(v) = C*(v) — g-(v) is the additional cost to reach a goal through
v after paying the cost to reach v.

e h®(v) is any estimate of h*(v); this is called a heuristic cost function.

o C°(v) = gr(v)+ h®(v) is the heuristic cost of reaching a goal through
v.
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Here’s the motivation behind these definitions. The search methods in the
previous section use only information about the path from the root to the
current vertex v; that is, they use g.(v). If we knew C*(v), we could use it in-
stead of g,(v) and search would be trivial: We’d simply start at the root and,
whenever u is the current vertex, move to a v € F(u) for which C*(v) is as
small as possible. Unfortunately, we usually know only g.(v) when we’re at v.
You should convince yourself that the claims made so far are true.

* * * Stop and think about this! * * *

The function h*(v) = C*(v)—g,(v) can be thought of as the additional cost to
reach a goal through v. Although it’s unlikely that we’d know h*, we might be
able to produce h®—an estimate of h*. For example, a good chess player might
not know how good a position in a game is, but he would be able to make a
fairly accurate guess. Since using C* = g, + h* would make search trivial, it
seems reasonable that using the estimate C'® = g,+h® would improve upon the
simple search strategies in the previous section. This is so for some estimates.

Before proceeding, let’s take a minute to look at the goals, difficulties,
and compromises.

e Goals: We want to search a problem space to locate a goal. To do this,
we are representing the situation by a search tree.

o Difficulties: We cannot examine a sufficient portion of the search tree be-
cause of limitations in data, computational resources, or our cleverness in
designing an algorithm.

e Compromises: We plan to limit our search to what appear to be the most
promising portions of the tree. To locate these regions, we will make use
of a heuristic cost function h® as a sort of crystal ball. This function is
some sort of approximation to the true cost.

It’s quite clear from this that the heuristic function h® plays a major role in
how well our approach will work. Therefore, we need to know more about it,
as the following questions indicate.

o How should we use a heuristic function? If we are searching until a goal is
found, we should probably treat the heuristic as if it were the true cost.
In “partial search,” other issues may be important.

e What makes a heuristic function good? It should reduce our work by indi-
cating promising directions in which to search. Unfortunately, that answer
doesn’t help us very much.

e How can we create good heuristic functions? Solutions are often specific
to the problem at hand and knowledge-intensive. Consequently we can’t
discuss such solutions here.
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Aside. Often the cost g is additive in the sense that gu(v) + gv(w) = gu(w) when the
path from = to w contains v. Examples of this are the number of edges on a path
or the mileage on roads between points. When g is additive, A*(v) = min gy(z). In
this case, there is a subtle but important difference in the domains of g and h. We
must define gu(v) on the vertices of the search tree because it contains information
about how we reached v from the root. On the other hand, 2*(v) and A®(v) can be
defined on the vertices of the search graph.

Admissible Heuristics

From a table of irregular verbs:
I heurist. You try and err. He/she flounders.

—Stan Kelly-Bootle (1981)

We can adapt the simple algorithms of the previous section to use the func-
tion C¢(v) = gr(v) + h®(v) instead of the depth of v. What properties must
C*®(v) have to make breadth-first search and iterative-deepening search reach
low-cost goal states? The answer is provided by the following theorem whose
proof is left as an exercise.

Theorem 2.4 Guaranteed Heuristic Search
Suppose that C¢(v) = g,(v) + h®(v) is such that

(i) for every M only finitely many vertices have C°(v) < M, and
(ii) if z is a goal that can be reached through v, then C®(v) < C°(2).

It follows that heuristic search using C¢ works; that is,

(a) the modified breadth-first search of Exercise 2.4.4 (p. 52) will find the
least-cost goal, and

(b) the modified iterative-deepening search of Exercise 2.4.10 will find a
nearly least-cost goal as in Theorem 2.2.

Condition (i) simply ensures that the search is finite. Why is a condition like
(i1) needed? Suppose that z and 2’ are goal vertices in the search tree, that 2
is reached through v, that C*(v) > C®(z') > C*®(z), and that 2’ is reached by
a path such that C°(w) < C®(2’) for all w on the path. You should be able
to see that if we terminate our search at a cost between C°(2’) and C®(v), we
will reach 2/, but we won'’t reach v and hence won’t reach z.

While condition (i) is usually easy to verify, condition (ii) may be more
troublesome. The next theorem provides one means of verification.

Definition 2.10 Admissible Heuristic
If h¢(v) < h*(v) for all v, then ke is called an admissible heuristic.
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1[2]3]4
1]2]3 s[e]7]s 1]2]3 23 1]3
56 9 [10]11]12 4[8]s 1[5]s6 4[2]s
7]8 13[14[15 76 8 7]8]s
(a) (b)

Figure 2.6 (a) The usual goal state for the 8 and 15 puzzles; (b) nongoal states.
In the three nongoal states shown here, h® = 4. In the first case, b* = 4, too. In
the second case, h* = 16. In the last case, it’s impossible to reach the goal from the
given state and so h* = co.

Theorem 2.5 Admissible Heuristics Are Guaranteed
If h® is an admissible heuristic, then (ii) in Theorem 2.4 holds.

Proof: Suppose h®(v) < h*(v) for all v. Then
C*(v) = g-(v) + h°(v) < g, (v) + A" (v),

and, by the definition of h*(v), this is the cost of the least-cost goal reached
through v. B

Example 2.7 Admissible Heuristics Based on Geometric Distance

Suppose we have a road map and are trying to find the shortest route from
city R to city Z. We can construct a search space where the states are highway
intersections and the cost of going from one state to another is the highway
distance between them. We start at the state R and try to reach the goal
Z. A simple choice for h®(v) is the straight line distance from v to Z. Since
h® < h*, the theorem applies. Depending on how the roads are laid out, h®
may be fairly close to h*.
Another geometric measure is the manhatian distance:

distance from (z,y) to (z/,y) equals |z — z'| + |y — ¥/'].

It receives its name from the way traffic must move in a city like Manhattan.
Only east-west and north-south travel is allowed. The manhattan distance is
also called the tazicab distance. Here’s an application

A common puzzle is the n? — 1 puzzle played on an n x n board using
n? — 1 tiles numbered 1 through n? — 1 arranged in a square pattern with one
empty square as shown in Figure 2.6. A tile adjacent to the empty square ei-
ther horizontally or vertically can be slid so as to exchange positions with the
empty square. This is a move in the puzzle. The goal is to reach some de-
sired arrangement through a sequence of moves. The cost is the number of
moves required. If each tile is one unit on a side, then moving a tile changes
the manhattan distance between the tile and any point by one unit. Thus, we
must move a tile at least as many times as the manhattan distance between
its present location and its desired location. Summing these distances over all
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Figure 2.7 The search tree for the maze of Figure 2.4 (p. 50). The goal is z. Num-
bers at the vertices are taxicab heuristics in the form k°( ),C®( ). Only those vertices
z with C°(z) < C®%(z) = 5 have been expanded.

n? — 1 tiles, we obtain a lower bound k¢ on the number of moves needed to
solve the puzzle. Thus, h® < h* and so is an admissible heuristic. In many
positions, h® seriously underestimates h*.

The 15 puzzle has been sold as a toy. The 8 puzzle and, to a lesser extent,
the 15 and 24 puzzles have all been studied by search theorists. B

The next example shows how C°¢ can be improved during iterative-
deepening search. After the example, the method is formalized into an al-
gorithm. You may wish to read the algorithm and example together.

Example 2.8 Our Trivial Maze Yet Again

We can use the taxicab metric for our maze in Figure 2.4 (p.50). If each edge
has unit length, then g.(z) is simply the depth of z,

hé(r) = h*(v) =1, h®(s) = h®(u) =2, and h°(t) =3.

Figure 2.7 is the search tree for the maze with those vertices ¢ with C*¢(g) <
C¢(z) = 5 expanded. The values of h® and C*® = g, + h® are given for each
vertex. Since two occurrences of ¢ haven’t been expanded, the taxicab met-
ric heuristic eliminates some vertices from consideration. We can do better if
we’re willing to change h® based on information gained in each iteration of
the algorithm. Let’s perform iterative-deepening with Dy = k.

On the first iteration, we expand 7, obtaining F(r) = {s}. Since h®(s) = 2,
we have C¢(s) = 3, as shown on the left side of Figure 2.8. This tells us that
it must cost at least 3 to reach the goal from r. Thus, we can change C*(r) to
3 and so h®(r) = C*(r) — g-(r) = 3— 0 = 3. This completes the expansion for
C*(z) < 1. Since we now have C¢(r) = 3, no expansion occurs for C*(z) < 2.

The expansion for C¢(z) < 3 is shown in the middle of Figure 2.8.
This tells us that the cost of a solution is at least 5. As a result, we up-
date values: C¢(r) = C*(s) = 5, hé(r) = C*(r) —g-(r) = 5—0 = 4, and
he(s) = C¢(s) — gr(s) = 5 — 1 = 4. No expansion occurs for C*(z) < 4.
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expand expand expand
Ce(z) <1 Ce(z) <3 Ce(z) <5
r:1,1 r:3,3 r:?,s
8:2,3 ?2< 3:4,5
r:3,5 13,5 7:5,7 t:3,5\
8:4,7 /u2<
:3,7 1,5

AN
u:2,7 2:0,5

Figure 2.8 The search tree for the maze of Figure 2.4. Information gained in each
iteration of iterative-deepening search is used to improve h® for the next iteration.
Above each tree is the description of those vertices that are expanded. Numbers at

the vertices are the heuristics at the start of that expansion in the form A°( ),C®( ).

The tree for C¢(z) < 5 is shown on the right side of Figure 2.8. Notice
how much smaller it is than the tree in Figure 2.7. ®

Now let’s capture the idea behind Example 2.8 in an algorithm.

Algorithm 2.5 Iterative-Deepening Search with Improving Heuristics

Suppose that we are given the situation in Algorithm 2.4 (p.56), except
that now we also have cost function C¢ given by C¢(v) = g.(v) + h®(v),
where h® is an admissible heuristic whose value depends only on the
search graph vertex corresponding to the search tree vertex v. Here is
an iterative-deepening algorithm that improves h®.

For k=1,2,... call Iterative(r, Dy)

Iterative(v, Dy)
If v is a goal, publish v and stop all execution
If C¢(v) > Di return C°(v).
Set i =1 and C°® = +o00.
While there is an ith decision z; at v
Set C°¢ =min(C®,Iterative(xz;, Di)).
Set 1 =i¢+1.
End While.
Set h®(v) = max(h¢(v),C® — g,(v)).
Return g.(v) + h®(v).
End.
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Unfortunately this algorithm may require considerable storage: The values of
h¢ must be saved for all vertices in the search graph that we have examined.
We could modify the algorithm so that the values of h® are saved only for
certain vertices, but then we must decide which vertices these should be.

Theorem 2.6

If Algorithm 2.5 starts with a heuristic h® that is admissible, it remains
admissible through all its redefinitions.

The proof is left as an exercise.

Other Heuristics

Our motivation is based on the view that heuristics are central to
Al and that we cannot claim to understand them until we have

mathematical models which ezplain experimental results obtained
by using them.

—Stephen V. Chenoweth and Henry W. Davis (1991)

In order to guarantee that the search methods will find (nearly) least-cost
solutions, we’ve required that our heuristic h® be admissible; that is, h¢(v) <
h*(v) for all v. But such a guarantee is of little use if the amount of search
required is beyond our computational capabilities. Thus, we may want to
abandon admissibility and attempt to construct a better heuristic function.

What makes one choice for h® better than another? Presumably, less
search is better. What if a nonadmissible h¢ leads to a goal that is not the
least cost solution? How can we analyze a situation when the search method
is not guaranteed to find the least-cost solution? Since search time is often
much more important than the cost of the solution, perhaps we should ignore
the cost and look at just search time.

In general, we can’t guarantee a search time. Hence, we should probably
look at average behavior. This implies some underlying probabilistic model.
Do we really need one? What should it be?

Let’s look at why we need a probabilistic model. Suppose we have in
hand a search tree, h* and h®. We could then determine the number of ver-
tices searched by A* search (i.e., iterative-deepening heuristic search) and see
how the solution found compares with the least-cost solution. By simply rear-
ranging the order in which the vertices in F(v) are examined, we can change
the number of vertices searched and the cost of the solution found. Thus,
search times can be expected to vary considerably, depending on the order
in which each F(v) is expanded. Since there will be a wide spread between
best and worst times, some sort of average time is more informative. When we
speak of averages, there is, at least implicitly, a probabilistic model present.
By making the model explicit and viewing the average as the expectation of
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a random variable, we gain two things. First, the tools of probability the-
ory make it more likely that we can analyze the situation instead of simply
collecting data or giving “reasonable” arguments. Second, by stating our as-
sumptions clearly, we make it easier to criticize and improve them. Since we
haven’t explored the necessary probabilistic tools yet, we’ll postpone this line
of discussion until Section 13.3.

Exercises

2.5.A. What is a heuristic and how does it help in search?

2.5.B. What is an admissible heuristic and what does it guarantee about search

2.5.1.

2.5.2.

2.5.3.

2.5.4.

methods based on breadth-first and iterative-deepening approaches?

In chess, a knight either moves one square horizontally and two vertically
or moves two squares horizontally and one vertically. A position can be de-
scribed by two integers (3, j) indicating horizontal and vertical coordinates
on the board. The goal is to reach (0,0). Design a good heuristic function
for which k < h* and prove that it satisfies B < h*. Your heuristic function
should be something that can be computed quickly in your head from ¢ and
Jj—not some sort of table lookup. Also, it should work for arbitrarily large ¢
and j.

Prove Theorem 2.4.

Apply Algorithm 2.5 to the trivial maze in Figure 2.4 using the trivial ad-
missible heuristic £°(s) = 0 for all s.

Apply Algorithm 2.5 to the mazes shown here and produce pictures like
those in Figure 2.8. Use the manhattan distance for the starting heuristic.
The starting vertices are labeled r and the goals are labeled z.

OIS B T CH et St B Bt
w u zZ—w u z u

| | |

Z—7 v w—2u

(d) T—8—t—U—V—W—2 ye there are two goals:
S— z* is unreachable from 7.
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2.5.5. The purpose of this exercise is to prove Theorem 2.6. Let C*(z) denote the

2.5.6.

2.5.7.

true cost g(z) + h*(z) and suppose that sp is some particular tree vertex
that is not a goal.

(a) Prove that C*(sg) is the minimum of C*(t) over all ¢ € F(s).
(b) Prove that if 2° is admissible, then redefining 2°(sg) by

B (s0) = (ter;i(r;o)cea)) — gr(s0)

leaves h® admissible.

*(c) Prove Theorem 2.6.
Hint. Look at the first time Iterative(v, D;) produces an inadmissi-
ble value.

We are given a search graph in which it is possible to reach a goal from the
starting vertex. Suppose that the cost of reaching a goal is the number of
decisions made. Thus g(t) is the depth of ¢ in the search tree. Suppose that
h® > 0 is a heuristic. We do not assume that h® is admissible.

(2) Suppose we do iterative-deepening search using C®(v) instead of the
depth of v in Algorithm 2.4. Show that such a search will always find a
solution.

(b) Construct a simple example to show that the algorithm may not find
the least-cost solution.

(c) Prove that iterative-deepening search with improving heuristics (Algo-
rithm 2.5) will find a solution.

Why not search on the search graph instead of the search tree? Suppose that
the search space is the simple one described near the end of this section: a
graph G = (V, F) in which each nongoal vertex lies on exactly b edges. We
will search by always moving from a vertex to the vertex adjacent to it which
has the least heuristic cost C®.

(a) Describe F(v) for all v € V and describe the search graph. Remember,
the search graph is a directed graph, so it is not quite the same as
G.

(b) Suppose that we are at a vertex v such that C*(v) < C°(w) for all
vertices w whose distance from v is 1 or 2. (This is not unreasonable in
some situations.) Show that if we reach v in our search, we will never
move more than one vertex away.

(c) Explain how tree search avoids the problem in (b).
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2.6 Partial Search

I am going in search of a great perhaps.
—Francois Rabelais (1553)

So far we’ve discussed search problems as if it were feasible to search until
a goal vertex is found. This is often impossible, as the following situations
illustrate.

o The search tree may be too large to search within the allotted time. For
example, a computer cannot search the entire move tree for chess in order
to find the best move.

e Even if we could search the entire tree, it may be best to take some
action so as to gain additional information that may significantly reduce
the search. For example, by carefully recalling how my program has acted
and by consulting manuals, I may be able to determine what is wrong
with it. Rather than spend all my time exploring a large search space,
I may decide to add some print statements that significantly reduce the
search tree.

e There may not be enough information to describe the search space. For
example, in “dungeons and dragons” computer games, many aspects of
the game are uncovered only through exploration.

All of these examples relate to tradeoffs between time, information, and action.
This suggests an important idea for search in Al

To design a good strategy, we must come to grips with the tradeoffs
. . . . (2.5)
between time, action, and information.

Many claim that this is the core issue in intelligent behavior. Herbert Simon,
for example, made it the focus of his research in both economics and Al

In view of the breadth of (2.5), we can’t attack it head on. In the following
discussion, we’ll focus on the first example. That is, we’ll assume that some
sort of time limit has been imposed on making a decision and ignore the
influence of potential information gain on choosing an action.

There are some general principles we can use in adapting previous meth-
ods to the present situation.

e Use a limited depth search.
e Make a decision and start again.

e Accept the heuristic as reasonably accurate.

We’ll elaborate on each of these.
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Use a Limited-Depth Search

Whatever search method we choose, it’s essential to use a heurisitic function.
Otherwise, we’d simply base our decision on g which measures only how far
a vertex is from the root, not how close it is to a goal.

We expect that time constraints will cause our search to terminate before
reaching a goal. Therefore, a method like depth-first is inappropriate—it’s
likely to spend its time exploring a few alternatives in depth. Heuristic best-
first search and heuristic iterative-deepening search are more appropriate.

There is a problem about how deep to run the search. With best-first, we
can simply use the vertex that is being expanded at the time the search is
terminated. With iterative-deepening, we can use the best result found with
the last k for that an iteration was completed. This leads to algorithms which
can be interrupted at any time.

Definition 2.11 Interruptible or Anytime Algorithm

An interruptible or anytime algorithm is an algorithm that will provide
an answer whenever a user stops it, provided some minimum time has
elapsed.

From the previous discussion, we see that anytime algorithms must have some
ability to assess future prospects, for example, by using a heuristic function h®.
We saw that heuristic depth-first search does not lead to an anytime algorithm,
but that heuristic best-first search and heuristic iterative-deepening search do.

The following generalization of iterative-deepening search constructs an
anytime algorithm from a large class of algorithms. The basic idea is that
we have some algorithm Z(z) that provides no useful information unless it is
allowed to finish. The parameter & determines running time but not in a way
that we can easily control. All we may know is that increasing z increases
running time.

Algorithm 2.6 Constructing an Anytime Algorithm

Let Z(x) be an algorithm with a parameter  that influences running time
in such a way that running time is an increasing function of x, say ¢(z).
We do not assume that ¢(z) is known. If ; < z; < --- is any sequence
increasing without bound, then the following is the interruptible algorithm
EX(T).

1. Initialize: Set k¥ =1 and out = 0.

2. Execute: Begin execution of Z(zy). If interrupted, return out; other-
wise, go to Step 3 upon completion.

3. lterate: Set out to the output of Z(zy), replace k by k+ 1 and go to
Step 2.
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The following theorem lists some properties of the algorithm. Its proof is left
as an exercise.

Theorem 2.7
We use the notation of Algorithm 2.6.

(a) If =*(&) is interrupted at time T" > ¢(z1), it produces the same output
as Z(zx) where

t(z1) + -+ t(er) ST < t(er) + - +H(2e) + Uzkt1)-

(b) Suppose that the quality of the output of = increases with the length
of time it runs. Then there exists an & with the following property. If
E*(&) is interrupted at time T', then Z(z) must run for time greater
than T'/4 to produce better output.

It may not be possible to determine the vector £ whose existence is asserted
in (b) because it depends on knowing the function t(z). As a result, one may
wish to build an anytime algorithm that chooses the value of 2} based on how
long E(z;) ran for ¢ < k. Exercise 2.6.3 shows that it is often best to try to
choose &y so that the running time of E(z) is double the time for Z(zr_1).

Make a Decision and Start Again

After searching for some time, we may stop searching without having found
the goal. The time limit may be imposed externally—our time has expired and
we must do the best we can. This is like a quiz show in which you’re given
a time in which to decide upon an answer. Alternatively, the time limit may
be self-imposed because making a decision is expected to produce benefits;
for example, we learn more about our environment, our opponent makes a
move, or we gain more time for later search. This happens in a chess match:
Although you’re given a time limit for the entire game, you must decide how
much time to spend on each move.

Consider the following situation. After partially exploring a search space
using a heuristic function as an aid, we stop and make a single decision. This
process is carried out repeatedly, each new search working with the modified
search space and/or heuristic that was obtained as a result of our decision.

e Stopping: When should we stop searching and make a decision? To make
this determination, we would need a way to measure the cost of search
time against the expected gain from further searching. In other words, we
would need the value-versus-time graph in Figure 1.1 (p.15).

e Choosing: Determining which decision is best can also be a difficult prob-
lem. This is particularly true when we expect to gain new data by acting.
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For example, suppose I am lost in the wilds. Should I spend time climbing
a nearby peak in hopes of obtaining a good view that will help me decide
which way to go? Or should I simply follow the stream down because, as
streams get larger, they tend to have campgrounds, cabins, villages, and
so forth nearby? Or should I do something else? In the first case, I spend
a lot of time merely hoping to gain information. In the second case, I start
moving in a reasonable direction. To deal with such problems, we would
have to incorporate the expected value of information into the problem
space.

We won’t tackle either of these difficult problems.

There’s another, simpler problem that we need to avoid. By making a
single decision and then starting anew, we open the door to the possibility of
getting stuck in an infinite loop. This is because we’re looking, in effect, at
the search graph rather than the search tree. Here’s an example.

Suppose that the root r and the vertex s € F(r) have smaller values of
h¢ than any vertices that can reached from either of them in d decisions. Also
suppose that » € F(s) and the cost is simply the number of decisions. If we
start at » and search to a depth at most d, we will decide to move to s. Now,
starting at s and searching to a depth at most d, we will decide to move back
to r.

One way to avoid this is by increasing h®(v) every time we decide to move
to the vertex v. This can be done by keeping a table of previous decisions.
Adjusting h® in this way is the basis of the RTA* algorithm developed by
Korf [6]. See also Exercise 2.5.7 (p.68).

Accept the Heuristic as Reasonably Accurate

If h = h*, we could simply compute h¢(s) for all s € F(r) and select that s for
which the cost is a minimum. Of course, we expect that h # h*; nevertheless,
we must expect it to provide some information since we’re using it. How much
should we trust the information?

Generally, it’s reasonable to rely on the heuristic as a guide for searching,
but it’s unreasonable to expect it to be very accurate when we’re making a
decision. For instance, if one decision looks almost as good as another, it may
be worthwhile to explore those two possibilities further. Deciding when to do
so requires probability, so let’s discuss it in Chapter 14.
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Exercises

2.6.A. What is partial search and why might it be done?

2.6.B. What is an anytime algorithm?

2.6.C. Suppose that Z(z) is an algorithm with a time parameter z. How can an

2.6.1.

2.6.2.

2.6.3.

anytime algorithm be constructed from Z(z)?

Suppose that Z(z) does depth-first search up to depth at most z in a tree
having branching factor b. Assume that running time, in some units, equals
the number of vertices that are looked at. We may as well choose £ to consist
of distinct integers since depths are integral and there is no reason to repeat
a calculation.

(a) Using Exercise 2.3.2, show that the running time of Z(n) is approx-
imately % for large » and conclude that the ratio of the running
times of Z(m) and Z(n) is about §™ ™",

(b) Suppose that £ = n and T4 = m. Further suppose that T is such that
E*(Z) is stopped just short of finishing Z(m). Show that, approximately,

m+4 n4 —_ —_
T> b—:ﬁ_’f—l Conclude that = can produce the same output as =*

in (n_l—-l-) the time or less.

(c) From Theorem 2.7(b) we conclude that there should be a Z* which
takes only about four times as long as =. On the other hand we have
just shown in (b) that it can take up to about b+ 1 times as long. How
can this apparent contradiction be resolved?

The purpose of this exercise is to prove Theorem 2.7.

(a) Prove Theorem 2.7(a).

(b) Suppose that t(z) is a strictly increasing function of = so that it makes
sense to talk about the inverse function z(t). Choose some t; and let
ty = 281t and z, = z(t;). Prove Theorem 2.7(b) for this choice of .
Hint. Compute the time = must run to produce the output that =*
produces at time T'.

(¢) The function t(z) need not be strictly increasing. For example, in depth-
first search up to depth z, the time only changes when z passes through
an integer value.

Prove Theorem 2.7(b) in general as follows. Use t} as in (b) above.
In place of the inverse of ¢(z), let z(t) be such that Z(z(t)) will finish
within time ¢ and such that = cannot produce better output within
time ¢.

Returning to (b) of the previous exercise, we examine how good the procedure
of doubling times actually is. Suppose that £ = rzj_j for some r > 1. Show
that, instead of T'/4, we obtain (r—1)T/r2. Also show that this is a maximum
at r = 2. Thus, r = 2 is best in some sense.
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2.6.4. In contrast to the previous exercise, r = 2 may not be best when the function
t(z) is not strictly increasing. In fact, it may lead to Z(zx) and Z(zg41)
carrying out exactly the same search. By looking at this set of exercises, you
can find an example that illustrates this fact. Do so.

*Chess Programs and Search

It is quite certain that the operations of the [chess playing]
Automaton are requlated by mind and by nothing else. Indeed this
matter is susceptible of a mathematical demonstration a priori.

—Edgar Allan Poe (1836)

Chess players divide the game into three somewhat ill-defined parts: opening,
midgame, and endgame. Openings and endgames have been extensively stud-
ied and many books have been written on them. Any serious player will have
memorized many openings and many endgame techniques. Similarly, openings
and endgame techniques are frequently built into chess playing programs. The
midgame, however, possesses too much variety for anyone to present such tab-
ular methods for playing it. As a result, players rely on partial heuristic search.
Here are some things we need to build such a program for the middle game.

e An internal representation of the game: We’ll ignore this.

e A method for generating possible moves: This is a method for expanding the
vertices in an AND/OR search tree; in other words, creating F(s) given s.
F(s) may contain just “reasonable” moves—not all possible moves. We’ll
ignore move generation, too.

o A heuristic for unexpanded positions: This is an evaluation of the “good-
ness” of a position, based on such factors as strength of material (a
weighted count of pieces) and a crude, rapid assessment of position (using
pawn formation, pieces attacked, etc.). We’ll ignore how such a heuristic
is produced, but will look at what it means and how it might be used.

e A combining rule: This tells how to obtain h°(s) given the values of h¢(t)
for all ¢ € F(s). It moves heuristic information back toward the root so
that a move can be selected.

o A method for deciding when and where to search: Which vertices should be
expanded? When is further search not warranted due to a low expected
rate of return per unit time?

Before studying h®, we need to know what h* should measure. It should
measure how my position compares with my opponent’s. At first glance, this
evaluation seems to be based just on the board position. That’s not entirely
true. Since chess is played with time limits, complexity can be important. For
example, if I’m short on time, I might try to simplify the position. Another
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factor that can enter in is knowledge of my opponent’s abilities. One position
may invite an inexperienced player into a trap, whereas a stronger player might
turn the position against me. Programs have difficulty incorporating time
into k¢, and they don’t attempt to incorporate knowledge of the opponent’s
abilities.

Once we have h®(s) for all reasonable moves from the root, we can select
the best move. To get this information, we need a “combining rule” that
allows us to move information up the tree. What should it be? Chess playing
progams use combining rules that are adaptations of the the max-min method
for AND/OR trees, which we’ll study in the next section.

All players use some sort of search procedure for choosing moves dur-
ing the midgame. Current chess playing programs rely on doing extensive
search—more than humans are capable of by many orders of magnitude. This
compensates for the fact that their heuristics are much poorer than those of
expert players. Some systems rely mainly on search, depending on a quickly
evaluated h® and special hardware. Others take more time on h®, operating on
the assumption that a better h¢ will reduce the need to search. Some search
tactics used by humans have been incorporated into chess programs. Here are
two examples:

e Suppose that, for one line of play A, the opponent has many apparently
reasonable responses, while for another line B, all her responses seem poor
except for one apparently very good response B’. Based on this assess-
ment, A is preferable to B; however, a player may explore the response
B’ further to see if it is really as good as it appears. If it is not, B may
be preferable to A. In other words, the tree will be explored to a greater
depth at B than at A. B’ is an example of a singular move—one that is
much better than the alternatives. The general heuristic is this: If a move
is dependent on knowing the value of a singular move accurately, that
move should be explored in greater depth.

o Suppose search reveals that the opponent has a very good response R to
one line of play. In other words, R “refutes” that line of play. Now suppose
we are in another part of the tree at the same depth where R was used.
It makes sense to see if R refutes the present line before trying the many
other possible moves for the opponent. This is called the killer heuristic
because R kills the line of play.

See Section 13.3 for a discussion of some probabilistic aspects of partial
search.
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*2.7 AND/OR Trees and Related Species

Imagine a problem space in which each state is a game position as well as
an indication of whose move it is. Suppose our opponent is a good player. To
reach our goal (a win for us), we must now find a path where the nature of the
decision alternates from vertex to vertex—best for us on our move and worst
for us on our opponent’s move. (“Worst” because we assume our opponent
will choose her best move.) This situation can be handled by modifying our
search tree idea as follows.

Definition 2.12 AND/OR Trees

An AND/OR tree looks like a decision tree. Each vertex is labeled either
AND or OR so that the labels alternate on each path from the root to each
vertex. Every vertex s for which F(s) = 0 is assigned a value p(s) in some
manner. The value of every other vertex is defined inductively:

_ [ minge 7,y p(t), if s is labeled AND,
p(s) = {ma,xtef(,)p(t), if s is labeled oR. (2.6)

This definition allows us to propagate values of p from the leaves upward
to the root. An AND/OR tree is also called a maz-min tree.

If p(s) = 1 indicates true and p(s) = 0 indicates false, min and max compute
logical “and” and “or,” respectively—hence the name AND/OR. More generally,
if 0 < p(s) < 1, the tree computes fuzzy “and” and “or.”

For game playing, the vertex tells us the position and whose move it is,
and we use the following;:

F(s): moves that can be made from s,
max: computed at our turn,
min: computed at opponent’s turn,
p(s) = 1: position is a win for us,
p(s) = 0: position is a loss for us.

This makes sense if we imagine players choosing their best possible moves:
Our goal is to maximize and our opponent’s is to minimize.

AND/OR graphs arise in planning. Starting at an oR vertex, we choose an
initial plan for reaching our goal. If the plan s contains several separate goals
F(s), which much each be attained to fulfill the plan, the vertex for the plan
is an AND vertex. Each of the separate goal vertices now functions like our
original goal vertex—an OR. And so on.

Here are two procedures, p-max_at and p-min_at for computing the value
of the root of an AND/OR tree. If the root r is an OR, we compute p.max_at(r);
otherwise, we compute p-min_at(r).
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Procedure pmax_at(s) /% Return p(s)=maxp(t), t € F(s). */
If F(s) =0, then return p(s).
Set M = —o0.
For t € F(s), do
Set m = pmin_at(¢).
If m> M, then set M =m.
End for.
Return M.
End Procedure.

Procedure pmin_at(s) /* Return p(s) = minp(t), t € F(s). */
If F(s) =0, then return p(s).
Set M = o0.
For t € F(s), do
Set m = pmax_at(t).
If m< M, then set M =m.
End for.
Return M.
End Procedure.

For convenience, we adopt the convention that
p-*.at stands for either p_.max_at or p.min_at, as appropriate.

The algorithms interact recursively. At a given nonleaf vertex s, the value
of p(s) is computed by first computing p(t) for all ¢ € F(s). This involves
recursion: The procedures move deeper into the tree until a leaf is reached.
You should convince yourself that the code does what is claimed. (See Exer-
cise 2.7.2.)

The functions max and min can be replaced by others. For example, if
we are operating in an uncertain environment, our opponent becomes “Na-
ture,” which selects a vertex in F(s) in some apparently random manner.
Thus, “average” (“expectation”) may be a more appropriate function than
“minimum.”

In studying an AND/OR tree you can make use of a heuristic function and
apply the ideas in Section 2.5. Thus, instead of calling p_*_at to evaluate
a node, we can call a heuristic function, say p_*_heurist, to evaluate the
situation. Since we are not concerned with distance to a goal in games, what
should p_*_heurist return? A reasonable idea is to let it return a measure of
how promising the vertex appears. Thus a high value indicates that we think
a win is likely while a low value indicates that we think it unlikely. This idea
is used in partial search. See the discussion of chess in the previous section.
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Exercises

2.7.A. Define an AND/OR tree.

2.7.1. Define the concept of an AND/OR graph so that it will bear the same relation
to an AND/OR tree as a search graph bears to a search tree.

2.7.2. The purpose of this exercise is to prove that p_*_at returns correct values
for finite AND/OR trees. The form of the proofis a type of induction, with (a)
playing the role of the starting value 1 for simple induction and (b) playing
the role of the inductive step. In (c), you prove that induction works in this
situation.

(a) Prove that p_*_at(s) returns the correct value when s is a leaf.

(b) Prove that p_*_at returns the correct value if all its calls to p_*_at
return correct values.

(c) Prove that p_*_at returns correct values.
Hint. Suppose the proposition is false and let s be the deepest vertex
such that p_*_at(s) returns an incorrect value.

The next exercise assumes some knowledge of expectation from probability theory,
which we don’t discuss until Chapter 12.

*2.7.3. Many games involve an element of chance, often using cards or dice. These
games do not fit the “complete information” framework we construct for
games like chess. Suppose we can assign a probability to each of the chance
events that might occur in such games and suppose that what happens on
one move is independent of what happens on another, as is true, for ex-
ample, when rolling fair dice. By breaking a move into pieces to separate
out the chance and the action of the player, explain how to modify (2.6) in
Definition 2.12.

Alpha-Beta Pruning

An elegant method for reducing the search in AND/OR trees is alpha-beta
pruning, also written a-f pruning. This somewhat subtle method is easy to
misunderstand—the term is sometimes used, incorrectly, to refer to methods
less powerful than true a-f pruning. In terms of using given information, a-8
pruning is best possible.

The key to understanding a-8 pruning is to realize that some of the
calculations done in p_*_at are unnecessary. Suppose that we want to compute

max (4, min(3, .. )) :

After seeing the 4, we know that the value of the max will be at least 4. After
seeing the 3, we know that the value of the min will be at most 3. Thus, the
values indicated by ... have no effect on the value of the max. Of course, they
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may affect the value of the min, but that is of no interest to us—we are only
interested in the value of the max.

In terms of AND/OR trees, suppose we want to know p(s) for an oR vertex
s. After computing p(t) for some t € F(s), we know that p(s) > p(t). If we
encounter some other vertex v after this and learn that p(v) < p(t), the exact
value of p(v) is irrelevant. All that matters is that it does not exceed p(t). As
a result, we could falsely report that p(v) = p(¢) without affecting the value
that would be computed for p(s).

The idea in the previous paragraph can be incorporated into p_*_at: At
all times, we keep track of a lower bound such that values below this bound
will not affect computations back toward the root. Thus, if a p-max_at call
has seen a value M, nothing is of interest among its descendents unless it
exceeds M. As a result, any value not exceeding M can be reported simply
as M. Here’s the modified code for p_*_at.

Procedure p._max_at(s,«)
/* Return p(s) if it exceeds «; else, return at most «. */
If F(s) =0, then return p(s).
Set M =a.
/¥ M is the current lower bound on the values */
/* of p that must be reported correctly. */
For t € F(s), do
Set m = pmin_at({,M).
If m> M, then set M =m.
End for.
Return M.
End Procedure.

Procedure pmin_at(s,a)

/* Return p(s) if it exceeds «; else return at most a. */
If F(s) =0, then return p(s).
Set M = o0.

For t € F(s), do
Set m = pmax_at(¢,a).
If m< M, then
If m < «, then return «.
Set M =m.
End if.
End for.
Return M.
End Procedure.
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If the root r is an OR, we compute p_max_at(r,—o0); otherwise, we com-
pute pmin_at(r, —o00). Before proceeding, convince yourself that the code for
p-*_at(r,«) is correct.

* * * Stop and think about this! * * *

What we have done for lower bounds and oR can also be done for upper
bounds and AND. To do this, we introduce 3. The result is the complete a-8
pruning algorithm:

/* Each procedure returns p(s) if it lies in (a,f). */
/* If p(s) < a, the procedures return at most «. */
/* 1f p(s) > B, the procedures return at least [. */

Procedure p.max_at(s,a,f)
If F(s)=0, then return p(s).
Set M = qa.
/* M is the current lower bound on the values */
/* of p that must be reported correctly. */
For t € F(s), do
Set m = pmin_at({,M, ).
If m > M, then
If m > 3, then return S.
Set M =m.
End if.
End for.
Return M.
End Procedure.

Procedure p_min_at(s,a,f)
/* Return p(s) if it exceeds «; else return at most a. */
If F(s)=0, then return p(s).
Set M =j.
/* M is the current upper bound on the values */
/* of p that must be reported correctly. */
For t € F(s), do
Set m = pmax.at(t,a, M).
If m< M, then
If m < o, then return c.
Set M =m.
End if.
End for.
Return M.
End Procedure.
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Figure 2.9 The left-hand figure is an AND/OR tree with the values of p(s) specified
at the leaves. In the right-hand figure, those vertices which were not consulted are
removed. An « or @ has been inserted to indicate whether it was the result of alpha
pruning or beta pruning, respectively.

Example 2.9 An Illustration of a-f# Pruning

Figure 2.9 illustrates the use of the a-f pruning algorithm. The vertices in
F(s) are listed immediately below s and are examined from left to right. If
F(s) = 0, the value of p(s) is given; otherwise, the nature of the vertex is
given. For simplicity, we speak of one vertex calling another.

We start computation with a call to the root » by p-max_at(r, —o0, 00).

The root calls the leftmost AND by p.min_at(s,—00,00). After s calls its
left child, it has M = 2 and so calls ¢ by p-max_at(t,—o00,2). After obtaining
3 from its left child, ¢ returns 2 to s. This amounts to (beta) pruning the right
child of ¢, which is indicated in the figure by 3.

After some calls, u is called from the middle AND by p_maxat(u,2,3). The
value 4, which exceeds 3, causes the pruning shown by the two $’s below u.
The value 3 is returned by u and the middle AND.

The root then calls the rightmost AND. When it sees 3, alpha pruning
takes place as indicated. You should be able to fill in the details. Do so. B

If a tree has branching factor b, what is the effective branching factor for
a-f search? That is, what would the branching factor be for a tree that ex-
amined the same number of vertices at depth d? Suppose that p(s) is assigned
randomly to the leaves. If the vertices in each F(s) are examined in the best
possible order, which normally happens only by accident, the effective branch-
ing factor is V. If the vertices in each F(s) are examined in a random order,
the effective branching factor is 12 where z € (0,1) is a root of et tz—1.1¢
can be shown that 1 —z ~ '—°§—" and so the effective branching factor is about
b/ log b—not a great improvement.
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Exercises

2.7.B.
2.7.4.

2.7.5.

2.7.6.

*2.7.7.

Explain the idea behind alpha-beta pruning.

Adapt the proof in Exercise 2.7.2 to show that the a-8 pruning algorithm is
correct.
Hint. The property that needs to be proved is in the code comment preceding

the algorithm.

The 4 x 4 game of fox and hounds was described in Exercise 2.3.3 (p. 47).
Assume that you are the fox.

(a) Draw the AND/OR tree and the aND/oR graph for the first three moves—
but don’t assign values.

(b) Determine the values p(s) for all vertices s of the search tree in (a),
using 1 to indicate a fox win and 0 to indicate a fox loss.

Let = € (0,1) be a root of z° + z — 1 = 0. In this exercise, you estimate y
when b is large.

(a) Write z = 1 — y. Using log(1 — y) = —y, show that e y and so
y = |logyl/b.

(b) Write y & b™*. Use the previous part to show that b'~* ~ tlogb. Sup-
pose that we want to choose a constant value for ¢ so that this approx-
imation is as good as possible as b becomes very large. Show that the
best constant approximation for tis ¢t = 1.

(c) Write y = z/b, deduce that z = logb — log z, and thence conclude that
z = logb.

In this exercise you will prove that o-f pruning is best possible in the fol-
lowing sense:

Let = be an algorithm that is correct and visits leaves in the
same order that o-8 pruning does. In any AND/OR tree, A
must examine at least those leaves examined by «-f pruning.

Suppose there is some aAND/OR tree 7 such that = omits some leaves that
a-f pruning examines. Let ! be the first leaf examined by a-f pruning and
not by Z. The idea of the proof is to modify p(I) and all leaves that could be
examined after p(l) so that p(r) = p(l). It will be convenient to use p_*_at
to denote either p_-max_at or p_min_at.

(a) Suppose that tis the last vertex visited by -8 pruning in F(s) and that
it is called via p_*_at(¢, @, 8). Show that, if & < p(t) < g, then p(s) =
p(t) and &’ < p(s) < ', where s was called via p_*_at(s,o’, §').

(b) Let T* be the tree obtained by removing all vertices from 7 that could
be visited after I. Suppose that ! was visited by p_*_at(l, «, 8). Prove
that, in 7%, p(r) = p(l) whenever a < p(I) < B.

(c) Let T*, @ and S be as above. Define a new tree 7' as follows. It has the
same shape as 7. For all leaves v # [ in 7%, p(v) is unchanged. If v is a
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leaf not in 7%, define p(v) to be « if the last vertex on the path from r
to v an oRr vertex and define p(v) to be B otherwise. The value of p(l)
satisfies @ < p(I) < B. This completes the description of 7”. Prove that
p(r) =p(l).

(d) Conclude that for some value of p(l), the algorithm = does not compute
p(r) correctly for 7.

Notes

Additional introductory material on recursion can be found in books on some
areas of computer science and in books on combinatorics. (The latter often
have “finite mathematics” in their titles.) The best reference is probably the
book by Roberts [11], which is devoted to a practical exposition of basic
recursive methods for computer science. Material on trees can also be found
in some computer science and combinatorics texts. For material on both trees
and recursion, I have an obvious bias toward [1].

Few books are devoted entirely to search. I’m aware of the text by Bolc and
Cytowski [2] and the volume edited by Kanal and Kumar [3]. Two similar,
readable surveys of search are the contributions by Korf [5] and Pearl and
Korf [10].

Russell and Wefald [12] explore questions related to partial search. In
particular, they discuss anytime algorithms extensively on pp. 178-182. (See
also [13].) For more information on chess playing programs and search in chess,
see the book [7] by Levy and Newborn or Newborn’s article [8].

For more results on a-8 pruning as well has historical information, see
the article [4] by Knuth and Moore and the search survey [10] by Pearl and
Korf.
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The Concepts
of
Predicate Logic

It is reasonable to hope that the relationship between computation
and mathematical logic will be as fruitful in the next century as
that between analysis and physics in the last. The development of
this relationship demands a concern for both applications and
mathematical elegance.

—John McCarthy (1967)

Introduction

Reasoning, which is the central problem of Al, is an everyday action for human
beings. To develop methods for computer reasoning, we might ask “How do
people do it?” Unfortunately, many aspects of everyday reasoning are, at best,
poorly understood. There is one exception: logical deduction—the method
supposedly used by Sherlock Holmes and by mathematicians. Since deductive
logic has a firm foundation and sound algorithms, it’s a reasonable place to
start the quest for reasoning tools.

Mathematical logic formalizes the structures and procedures used in the
deductive manipulation of information. Since such manipulations de not re-
quire any “understanding,” algorithms for logic are ideally suited for use in
computer programs. As a result, mathematical logic plays an important role
in the quintessential information processing discipline, computer science. Per-
haps it’s reasonable to embrace mathematical logic as the tool for AI. This

85
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approach has been taken by some Al researchers, especially in the early years
of AI. How does this fit the goals—difficulties—compromises pattern?

e Goal: To develop a method for reasoning about the world.
e Difficulty: A lack of tools, perhaps due to a poor understanding of how
people reason.

e Compromise: To use the deductive reasoning tools of formal logic, which,
it turns out, offer only one possible approach to reasoning.

As we develop these tools, it will become apparent that our compromise cre-
ates severe limitations, but provides a basis for overcoming these limits by
using other systems of logic. Whether these other logics will be adequate is
debated by AI researchers. Currently, most feel that more is needed.

What |s Mathematical Logic?

Mathematical logic distinguishes syntaz (structure) from semantics (mean-
ing). Syntax describes how certain formal “structures” can be built. Semantics
tells us how to interpret our structures. In the case of logic, our interpreta-
tion is in terms of “true” and “false.” You may have encountered syntax and
semantics in compiler design. The syntax tells you how to parse the code and
the semantics tells you how to translate it into machine instructions.

Given the syntax and semantics, we want methods for manipulating syn-
tactic structures so we can decide if a given structure is true, false, or neither.
Such methods of manipulation are called proof methods. This agrees with
ordinary mathematical usage where a proof of a theorem is a sequence of
manipulations that establishes the truth of the theorem.

The simplest level of logic is called propositional logic. It formalizes what
is meant when we apply the connectives “and,” “or,” “not,” “if...then,” and
“if and only if” to statements (which are called formulas). Is this enough for
our purposes? No. A deeper analysis of syntax and semantics is needed for
Al This is provided by first-order predicate logic (FOPL)—often called simply
predicate logic or first-order logic (FOL). In addition to the connectives just
mentioned, predicate logic introduces objects, properties and quantifiers. An
object may or may not have a particular property. Quantifiers formalize the
notions of “for all” and “for some.” What does this gain us? For one thing,
predicate logic allows us to examine the internal workings of a statement such
as “Every person has a mother.” (For all P, there is some M such that M is
the mother of P.) In contrast, propositional logic treats the statement as an
undigestible lump since it contains no connectives that allow us to split it up.

These two logics are also called calculi: specifically, propositional calcu-
lus and predicate calculus. A calculus is simply a method of calculation. (The
mathematics course referred to simply as “calculus” is more properly called
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“differential and integral calculus.”) Although the term “predicate logic” em-
phasizes structural aspects while “predicate calculus” emphasizes computa-
tional aspects, they are used interchangeably.

Propositional logic and first-order predicate logic are covered in this chap-
ter and the next one. Although useful, they are too limited for many AI needs;
however, they provide the starting point for other logics, some of which we’ll
explore in Chapter 6.

Logic and Al

A proof technique is a method for establishing true statements. In Al, we
start with a knowledge base and attempt to derive true statements from it.
It’s possible to mechanize the manipulations required in the steps of a proof.
Unfortunately, being able to carry out a step mechanically does not tell us
which step to carry out. We want efficient algorithms for selecting steps that
will allow us to decide if something is true or false. Although this wish cannot
be completely fulfilled, useful algorithms have been found.

A particularly efficient algorithm for predicate logic is called resolution
of Horn clauses. Since the programming language Prolog is based on this
algorithm, we’ll use Prolog to provide direction for our study of logic. Prolog is
briefly introduced in the next section, and additional syntax is discussed with
the relevant aspects of logic. This will not make you a Prolog programmer,
but it may give you a better appreciation of predicate logic.

This chapter emphasizes the concepts of predicate logic from an Al per-
spective, culminating with a partial description of Horn clause resolution. The
next chapter provides the algorithmic details and theoretical underpinnings.
In Chapter 6, we’ll look at extensions.

Prerequisites: The material on ordered trees (Section 2.1) and that on
depth-first search (Section 2.2) are needed to understand Prolog.

Used in: This chapter is essential for Chapters 4 and 6. The propositional
logic concepts in Section 3.2 are referred to briefly in some nonessential ex-
amples in Chapter 7.
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3.1 What s Prolog?

Prolog is a programmer’s and software engineer’s dream.
It is compact, highly readable, and arguably the
“most structured” language of them all.

—Peter H. Schnupp (1989)

The workhorse languages of computer programming—Pascal, C, Fortran and
the like—are called procedural languages because we write code to describe
the procedures that are to be carried out. In contrast, Prolog is primarily a
declarative language. Declarative code states information instead of describing
manipulations as procedural code does. Put another way, procedural knowl-
edge (and hence code) answers “How?” while declarative knowledge answers
“What?” The collection of declarative facts and rules that encapsulate knowl-
edge about a particular subject is referred to as a knowledge base.

Prolog manipulates its code by using depth-first search to attempt Horn
clause resolution. Purely declarative Prolog code often fits the framework of
predicate logic. Procedural statements take us outside that domain. In this
book we’ll limit ourselves to the predicate logic aspects of Prolog.

Example 3.1 Family Relationships

Looking at a simple example based on family relationships, we can examine
some statements about how relationships interact:

1. If X is a parent of A

and X is a parent of B

and A and B differ, then A and B are siblings.
2. If X and Y are siblings

and X is a parent of A

and Y is a parent of B, then A and B are cousins.

And we can make some statements about specific relationships:

3. Mary is a parent of Jane. 4. Mary is a parent of John.
5. Jane is a parent of Karen. 6. Jane is a parent of Bill.
7. John is a parent of Jim.

Given the set of rules for interaction and the specific data, we can deduce
various facts. For example, “Karen and Bill are siblings.”

Prolog provides a language for writing such rules and facts and provides a
mechanism for deducing other facts. Here are some rules for translating from
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English to Prolog. Upper- and lowercase refer only to the initial letter:

English Prolog

Constant Lowercase string

Variable Uppercase string (3.1)
Relationship | Functional notation

And Comma

Ifathenf. | 8 :—a.

Using this, we can rewrite the previous statements in Prolog:

siblings(A,B) :- parent(X,A), parent(X,B), A\=B. % 1

cousins(A,B) :- siblings(X,Y), % 2
parent(X,A), parent(Y,B). % 2
parent (mary, jane). parent (mary,john). %3, 4
parent(jane,karen). parent(jane,bill). %5, 6
parent(john,jim). %7

Suppose we want to locate a sibling for Karen. We would give Prolog the
question :- siblings(karen,W). [For the present, don’t ask why Prolog con-
siders this to be a question.] As a result of this question, Prolog would attempt
to use the first statement with the variable A set to karen and the variable B
set to W. Remember that this statement says that the left side of :- is true
provided the right side is. The first condition is parent(X,karen), which is
true when X is jane because of the fifth statement, parent (jane,karen). The
next part of statement 1 is now parent(jane,W). Prolog will try the state-
ments that “define” parent in order. Statements 3 and 4 are quickly discarded
because parent (mary,...) cannot agree with parent(jane,...). Statements
5 and 6 are okay; however, 5 fails because it leads to karen\=karen, which is
false. Finally, Prolog tells us that W=bill is a solution.

A Prolog question is also referred to as a query or goal clause. B

Here’s another simple toy example based on crossword puzzles.
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shalone o2l sl

abandon m
S e e
elegant Bt

: §
enhance %@mmm
7,2

7,4

Figure 3.1 The six words on the left are to be placed in the crossword grid. The
squares in the grid have been numbered for use in the Prolog program. One solution
is shown on the right.

Example 3.2 A Crossword

Suppose that we want to place the words given in Figure 3.1 into the crossword
grid shown there. Let Lij denote the entry in position (7,j) of the array,
numbering from top to bottom and left to right. The following Prolog code
solves the problem.

word(a,b,a,l,o,n,e).
word(a,b,a,n,d,o,n).
word(a,n,a,g,r,a,m).
word(c,o,n,n,e,c,t).
word(e,l,e,g,a,n,t).
word(e,n,h,a,n,c,e).

:- word(L21,L22,L23,L24,L25,L26,L27),
word(L41,L42,L43,L44,145,1.46,147),
word(L61,L62,L63,L64,L65,L.66,L67),
word(L12,L22,L32,L42,L52,L62,L72),
word(L14,L24,134,144,L54,1.64,L74),
word(L16,L26,L36,L46,L56,1.66,L76).

One solution is shown in Figure 3.1. Prolog will also find a second solution
which is the transpose of this one, that is, the result of interchanging rows
with columns. B

These examples lead naturally to a variety of questions about Prolog.
Among these are
e In more detail, how does Prolog work?
e Why does Prolog work?
e Can Prolog make a mistake?
e What are the limitations of Prolog?



8.1 What Is Prolog? 91

To fully understand and answer these questions, we must explore logic, which
we’ll do in the next section.

In the meantime, you need to understand a bit more about Prolog to do
the exercises.

e Prolog works only with the form of the statements, not the meaning. For
example, we know that if a and b are siblings, then so are b and a; however,
Prolog will not be able to deduce this unless we give it a statement like
siblings(X,Y):-siblings(Y,X).

e Variables that appear in statements should be regarded as local variables;
that is, the same name may appear elsewhere. You can think of this in
terms of procedural languages. Each statement corresponds to a separate
procedure; there are no global variables, and Prolog works like call-by-
reference (not call-by-value) programming languages.

o The procedural analog extends even further. In attempting to establish
the left side of a statement, Prolog tries to verify each of the clauses on the
right in the order in which they are written. While attempting to verify a
clause, Prolog may try to apply a rule. To do this, it attempts to verify,
in order, the clauses in the rule. In other words, Prolog uses depth-first
search.

o If Prolog’s attempt to apply a statement fails, Prolog “forgets” the iden-
tifications it may have made. Consider, for example, our previous appli-
cation of statement 3 in answering :- siblings(karen,W). When Pro-
log encounters parent(X,B), where X=jane and B=W, it would first try
B=karen because it finds the statement “parent(jane,karen).” This
fails when Prolog attempts to verify that A and B are not equal. As a re-
sult, Prolog forgets its B=karen attempt at parent (jane,B) and looks for
another choice. It then finds “parent(jane,bill).” which works because
karen\=bill.

Exercises

3.1.A. What is the difference between declarative and procedural code?
3.1.B. What is a proof method?
3.1.C. What is the form (syntax) of a Prolog fact? a Prolog rule? a Prolog query?

The following exercises refer to the Prolog code appearing in this section. Since we
have not fully explored how Prolog works, your answers might be somewhat vague
at some points.

3.1.1. (Answer follows) Explain how the question “:- siblings(W,karen).” is
dealt with.
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3.1.2.

3.1.3.

3.1.4.
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(Answer follows) Assume Prolog can be told to find all possible solutions—
which it can. What does it do with the question “:- siblings(A,B).”?

(Answer follows) Explain how the question “:~ cousins(karen,T).” is
dealt with.

(Answer follows) Explain how the question “:- cousins(jane,X).” is
dealt with.

We’ll expand our Prolog example by introducing the predicate sex(X,Y) where X
is the name of a person and Y is the person’s sex, either male or female. Thus
“:- sex(X,male).” will find X whose sex is male.

3.1.5.

(Answer follows) Using the available predicates, define the predicate
mother(X,Y) so that Y is the mother of X.

. Using the available predicates, define the predicate brother(X,Y) so that

Y is the brother of X.

. Using the available predicates, define predicates for aunt and nephew.

Using the available predicates, define ancestor(X,Y) so that Y is an an-
cestor of X.

Answers

3.1.1.

3.1.2.

Prolog would again use the third statement. This time A=W and B=karen.
Prolog now tries to satisfy parent (X,W). All parent statements work here.
The first two give X=mary. Prolog then fails when it attempts to satisfy
parent(X,karen) with X=mary. The third and fourth parent statements
give X=jane. Prolog is then able to satisfy parent(X,karen). The third
parent statement leads to failure at A\=B because A=karen and B=karen.
The fourth parent statement works because A=bill. Thus, Prolog finally
tells us that W=bill is a solution.

Prolog would begin by simply identifying A and B with A and B in the
first statement. Then the work starts. Prolog tries all possibilities for par-
ent (X,A). Each of these gives a value for X which is then used to try the
possibilities for parent (X,B). Finally, the test A\=B is applied. In this way,
Prolog will find the following four solutions in the order given.

A=jane, B=john; A=john, B=jane;
A=karen, B=bill; A=bill, B=karen.

. Statement 2 would be applied. Proceeding as in the previous answer, Pro-

log would first try to satisfy siblings(X,Y). All of these would fail at
the next part, parent (X,karen), except for the solution X=jane, Y=john.
With this, Prolog attempts to satisfy parent (john,T). This has only one
solution, namely T=jim. Thus, Prolog produces the answer T=jim.
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3.1.4. Prolog would fail in attempting to satisfy this. The first requirement of state-
ment 2, siblings(X,Y) has four solutions—see Exercise 3.1.2. None of
these solutions satisfies parent (X, jane), the second requirement in state-
ment 2.

3.1.5. This is somewhat confusing because the order of X and Y is reversed from
what might be expected given the order in parent (X,Y). If you do this sort
of thing in your Prolog code, you’re likely to get confused. Where there is a
natural ordering as in ancestry, you should set up all predicates relating to
it so that they have the same ordering.

mother(X,Y) : —parent(Y, X), sex(X, female).

3.2 Propositional Logic

Two different aspects of Prolog statements appeared in the previous section:
They have connectives such as “and” and “if...then,” and they have properties
(called predicates) such as “parent” and “siblings.” The formalization and
study of the connectives belongs to propositional logic, while that of predicates
belongs to predicate logic.

We’ll now look at the syntax (form) and semantics (meaning) of proposi-
tional logic. In the next section, we’ll do the same for predicate logic.

Syntax

A proposition, or formula, is simply a statement such as “this book is boring”
or “if this book is boring, then I'll fall asleep.” Lowercase Greek letters will
be used to denote formulas. Connectives produce new formulas from old, as

in
« and B and if a then f.

This leads to a recursive definition of formulas. To start the recursive def-
inition of formulas, we’ll need some basic formulas, which are often called
propositional letters. Connectives such as “and” and “if...then” are needed to
build new formulas from old. Here’s a list of connectives and the everyday
concept to which they (nearly) correspond—their “meanings.”

connective | meaning

\ or

A and

A o (3.2)
- implies (if. . .then)

if and only if (iff)
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Finally, to avoid ambiguity, let’s use parentheses.

Definition 3.1 Syntax of Propositional Logic

Let S be a set whose elements will be called propositional letters. We’ll
denote the propositional letters by p, q, and so on. A propositional logic
language £ with propositional letters S is the collection of formulas de-
termined by the following four conditions:

(a) All propositional letters are formulas.

(b) If a is a formula, so is (—a).

(c) If @ and B are formulas, so are (aAf), (aVp), (a« — B), and (a = B).
(d) All formulas are obtained in this manner.

Some people call formulas well formed formulas, or simply WFFs.

Example 3.3 Some Formulas and Nonformulas

Suppose that «, £, and v are formulas. Then so are

(@=(a=P)—=pF) ((-a))=a) ((=(aVp)=((-a)A(=0))

According to the definition, all these parentheses are necessary; however, it’s
not uncommon to be sloppy and omit pairs of parentheses when the resulting
string of symbols corresponds unambiguously to a formula. Don’t, for example,
be surprised if you see o — § instead of (o — f).

To show that the above expressions are formulas, we must show how
Definition 3.1 applies. Let’s take the second one.

By (b) of the definition, (—) is a formula.
By (b) of the definition, (—=(—a)) is a formula.
By (c) of the definition, ((-(—a)) = « is a formula.

We can also use the definition to show that some expressions (or strings)
are not formulas. For example, (— «) is not a formula: (a) does not apply
since it is not a propositional letter; (b) does not apply since there is no
“=”; and (c) does not apply because it requires two formulas separated by a
connective. Looking at this in another way, we could say that the definition

does not apply because it requires a formula before the connective “—.” B

Since formulas are defined recursively, proofs about formulas are usually
done by induction. We can induct on the length of the string of symbols or on
the number of connectives (since each application of the definition increases
both of them)—or we can induct on the number of applications of the defi-
nition itself. The following example is based on the idea enunciated in (2.2)

(p-42).
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Example 3.4 An Inductive Proof about Formulas
As an illustration of (2.2), let’s prove the following almost trivial result.

Claim: In a formula, the number of left parentheses, the number of
right parentheses, and the number of connectives are all equal.

Proof: Let l(a), 7(«), and c¢(a) be the number of each in the formula o.
We'll induct on the number of applications of Definition 3.1. The induction
hypothesis, then, is the claim that the claim is true for all formulas obtained
by fewer applications of Definition 3.1 than are needed to produce the formula
v being considered.

Suppose v was obtained by applying Definition 3.1(a). Then « is simply
a propositional letter, so I(«) = 0, r(a) = 0, and ¢(a) = 0.

Suppose v was obtained by applying Definition 3.1(b). By the induction
hypothesis « is a formula with [, 7, and ¢ all equal. In applying (b), we increase
each of I, r, and ¢ by 1 and so they remain equal.

Suppose 7 was obtained by applying Definition 3.1(c). By the induction
hypothesis « is a formula with I, 7, and c all equal as is 8. The application of
Definition 3.1(c) gives one more left parenthesis, one more right parenthesis,
and one more connective. Thus, the numbers remain equal. We can express
this algebraically as

l(a*xB)=1(a)+1(B)+1,
(e B) = r(a) +r(B) + 1,
¢(a*f) = c(a) +¢(B) + 1,

where * is any of the connectives in (c).

Instead of inducting on applications of the definition, we could have in-
ducted on some measure of the formula’s complexity, as suggested just before
the example. In this case the number of connectives would be a natural mea-
sure of complexity. W

Exercises

3.2.A. What is the difference between syntax and semantics?

3.2.B. Define the syntax of propositions (also called the formulas of propositional
logic). What are connectives?
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3.2.1. (Answer follows) Suppose that «, 3, and v are formulas. In each case, either

(i) explain why the expression is a formula by showing how Definition 3.1
applies or

(ii) explain why Definition 3.1 does not apply.
(2) ~a

(b) (a=(-8))

(c) ((«vh))

(d) ()

(¢) (@vVBV9)

3.2.2. Let l() be the number of propositional letters in the proposition o and let
k(a) be the number of connectives other than . In both cases, repetitions
are counted. For example,

I((p = (47 (-p)))) =3 and k((p— (gA(-P)))) = 2.
Prove that I =%k + 1.

Answers

3.2.1. Only (b) is a formula. It’s obtained by using (b) then (c) in the definition.
Parentheses are missing in (a) and (e) while (c) has extra parentheses—(b)
and (c) in the definition state when parentheses are used. Negation is used
incorrectly in (d)—see (b) in the definition.

Semantics

We have to renounce a description of phenomena
based on the concept of cause and effect.

—Niels Bohr (1933)

The meaning of a formula is given in terms of the notions of truth and falsity.
We assume that the truth and falsity of propositional letters is known and
then recursively compute the truth and falsity of all formulas by paralleling
the recursive construction of formulas. For example, “(it is raining) and (the
barometer is falling)” is true if “(it is raining)” and “(the barometer is falling)”
are both true. If either of the two building blocks is false, so is the compound
statement. We can describe this idea by using a truth table:

a|BllaAp
F|F|| F
F|T| F
T|F|| F
T|T T
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The first line in the table says that if formula « is false and formula g is false,
then formula o A f is false. Here’s the general definition.

Definition 3.2 Semantics of Propositional Logic

For each propositional letter, we are told whether it is true or false. In
view of Definition 3.1, the following truth table describes how to determine
the truth or falsity of any formula recursively. The first two columns list
all possible combinations of true and false assignments to o and 3. The
remaining columns list the values of formulas built from « and S. True
and false are indicated by T and F, respectively.

not| or and |implies
—alaVB|laAB|la—f|a

»

(3.3)

IR =Y

ST Q
HEaTE R
RO R ]
Ha3
=
Hmas

You may be inclined to disagree with some entries in (3.3). For example, the
everyday usage of “a or §” is ambiguous. When we say “a or §” is true we
may mean either

(a) at least one of & and S is true or

(b) exactly one of a and  is true.

Logicians have adopted (a) as the meaning for “or” and refer to (b) as “ex-
clusive or.” That was simple. Implication—the phrase “if a then 8”—is more
troublesome, as the next example shows.

Example 3.5 Varieties of Implication

Implication is the most troublesome entry in table (3.3) because necessity
and causality are intertwined with our notion of implication. In the everyday
usage of “if P then Q,” we consider the statement to be true only when
there is some connection between the meaning of P and Q. In contrast, FOL
(first-order logic) is concerned only about truth values: “If P then Q” is true
provided Q is true whenever P is true. This is called material implication.

Since necessity and causality are outside the scope of FOL, how should
FOL deal with implication? FOL must base the truth and falsity of (o — )
solely on the truth and falsity of & and 8, not on any other information about
them. This leaves open the question of why (e — ) should be given the
interpretation in (3.3). Based on everyday usage, we insist that & — § means
that 8 must be true whenever « is true. This explains why (o — f) is true
when « and § are both true, and it explains why (a — f) is false when a
is true and g is false. In logic we must consider all possibilities. What is the
truth of (o — ) when « is false?
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Some people argue that we can say nothing—when «a is false, it gives us
no information about 8. That argument is beside the point—we are trying
to determine the truth or falsity of (¢ — f), not the truth or falsity of 3.
One way to reach a decision is to take a somewhat different approach. Ask
yourself, “How can the claim that « implies § be wrong?”

* * * Stop and think about this! * * *

It will be wrong when it happens that « is true but # is not. But this is
equivalent to saying that (a — ) is true otherwise—just what (3.3) states.
Let’s digress to look briefly at some other approaches to implication.
One approach hinges on the notion of necessity. “If P then Q” is considered
true when Q would necessarily follow if P were true, without regard to whether
P is true or not. Consider the two statements,

“If Newtonian mechanics is correct, it is possible to exceed light speed.”
“If Newtonian mechanics is correct, it is impossible to exceed light speed.”

Both are logically true because we know that Newtonian mechanics is incor-
rect. However, a physicist would probably tell you that the first is true and
the second is false because, if Newtonian mechanics were true, it could be
shown that arbitrarily high speeds are possible. This is an example of strict
implication, which we’ll discuss a bit more on page 228.

The slippery notion of causality suggests another approach to implication.
The nature of causality in the everyday use of implication varies:

“If it rained, then the ground is wet.” « caused S;
“If the ground is wet, then it rained.” « was caused by f;
“If roads are wet, then the ground is wet.” a common cause for « and §.

Causality issues may also arise when interpreting other connectives. Thayse
[20, p. 6] gives the following example with “and”:
“He became afraid and killed the intruder.”

versus
“He killed the intruder and became afraid.”

Do you see how implied causality leads to very two different meanings? We’ll
discuss causality further in Chapter 8.
People also use implication procedurally. For example, I might say

“If it’s hotter than 78°F, then turn on the air conditioning.”

This is far outside the domain of logic because logic deals with truth, not
action.
The fact that o — 3 leads to so much discussion is a warning sign:

Be cautious! Take extra care in translating between ¢ — # in math- (3.4)
ematical logic and “if & then 3” in everyday discourse. ’
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Remember that the first-order logic meaning of implication is completely de-
scribed by the & — 8 column of (3.3). B

We can think of a truth table as a tabular representation of a function.
For example, if V is the function that maps formulas to the truth values {T,F}
according to FOL rules, the table says

V(aAB) = {T’ if V(@) =V(F) =T,

F, otherwise.
When working with the functional viewpoint, we can replace T and F with
1 and 0, respectively. This enables us to write the truth value of statements
built with connectives algebraically. For example,

V(~a) =1-V(a),
V(a V B) = max(V(a), V(B8)) = V(a) + V(B) — V(a)V(B),
V(a A B) = min(V(a), V(B)) = V(@)V(B), (3.5)
V(a — B) = max(1 — V(a), V(B)),
V(e =B)=V(@)V(B)+ (1-V(a))(1-V(8)).

You should check that these formulas are correct by verifying that they com-
pute the same values given in the tabular definitions (3.3).

Using the truth table idea, we can compute the truth and falsity of more
complicated statements. The following table shows that ((—(-«a)) = «) is
always true. A statement that is always true is called a tautology. We also say
that the formula is valid.

a|l (z@) | (=(=e)) | (=(-2)) = o)
T

F T F
T F T T

The first column in this table gives all possible truth values for «. The sec-
ond column is obtained from the third column of (3.3). The third column is
obtained by using the second column of this table and the semantics for — in
(3.3). Finally, the last column is obtained from the first and third column and
the semantics for =. We can also carry out such calculations using the alge-
braic form of V, as is done in the proof of the next theorem. Which method
is better depends on the situation and your personal taste.

In algebra, we have the fundamental rule “Equals may be substituted
for equals.” This means that if we know A = B, then we may replace any
occurrence of A with B without changing the truth of an algebraic statement.
In logic, formulas with the same truth values play the role of equals. The
connective = plays the role that = plays in algebra: If we know that o = 3,
then we may replace @ by @ without changing the truth of a formula.
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Theorem 3.1

Let ay,...,a, be formulas. Let V be 1/0-valued rather than T/F-valued.

(a) Let B be a proposition formed by connecting all of «; in any order
using only the connective V. Then V(B) = max(V(ay),...,V(an)).

(b) Let v be a proposition formed by connecting all of —¢; in any order
using only the connective A. Then (=8) = v is a tautology.

(c) Let 8 be a proposition formed by connecting all of ; in any order
using only the connective A. Then V(§) = min(V(a1), ..., V(an)).

(d) Let ¢ be a proposition formed by connecting all of =¢; in any order
using only the connective V. Then (—6) = ( is a tautology.

Parts (a) and (c) imply the associative and commutative laws for V and A,
respectively.  Recall from elementary algebra:

associativity: grouping doesn’t matter;
commutativity: order doesn’t matter.

Associativity tells us that, although there are many ways to parenthesize
a3 VasV---Vay,, they all have the same truth value. Commutativity tells us
that the order of the a;’s is also irrelevant. Parts (b) and (d) yield de Morgan’s
laws:

(1 V- Van) = (1) A A (me))

(g A Aap) = ((ar) VeV (man)). (3.6)

Proof: First note that V(—¢) = 1 — V(¢) for any formula ¢. You should be
able to show that this observation together with (a) and (c) can be used to
prove (b) and (d). i

Since the proofs of (a) and (c) are similar, let’s prove only (a). The proof
involves induction on n. When n = 1, 3 is simply «;, and so there is nothing
to prove.

Suppose n > 1. Since § is a formula and the only connective used was V, §
must be 3; V3 for some formulas 8, and f2. Let S; = {j | o; appears in f }
and define S; similarly. Since |S;| < n and f; is built using only V, the
induction hypothesis tells us that

V(B1) = max V(a;) and V(B2) = max V().
By (3.5), V(b1 V B2) = max(V(B1),V(B2)). The theorem now follows. ®

The following result allows us to eliminate occurrences of “implies.”
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Theorem 3.2

Let aj, ..., @, and B be formulas. Then the following is a tautology.
(Parentheses have been omitted to avoid clutter.)

(A Aan) = B8) = ((car) VoV (man) v ).

Proof: Use a truth table to show that

(6 —B)=((-8) vV B). (3.7
is a tautology. Let 6 be a3 A --- A ¢, and apply the second of de Morgan’s
laws. B

Example 3.6 More Complicated Connectives

The connectives discussed so far involve only one or two propositions. What
about more complicated connectives? Consider

if o then S, else v, (3.8)

which is a popular construct in programming. In natural language, “else” is
usually replaced by “otherwise” as in

If it’s sunny, I’ll cut AI class; otherwise I’ll attend.

Logically, (3.8) is equivalent to ((a — B) A ((ma) — 7)). Consequently we
don’t need a new connective to express this idea. We saw earlier that (a — f)
is equivalent to ((—a)V 3). Thus the connective “—” is also unnecessary. This
suggests the general question:

What connectives do we need to be able to express everything? (3.9

To answer this, we need to clarify “express everything.”

Since the focus of logic is truth, all that matters about a statement is its
truth table. In other words, a statement in propositional logic can be viewed as
a function f(a,...,,) whose domain is {T,F}" and whose range is {T,F}.
From this viewpoint, building new formulas from old using Definition 3.1
(p-94) is simply a matter of functional composition. For example, ((—a) V 3)
is the “or” function applied to two arguments, the first being the result of
applying the “not” function to « and the second being simply 5.

Now, rephrasing our vague question (3.9), we can ask precisely: What
functions are needed to obtain, via functional composition, all possible func-
tions from {T,F}" to {T,F}? One answer is found in the next theorem.

Theorem 3.3 NAND Suffices
Define the function NAND : {r,r}? — {T,F} by

NAND(e, 8) = (~(a A B)).

It’s also written (a 1 8). For every n > 0, every function from {T,F}" to
{T,F} can be obtained from NAND by functional composition.
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Since this theorem is particularly important in certain technologies for build-
ing logic circuits, you may have seen it in another computer science course.
(It’s important because NAND is easily built and the theorem tells us that
it’s enough.)

Proof: First, let’s see how to build up some of the common functions. You
can easily verify that

V(~a)=V(a1a)
and so

VanB)=V((@1h)1(18)).

By de Morgan’s law, (o V f) is equivalent to (—((—~a) A (—f)), which is equiv-

alent to
(et 1818).

We’ve created -, A, and V from NAND.

Now let’s prove by induction on n, the number of variables, that any
function can be built from -, A, and V, and hence also from NAND.

When n = 1, there are only four possible functions f(«). You should be
able to list them and show how to construct them using NAND. It helps to
note that (—(a A (—a)) is always true.

If n > 1, you should be able to show that f(ay,...,a,) is equivalent to

(a,, Af(al,...,an_l,T)) v ((—u,,) Af(al,‘..,a,,_l,F)).

This completes the proof, because f(ay,...,0,-1,T) and f(oy,...,a@n-1,F)
are both just functions of n — 1 variables. (They are, in general, not the same
function because the first is obtained by setting the nth variable to T and the
second by setting it to r.) W

Exercises

3.2.C. Define the semantics of formulas in propositional logic.

3.2.D. How does causality enter into interpretations of implication and why does
logic ignore it?

3.2.E. What is a truth table?

3.2.3. Suppose we have a formula that contains k¥ propositional letters. Show that
the truth table for this formula contains 2% rows.

3.2.4. Verify that each of the algebraic expressions for V of connectives given in
(3.5) agrees with those (3.3).



3.2.5.

3.2.6.

3.2.7.

3.2.8.

3.2.9.
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Construct truth tables to determine which of the following formulas are
tautologies.

(a) (¢ V(=)

(b) (aA(me))

(©) (@ = (aVh)

(d) («— (aAB))

(e) (aAB)) = )

() ((aVvB)) = a)

(8) ((a = B) = ((ma) v B))

(h) (e =) = (¢ = (B—7)
@) ((@=B) = (a—(8—1))

Complete the proof of Theorem 3.1.
Prove that (3.7) is a tautology.

Here are four rearrangements of implication

a—f (original formula)
B —a (converse)
(ma) — (-8) (inverse)

(=8) = (—a) (contrapositive).

(a) Show that the original formula and the contrapositive are equivalent;
that is,

(@~ 8) = ((-6) ~ (-0)
is a tautology.

(b) For the other five possible equivalences, which are equivalent and which
are not? (In particular, the original formula and its converse are not
equivalent; however, people sometimes assume that they are.)

(c) Can you recall an example from real life where someone assumed that
an implication and its converse were equivalent?

Complete the proof of Theorem 3.3:

(a) List all four functions from {T,F} to {T,F} and express them using
NAND.

(b) Fill in the details for n > 1.
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3.3 Predicate Logic

If your thesis is utterly vacuous

Use first-order predicate calculus.

With sufficient formality

The sheerest banality

Will be hailed by the critics: “Miraculous!”

—Henry A. Kautz (1986)

Predicate logic allows us to look into the structure of phrases that proposi-
tional logic treats as “black boxes” denoted by propositional letters. Consider
the statement

“If John is human, then John has a human mother.”
In propositional logic, we could write this statement as

(p — q) where p = “John is human” and

(3.10)
¢ = “John has a human mother.”
To explore the structure of p and ¢, we use predicate logic as follows:
p = human(john) and ¢ = has_human_mother(john). (3.11)

Here, “human” and “has_human_mother” are predicates. When a predicate is
applied to its argument(s), the result is either true or false. The arguments
of predicates may be constants, like “john,” or variables. The arguments of
predicates are called terms. To mimic Prolog, we’ll use lowercase for predicates
and constants and uppercase for variables.

What purpose do variables serve? The statement in (3.10) and (3.11)
actually applies to all things, not just John. In other words,

(human(X ) — has_human_mother(X ))
for all choices of X. We express this by saying
VX (human(X ) — has_human_mother(X )) (3.12)

The string VX is read “for all X.” Various expressions in English are equivalent
to “for all”; for example, “for every” and “for each.” “For all” is often tacitly
assumed in an implication; for example, “if £ > 0, then ...” means Vz ((:c >
0) — ...). (Note that this is not the same as (Vz(z > 0)) —....)

Although (3.12) captures much more than does p — ¢ and even more
than (3.10) and (3.11) combined, it still lacks something. We may not think
of “has_human_mother” as a predicate with a single argument; instead,

“John has a human mother”
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may be thought of as

“There is someone who is human and who is John’s mother.”

We can capture this with predicate logic; in fact, we can state it for all people
instead of just for John:

VX (human(X) — (EIY (human(Y) A mother(Y, X)))) , (3.13)

where 3Y is read “for some Y” and mother(Y, X) means “Y is the mother of
X.” Other English versions of 3 are “there exists” and “there is.”

We can express the idea in (3.13) by using functions as follows: When the
predicate human(X) is true, the function mother(X) will have as its value
the mother of X. We don’t care how mother(X) is defined when human(X) is
false. Using the function “mother,” we could restate the information in (3.13)
as

VX (human(X ) — human (mother(X ))) .

In this, human( ) is a predicate and mother() is a function.

We use the same notation for functions and predicates. Is this because
they’re the same? No!

A function produces a value that is a term.
but
A predicate produces only “true” and “false.”

Predicates are truth-valued functions of terms and are defined when interpre-
tations are given. Connectives are truth-valued functions of formulas and are
defined in propositional logic by (3.3) (p.97). For example, we insist that -«
is true if and only if « is false.

Syntax

The previous discussion serves as the foundation for the following series of
rather lengthy definitions.
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Definition 3.3 The Elements of Predicate Logic Language

A predicate logic language £ consists of the following symbols:

e an infinite set of variables, denoted by uppercase letters;

o a set of constants, denoted by lowercase letters, usually a, b, etc.;
e a set of predicates, denoted by lowercase letters, usually p, ¢, etc.;
e a set of functions, denoted by lowercase letters, usually f, g, etc.;
o the connectives -, V, A, —, and =;

o the quantifiers V and 3; and

e the parentheses ) and (.
Predicates and functions take “arguments” in a manner to be specified
later. (We’ll usually assume that all the sets are countable; that is, they are
either finite or can be put into one-to-one correspondence with the positive
integers. Since we’re concerned with ideas that can be implemented on a
computer, this isn’t a severe restriction.)

The notation in the definition is consistent with that for propositional
logic: The connectives play the same role in both logics and the predicates are
a generalization of propositional letters. In fact, predicate logic using only

e connectives,
e parentheses, and

o predicates that take zero arguments

is propositional logic.

Definition 3.4 The Syntax of Predicate Logic Terms

The terms in £ are defined recursively as follows:

(a) Every variable and every constant is a term.
(b) If t4,...,t, are terms and f is a function that takes n arguments,
then f(t1,...,t,) is a term.

(c) Every term is obtained in this manner.

Terms with no variables are called variable-free terms.

In the syntax of predicate logic, functions are merely symbols. In the se-
mantics (interpretation) of predicate logic, functions are functions in the or-
dinary sense and their ranges and domains are the constants of Definition 3.3.
To distinguish between the symbol and its interpretation, some authors speak
of “function symbols,” rather than functions in the preceding definitions.
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Definition 3.5 The Syntax of Predicate Logic Formulas

The formulas in £ are defined recursively as follows.

(a) If t4,...,t, are terms and p is a predicate that takes n arguments,
then p(ty,...,t,) is a formula, called an atomic formula.

(b) If & is a formula, so is (—a).
(c) If « and 3 are formulas, so are (aVg), (aAB), (a — B), and (a = ).

(d) If V is a variable and « is a formula, then (VV «) and (3V a) are
formulas.

(e) Every formula is obtained in this manner.

In (VV «) and (3V @), we say that « is the scope of the quantifier and that
all occurrences of V in a are bound (by the quantifier). If a formula contains
a variable that is not bound, we say that the variable has a free occurrence in
the formula.

Bound variables are sometimes called “dummy variables.” For example, ¢
is a dummy (or bound) variable in [ f(t)dt. In this case, the fact that ¢ is
bound is indicated by the dt. The ¢ could be replaced by any other variable
without changing the meaning of the formula. In fact, we could rewrite it as
Jy f(z)dz. This can lead to confusion. For example,

/01 (/oxf(a:)dz> dz and /01 </ozf(t)dt) dz

are exactly the same since in either case we first integrate f as its argument
ranges from 0 to z to obtain a new function of z which is then integrated from
0 to 1. In integral calculus, people normally use different names for different
bound variables to avoid confusion. They also usually use different names for
bound and unbound variables.

The same sort of confusion can arise in predicate calculus. Consider

(AX p(X)) Vg(x)) and (3X((VX p(X)) = (X)) ).

In the first formula, the X in p(X) is bound and the X in ¢(X) is free. In
the second formula, both occurrences of X are bound, but they are bound by
different quantifiers. We can avoid such problems by insisting that every quan-
tifier in a formula refer to a different variable. Specifically, in Definition 3.5(c),
we could insist that any bound variable in a be different from all variables
in # and every bound variable in 8 be different from all variables in a. To
conform with this, we can rewrite our preceding formulas as

(AVR(V) V(X)) and (3V((vVX (X)) = 9(1))).
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Exercises

3.3.A.

3.3.B.

3.3.C.

3.3.D.

3.3.1.

3.3.2.

3.3.3.

What is the symbol for a universal quantifier? an existential? What do they
correspond to in everyday discourse?

What is the definition of formulas in predicate logic?
What are atomic formulas? free variables? bound variables?

Explain how to translate a statement such as “for all z such that z >0 ...”
into predicate logic. Do the same with “for some z such that £ >0 ...”

(Answer follows) For each of the following, indicate whether or not it is a
formula in predicate logic and, if not, why not. Do not be concerned about
parentheses.

(a) X Vp(X)

(b) p(X) Vv p(X)
(c) 3Xq(Y)

(d) VX(3X p(X))
(e) p(¢(X),Y)
(f) VX (3p p(X))
(8) (X VY)

(Answer follows) For each of the following formulas, identify the bound
variables and rewrite the formulas so that the bound variables have unique
names. Do not change the names of any free variables.

(&) ¥X (@Y ((X) = ¢())) = (X, 1))
(b) ¢(X,Y) — (BX p(X)) V3X 7(X))

(©) VX ((vX p(X)) = (X))

How would you translate “there is no X such that ...” into predicate logic?
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Answers

3.3.1. It may be unclear why (c) and (d) are formulas, so let’s explain that, too.

3.3.2.

(a) This is not a formula since X V p(X) can be a formula only if both X
and p(X) are formulas; however, X is a term, not a formula.

(b) This is a formula.

(c) This is a formula; there’s no requirement that the variable being bound
actually appear in the formula.

(d) This is a formula, but is somewhat confusing because of the repeated
name for bound variables. The inner 3X bounds the X, leaving no vari-

ables for the outer VX to bind. In a formula like VX ((EIX (X)) Vq(X)) ,
the X in p(X) is bound by the 3X while the X in ¢(X) is bound by
VX. Thus, the formula is equivalent to VY ((BX (X)) Vv q(Y)).

(e) This is not a formula; the arguments of a predicate must be terms and
¢(X) is not a term.

(f) This is not a formula; we don’t have quantifiers for predicates. (That
would be second-order predicate calculus.)

(g) This is not a formula; the arguments of predicates must be terms and
X VY is not a term.

The bound variables are underlined. Subscripts are used to provide unique
names.

(2) vX ((BX((X) = (1)) = (X, ¥)) becomes

v, (3% (p(X1) = a(%)) = r(X1,Y))

(b) ¢(X,Y) = (X p(X)) VIX r(X)) becomes
9(X,Y) = (@X1p(X1)) v 3 X27(X2))

(¢) V_)_(_((le(i)) — p(l)) becomes VX ((VXz p(X2)) — p(X1 ))
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Semantics

He who would distinguish the true from the false
must have an adequate idea of what is true and false.

—Benedict Spinoza (1677)

The syntactic definitions tell us how to construct everything in the language
of first-order predicate calculus. As in propositional logic, the syntax tells us
nothing about what our formulas “mean.” To associate meaning with predi-
cate logic formulas, we must know how to interpret them. Unfortunately, this
is more complicated than the simple true/false of propositional logic. The ap-
proach logicians use to define semantics involves the discussion of models.
We’ll take a more informal approach now; but we’ll have to be more careful
in the next chapter.

Definition 3.6 Informal Semantics for Predicate Logic

Our semantics will specify when a formula is true in a recursive manner
that parallels the syntactic definition of the formula. The range of a func-
tion is the set of constants. The domains of functions and predicates are
n-tuples of constants. Our definition depends on knowing the functions
and knowing when predicates are true—an “interpretation.”

(a) If pis a predicate and none of the terms ¢y, ...,t, contains variables,
then p(t1,...,1,) is either true or not according to the interpretation.

(b) and (c) If the truths of & and f are known, then the truth of connec-
tives is determined by (3.3) (p. 97).

(d) Let V be a variable and « a formula. If there is some constant ¢ such
that replacing every free occurrence of V in « with ¢ gives a true
formula, then (3V a) is true. (The restriction to free V' is needed
because a quantifier in & might bind some occurrences of a variable
that is also called V') 3 is called an existential quantifier.

(d") Let V be a variable and « a formula. If, for every constant ¢, replacing
every free occurrence of V in « with ¢ gives a true formula, then
(VV @) is true. V is called a universal quantifier.

A formula is called valid or a tautology if and only if it is true for all
possible interpretations.
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There are a couple of important facts to note about Definition 3.6. First, it
defines the truth and falsity of formulas only when there are no free occur-
rences of variables; so don’t try to apply it to a formula where a variable
occurs freely. Second, as in propositional logic, the definition is often applied
in the reverse direction of the definition of syntax—while syntax builds up,
semantics tears down. For example, consider

(VX p(X)) — (3X p(X)))- (3.14)

To determine the truth of (3.14) we must first determine the truth of
(VX p(X)) and (3X p(X)). There are three relevant possibilities for the truth
of p(). Here they are, along with their consequences.

e p(c) is true for all c. In this case, both (VX p(X)) and (3X p(X)) are
true. Thus (3.14) is true.

e p(c) is false for all ¢. In this case, both (VX p(X)) and (3X p(X)) are
false. Thus (3.14) is true.

e p(c) is true for some ¢ and false for some c. In this case, (VX p(X)) is
false and (3X p(X)) is true. Thus (3.14) is true.

Example 3.7 Positive Integers

For this example, let our constants be the positive integers {1,2,3,...,}. Our
functions are addition and multiplication, which we’ll write in infix notation.
We’ll also omit some pairs of parentheses. The following show how additional
concepts can be defined in terms of the predicate “equal”:

VX (odd(X) = (3Y equal(2 x Y, X + 1)))
VX (0dd(X) = (-3Y equal(2 x Y, x))) (3.15)
vZ (prime(2) = (-(3X 3¥ equal(X +1) x (¥ + 1), Z)))) .

These can be regarded as definitions of the concepts on the left-hand side
of the =. For example, the first line says that X is odd if and only if there
is an integer whose double equals X + 1. These formulas are true in one
interpretation—the positive integers in which all the functions and predicates
have their usual meanings. But they are not tautologies because there are
interpretations in which they are not true. For example, if we make no changes
in the interpretation except to interchange the meanings of the functions X
and +, the formulas will not be true in this interpretation. W
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The concluding sentences of Example 3.7 appear to suggest an insur-
mountable problem: If we look just for valid formulas (i.e., every interpreta-
tion is true), we’re unlikely to make much progress. Actually, the reverse is
true! Because every interpretation must make a formula true before we call it
valid, it turns out we need not be concerned with the real world meaning of
interpretations when carrying out computer manipulations. This is fortunate
because computers are not aware of the real world either.

The real world must enter somehow. It enters through our knowledge base.
Suppose that ay,as,... are statements in our knowledge base that express
what we know to be true for our intended interpretation of the predicates,
functions and constants. Suppose that

(a1 AazAN...)— B (3.16)

is a tautology. In particular, it is true with the real world interpretation we
have in mind, so # tells us something about the real world. On the other hand,
since (3.16) is a tautology, it is possible to establish it without appealing to
its meaning—a perfect job for a computer program. This is just the sort of
thing Prolog does.

Let’s look at another example of how things are expressed in predicate
logic terms. This one deals with the definition of a limit, which is notorious
for causing problems for calculus students. These problems often arise because
it’s not easy to understand

e what the quantifiers imply,
e what order they appear in, and
e what manipulations are allowed when formulas contain quantifiers.

The next example addresses the first two issues.

Example 3.8 The Definition of Limit
We say that lim;_, f(z) = L if

for all € > 0, there is a § > 0 such that

|f(z) — L| < € whenever |z — a| < § and = # a. (3.17)

We want to translate (3.17) into predicate calculus notation. Our constants
will be the real numbers R. Again, we’ll write functions such as absolute
value in the usual form. Note that a statement like € > 0 involves a predicate.
We could write it as greater(e,0), but we’ll stick with the more standard
mathematical notation.

As written, the definition contains an implicit quantifier. “For all” and
“there is” are clearly quantifiers for ¢ and 6, respectively. After “such that”
the variable = begins to appear, but no quantifier is mentioned. How is it
quantified? A more accurate definition would have said “such that for all z”
instead of merely “such that.”
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There are two main problems in carrying out this formalization of the
definition in FOL: (i) What does “whenever” mean and (ii) how do we include
the condition € > 0 when we introduce a quantifier for ¢?

First, “a whenever ” means “if § then a.” This changes (3.17) to

for all ¢ > 0 there is a § > 0 such that for all =

((te=al <O A #0) = (1@ - LI < 9).

What does “for all € > 0 4” mean, where v is a predicate logic formula? If
you think about it a bit, you should be able to convince yourself that it means
Ve((e > 0)) — 7). What about the phrase “there exists § > 0 such that y”?
Again, if you think about it, you should realize that it means 35((6 > 0)Ay).
Notice the important difference in translation of universal (for all) versus
existential (there is) quantifiers with conditions. The discussion shows that

(3.18)

“for all X with P(X) we have >  means VX (P(X) — ¥) (3.19)
“there is X with P(X) such that ¥” means 3X(P(X) A %) '

If this is unclear, try to think of additional examples. Incorporating this into
(3.18) leads to the FOL translation of the definition. Here it is, with braces
used in place of some parentheses to improve readability,

Ve{(e > 0) — (36(6 > 0) A ¢)}
where ¢ stands for (3.20)
Ve({(lz - ol <6) Az # @)} — (If(2) -~ LI < ¢)). m

As we’ve seen, the process of translation can be tricky. In particular, any-
one setting up a rule-based expert system must be careful when doing trans-
lations. On the one hand, this example is more convoluted than we usually
encounter in practice. On the other hand, the imprecision of everyday English
leads to other problems. The next example and some of the exercises provide
practice in translating from English to predicate logic.

Example 3.9 A Lewis Carroll Example

The Oxford geometer Charles Dodgson is famous for writing Alice in Won-
derland and Through the Looking Glass under the pen name Lewis Carroll.
Two years before his death, he published a symbolic logic text containing de-
lightful problems. We’ll look at one of his problems in this example and at
some others in the exercises.
“(1) Coloured flowers are always scented,;
(2) I dislike flowers that are not grown in the open air;

(3) No flowers grown in the open air are colourless.” [3, p. 115]

How can we recast these in terms of predicate logic?
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Our constants will be flowers and our predicates will be as follows:

¢(X): indicates X is coloured,

d(X): indicates I dislike X,

g(X): indicates X is grown in the open air,
s(X): indicates X is scented.

You should be able to verify that the following are translations of the state-
ments:

1. VX (e(X) - 5(X))
2. VX ((~g(X)) = d(X))

3. - (le (g(X) A (=e(X))))

Other translations are possible, but I believe these are the most direct and
also reflect the meaning of the English.

Later we’ll learn a proof method for predicate logic that let’s us draw
conclusions from these formulas. In this case, one possible conclusion is

VX ((=s(X)) — d(X)); (3.21)
that is, I dislike all flowers that are not scented.

This example illustrates some of the problems of translating natural lan-
guage to predicate calculus.

1. Although the first two statements did not contain overt implications, both
were translated that way. A statement of the form, “X [that are] p are q”
usually translates as VX (p(X) — ¢(X)).

2. In a statement like the second, “that are” is the same as “whenever,” so
we have a statement of the form “p(X) whenever ¢(X).” This translates
as VX (¢(X) — p(X)).

3. In the third statement, the predicate “colourless” appears. This is simply
the negation of the predicate “coloured.” In fact, English employs various
devices to negate predicates; for example, “hknown” negates to “unknown”
and “like” roughly negates to “dislike.” When a predicate and its negation
appear as words, one should be replaced by the negative of the other.
Sometimes negation is more subtle as in “dead” and “alive.” What about
“long” and “short”? m

The next theorem is useful for moving quantifiers past the connectives -,
V, and A. In our discussion of propositional logic, we saw that these connec-
tives are more than sufficient.
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Theorem 3.4 Quantifiers

Let o be a formula in which any occurrences of X and Y are free and let
P be a formula with no free X. Let * be either V or A. Then the following
formulas are tautologies:

(VX(VY @) = (VY (VX @) and (3X(3Y a)) = 3Y(IX «)), (3.22)
(-(VX @)) = (3X -a) and (=(3X @) = (VX -a), (3.23)
(VX a)*xB) = (VX(a*p)) and ((3X a)*p) = (3X(a*p)). (3.24)

Proof: Abuse notation and write «(X) to indicate the free occurrences of X
in a. Use <= to stand for the phrase “if and only if.” Let’s prove (3.23) here
and leave the rest as an exercise. By the definition of the semantics,

S(VX a(X)) is true <= (VX (X)) is false
<=> there is some constant c such that a(c) is false

<= (IX —~a(X)) is true
The right side of (3.23) follows similarly. ®

We’ll use the following corollary to convert Prolog rules to Horn clauses.

Corollary 3.4.1

Let Y1,...,Y} be variables that do not appear in # and let X,...,X; be
distinct from the Y;’s. The following three formulas are either all true or
all false:

VX ... VX; ((ayl (@ A Aan)) - g)
VXL VXYY WY (e A Aan) = ) (3.25)

VXL VXYY WY (BV (men) VeV (nam)).

Proof: Start with the first formula and convert the implication (y — ) to
(BV (—y)). Next, move the negation - through the existential quantifiers 3Y;
using (3.23), then use (3.24) to move the resulting universal quantifiers VY;
outside. Now, either convert the “v” back to an implication to obtain the
second formula or use de Morgan’s law to move — through the A’s to obtain
the third. m
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Figure 3.2 A truth table for the formulas in (3.26). The argument “(a)” has been
omitted from the predicates to save space. The rows in which all three formulas are
true are indicated by an asterisk.

Example 3.10 The Lewis Carroll Example Revisited

Let’s take the third statement in Example 3.9 and move the negation through
the existential quantifier using (3.23). We then have three universally quanti-
fied statements, namely

VX(c(X)—»s(X)), VY((—g(Y))—»d(Y)), and VZ((—-g(Z))Vc(Z)),

where some variable names have been changed to emphasize that there is no
relationship between them.

Each of these formulas corresponds to an infinite set of formulas which are
obtained by replacing the variable by all choices of constants. For example,
we have

(ct@) = 5(@)), ((-9(@) —~d(@), and ((-g(@)Ve(@).  (3.26)

Since ¢(a), s(a) and so on are either true or false, we can treat them just like
we treated propositional letters in the propositional calculus. In particular,
we could construct a truth table, as shown in Figure 3.2.

Those rows in the table for which all three formulas in (3.26) are true are
marked with an asterisk. Since ((=s(a)) — d(a)) is true for all these rows, it
follows from (3.26). Since a is just an arbitrary constant, we’ve shown that
(3.21) is true. ®

Example 3.10 shows that deriving results from universally quantified
statements can sometimes be done purely in propositional logic. It’s tempt-
ing to try to extend this idea; however, it doesn’t cover enough of predicate
logic for the needs of Al. In the next section, we’ll examine how Prolog rea-
sons. In Chapter 4 we’ll put this reasoning, called resolution and unification,
on a solid theoretical foundation.
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Aside. Here we’ve allowed variables to replace only constants, but we might want
variable predicates as well. For example, we might claim that the relationship be-
tween Al and Jo is the same as the relationship between Ken and Barbie. That
means, we have some predicate P such that both P(Al, Jo) and P(Ken, Jo) are true.
In other words,

3Ip (P(Al, Jo) A P(Ken, Jo))

is true. We can’t say this in first-order predicate logic because variable predicates are
not allowed. Second-order predicate logic allows variable predicates. Thus second-
order logic is more powerful than first-order. Unfortunately we pay a high price—
there is no algorithmic procedure comparable to resolution.

Exercises

3.3.4. Write formulas as in Example 3.7 to define each of the following concepts:

3.3.5.

3.3.6.

3.3.7.

3.3.8.

3.3.9.

(a) One number is greater than another.
(b) One number divides another.
(c) A number has all of its prime factors distinct.
(d) A number is a power of 2.
*(e) A number is a power of 6.

What role does “only” play? Consider the statement “Only Al students do
this problem.”

(a) Using predicates AI_student and do_this_problem, write a Prolog
rule corresponding to the English one.
(b) Write an FOL formula for the statement.

(c¢) Describe the general method for translating statements containing “only.”

Complete the proof of Theorem 3.4.

A popular TV ad says “Nobody doesn’t like Sara Lee®.” With p(X) meaning
“X likes Sara Lee,” translate the statement to FOL and rearrange to obtain
a simpler statement.

A Texas bumper sticker reads “If you ain’t a cowboy, you ain’t ****” (ex-
pletive deleted). Introduce predicates, write in FOL and simplify. Let the
universe of constants be bumper sticker readers.

In contrast to (3.22), give an example that shows (HX(VY a)) is not

equivalent to (VY(EIX a)); however, prove that the former implies the lat-
ter.
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3.3.10. Let o and B be formulas in which X is the only free variable. Precisely two
of the following are true for all such o and f; that is, they are tautologies.

((VX(a vB)) = (VX a) Vv (VX ,3)))
( (VX(aAB)) = (VX a) A (VX ﬂ)))
(Ex(av) = (@X ) v @EX 5))
((3X(a AB) = ((3X o) A(3X ,6)))

(a) Identify those that are not tautologies and give an example to show that
they are not.

(b) Identify the tautologies and prove that they are, in fact, tautologies.

3.3.11. Negating quantifiers with qualifications, as in the definition of a derivative,
is nontrivial. Nevertheless, it’s an essential tool for constructing proofs by
contradiction and is a frequent source of student errors in such proofs. We’ll
look at it a bit. For this exercise, let V[X:a] mean “for all X with o” and
let 3[X: a] mean “for some X with @,” as in (3.19).

(a) Prove the following:

(—‘V[X: a] ﬂ) = (3[)(: a] (—-ﬂ))
(—»EI[X: o] ﬂ) = (V[X: a] (—-ﬂ)) .

In order to translate [X: a] into predicate logic, use (3.19). You may also
find some previous theorems useful.

(b) Do these agree with your usual understanding of the expressions written
out in words? Explain.

(c) Using the above and the predicate logic definition of a limit, write
out a predicate logic definition of its negation, that is, a definition of

limx-—ya f(x) # L.

(d) Convert the previous result to ordinary calculus prose. Does this agree
with what you think it should say? If not, you should (i) correct your
solution to the previous part, (ii) correct your translation to prose, or
(iii) reexamine and correct your thoughts about what it should say.
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3.3.12. Here are some definitions. Translate them into predicate logic notation as we
did for the definition of a limit.

(a) We have two types of objects, real numbers and vectors. Use the predi-
cate R(b) to determine if b is a real number. We say that the vectors @,
#, and @ are independent if, whenever a# + b¥ + c# = 0, it follows that
a=b=c=0.

(b) Using the previous exercise, convert the definition in part (a) into a
definition for @, ¥, and @ being dependent, that is, not independent.

(c) We say that the points in S form a circle centered at the origin if and
only if there is some radius » > 0 such that 22 + 92 = 72 for just those

points (z,y) € S.
Hint. You can represent any set by a predicate. Since (z,y) € S is either
true or false, we can think of it as a predicate, say S(z,y).

Each of the following exercises contains a list of statements taken from Carroll’s text
on symbolic logic. Write down predicate logic equivalents for them as in Example 3.9
and then deduce the indicated conclusion as done in Example 3.10. Remember to
specify the set of constants. Indicate what your predicates stand for.

3.3.13. Translate the following statements into predicate logic:
“(1) Babies are illogical;
(2) Nobody is despised who can manage a crocodile;
(3) Illogical persons are despised.” [3, p.112]
Show that they imply “Babies cannot manage crocodiles.”

3.3.14. Translate the following statements into predicate logic:

“(1) All my sons are slim;

(2) Nobody is healthy who takes no exercise;

(3) Gluttons are always fat;

(4) No daughter of mine takes any exercise.” (3, p.116]

Let the universe of constants be my children. Using the facts that (a) chil-
dren are either sons or daughters and (b) a person is either slim or fat, show
that the statements imply “All gluttons, who are children of mine, are un-
healthy.”

3.3.15. Translate the following statements into predicate logic:
“(1) No kitten, that loves fish, is unteachable;
(2) No kitten without a tail will play with a gorilla;
(3) Kittens with whiskers always love fish;
(4) No teachable kitten has green eyes;
(5) No kittens have tails unless they have whiskers.” [3, p.118]
Show that they imply “No kitten with green eyes will play with a gorilla.”
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3.4 An Algorithm for Prolog

In this section we’ll describe the Prolog algorithm intuitively as well as in
terms that are amenable to the proof techniques of predicate logic. The intu-
itive approach is straightforward—as long as we ignore the details.

We’ll start by looking at the Prolog algorithm intuitively. Then we’ll trans-
late Prolog to FOL. Finally, we’ll explore the Prolog algorithm as an example
of Horn clause resolution. Some of the details and all of the proofs will be
postponed until the next chapter.

The Prolog Algorithm

In brief, Prolog uses depth-first search, Algorithm 2.3 (p.53). To describe the
search tree, we need some terminology.

Definition 3.7 Head and Body of a Prolog Clause

Prolog statements are also called clauses, and we’ll use that term here.
The part of a Prolog clause to the left of :- is called the head of the
clause and the part to the right is called the body of the clause. We follow
the convention that a fact consists of a head with no body and a query
consists of a body with no head.

Prolog treats the body of each clause as a list, with the entries in the order
they appear in the clause. For the purposes of depth-first search, Prolog treats
the knowledge base as a list of clauses and goes through the list in order when
making a depth-first search decision.

Prolog’s decision tree (also called a search tree) for depth-first search is
constructed as follows. At each vertex there is a list, the list at the root being
the query. Essentially, the list at a vertex is what needs to be “proved” to
establish the query. Thus, if Prolog ever obtains an empty list, a positive
answer to the query has been found.

Suppose Prolog is working in propositional logic and we are at some vertex
v that has the list p,q,... . If there is a clause in the knowledge base with
head p and body r,s,... , then Prolog can select that clause. Thus, there
is a vertex in the decision tree where the possible decisions correspond to
all knowledge-base clauses with head p. According to the specification of the
Prolog language, the order of these decisions is the same as the order of the
corresponding clauses in the knowledge base. Suppose Prolog selects the clause
P :- r,s,....This decision leads to a vertex whose list isr,s,... ,q,...,In
other words, the body of the knowledge base clause followed by the remainder
of the list at v.
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Query: (q) Query: (q)
AR
2: (t) 3: (f,r) 2: '(t) 3: (;I>,r)
6: (s) 1: (x) 6: (8) 1: (x)
«0) 5l ) 50
solution 1 (1) I: () solution
4: () 5: (p) 4': (p) 5': ()
solution . . solution

Figure 3.3 Prolog search trees for the query :- q. See Example 3.11 for the
knowledge base. Each vertex is labeled with the knowledge-base statement that led
to it and the list of what remains to be proved. The parts of the trees indicated by
vertical ellipses go on forever alternating between p and r, with an empty clause after
each r. The right-hand search tree arises when statements 4 and 5 are interchanged
in the knowledge base.

Example 3.11 A Prolog Algorithm Search Tree for Propositions

Let’s use lowercase roman letters to indicate propositional letters in this ex-
ample. Suppose that our Prolog knowledge base is as follows, where the trans-
lation to propositional logic on the right is based on (3.1) (p.89) and (3.2)

(p.93):

p:i-r. %“1 r—p

q :-t. %“2 t—gq

q :- p,r %3 (pAr)—yq
r. %4 r

r :- p. %“5 p—r

t :- s. %“6 s—t

Let our query be :~ q. It asks Prolog if q is true given the knowledge base.
The associated decision tree, which is infinite, is shown (in part) in Figure 3.3.

Of course, Prolog doesn’t actually construct this tree beforehand. It con-
structs (and destroys) the search tree as it attempts to establish :- q by
reaching the empty list. Since Prolog uses depth-first search, it will succeed
by reaching the leftmost empty list in the left-hand tree of Figure 3.3. Let’s
be more explicit. We’ll refer to the vertices by their numeric labels.

e Prolog starts at the query and goes down to 2.

e From 2 it goes down to 6.

e At 6, no decisions are possible, so it returns to 2.

At 2, no further decisions are possible, so it returns to the query.
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e At the query, it finds a second choice and goes to 3, then to 1, and finally
to 4.

In constrast to what we’ve just looked at, if statements 4 and 5 were
reversed in the knowledge base, we’d obtain the tree on the right-hand side of
Figure 3.3. In this case, Prolog would run until it ran out of time or storage,
never finding a solution. W

We’ve just seen that depth-first search can lead to disaster in Prolog. But
in the previous chapter, we saw that both breadth-first and iterative-deepening
search—Algorithms 2.1 and 2.4—-never fail. Why doesn’t Prolog use them?

In the first place, breadth-first search requires considerable storage. Al-
though there are other objections, this may be sufficient to dismiss it from
consideration. The reasons for not using iterative deepening are more subtle.
Three interrelated major problems are side effects, clarity, and speed.

e Side Effects: Prolog is more than logic—it includes procedural code. For
example, it interacts with the user through the terminal and it can al-
ter the content of the knowledge base. To use procedural code correctly,
the programmer must understand when Prolog accesses knowledge-base
statements. This brings us to the next problem.

o Clarity: It is easier to visualize the process of depth-first search than
that of iterative-deepening search, primarily because iterative deepening
traverses the same statements many times. Even so, many programmers
initially have difficulty with Prolog because they do not understand the
somewhat subtle ways in which recursion interacts with depth-first search.

e Speed: Suppose the other objections are swept away. It is frequently possi-
ble to order the statements in a Prolog knowledge base so that depth-first
search will usually be much faster than iterative deepening: Less likely
and/or more costly branches are placed further to the right in the list of
decisions at a vertex. Recall that Theorem 2.3 says iterative-deepening
search is fast. Don’t these comments contradict that? No. Look at Theo-
rem 2.3 (p.58) and try to see why before continuing.

* * * Stop and think about this! * * *

In Theorem 2.3, iterative-deepening search is compared with breadth-first
search; not with depth-first search. Depth-first search can be much faster
if the clauses with a given head are listed in an order that begins with
those most likely to lead to a quick solution.

All these objections notwithstanding, there are times when iterative-deepening
search may be preferable, particularly when procedural code is absent. If you
are a Prolog programmer, you might implement iterative-deepening search
within Prolog. This can be done with varying degrees of sophistication.
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Let’s look at how Prolog handles predicates. Suppose the first entry in
the list at some vertex involves the predicate p. The possible decisions at this
vertex in the decision tree are those knowledge-base clauses with head p whose
arguments can be made to agree with the arguments of p at the vertex. For
example, if we have p(X,a,Y) at the vertex v and p(b,U,V) in the knowlege
base, we obtain agreement by setting X equal to b, setting U equal to a, and
identifying the variables Y and U. Setting variables to constants and variables
in this manner is called unifying the arguments of the predicates. This decision
to use a particular knowledge-base clause C' at the vertex v leads to a child
vertex whose list is the body of C followed by the list at the parent vertex
v with the first predicate removed. In this new list, all these unifications are
made. Of course, when Prolog moves back toward the root by rejecting a
decision, it must forget the unifications the decision caused. Except for these
added complications, the search is the same as for propositional logic.

Example 3.12 The Prolog Algorithm with Predicates

In the following knowledge base, sib, sis, and p stand for the predicates
sibling, sister, and person, respectively. The formula sis(X,Y) is true when Y
is a sister of X. The formula p(X,S,M,F) is true when X is a person whose sex
is S, whose mother is M, and whose father is F.

sib(X,Y) :- p(X,SX,M,FX),p(Y,SY,M,FY). %1
sib(X,Y) :- p(X,SX,MX,F),p(Y,SY,MY,F). %2
sis(X,Y) :- sib(X,Y), p(Y,f,M,F). %3
p(ai,m,b1,b2). p(a2,m,b1,b3). p(a3,f,b4,b2). % 4, 5, 6

The definition of sibling is not quite correct since it does not include the check
X\=Y. We’ll omit this check to simplify things a bit.

Consider the query :- sis(a1,X). It asks Prolog to find a constant such
that setting X equal to the constant makes X a sister of a1. Prolog begins with
the third rule, unifying the X of the rule with a1 and the Y of the rule with the
X of the query. This is shown at the top of Figure 3.4. Using the information in
the figure caption, you should be able to see why the rest of the Prolog search
tree is as shown. Remember that Prolog always replaces the first predicate in
a list by using a clause from the knowledge base whose head can be unified
with that predicate.

* * * Stop and think about this! * * *

Because the clauses in the knowledge base are in a poor order for this query,
Prolog must traverse the entire search tree to find a solution. W
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(sis(a1,X))
d
(sib(a1,X), p(X,f,M,F))

rd S

p(al,SX,M1,FX), p(a1,SX,MX,F1),
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stuck stuck stuck 6
()

Figure 3.4 The entire Prolog search tree for the query : - sis(a1,X). The know-
ledge-base clause numbers appear on edges because of limited space. Whenever a
knowledge-base clause is resolved with a clause that leads to a conflict of variable
names, a subscript is added to the name of the knowledge-base clause variable.
When variables are unified, the knowledge-base clause variable names are replaced
with the new ones in the unification. When the X of the query is unified with a
constant, that is indicated in the tree. “Stuck” indicates that this branch of the
search tree terminates because there is no knowledge-base clause that can be unified
with the predicate.

Exercises

3.4.A. What is a Prolog clause? What are its head and body? Which of the following
lack a head (or body): fact, rule, query?

3.4.B. Why does Prolog use depth-first search rather than breadth-first search or
iterative-deepening search?

3.4.1. (Answer follows) Return to the left-hand tree of Figure 3.3. Give a descrip-
tion in ordinary English, free of Prolog and propositional logic terminology,
of what Prolog is trying to do at each step and what happens. For example,
you might start with “Prolog wants to see if q is true. It knows that if t is
true, then q is true, so it decides to try to prove t.”
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3.4.2. Suppose that sis(X,Y) is changed to mean that X is a sister of Y in Exam-
ple 3.12.

(a) Rewrite Statement 3 so that it is correct.

(b) Draw the search tree for the query :- sis(X,a1). For your own in-
formation, compare it to the left-hand tree in Figure 3.4.

3.4.3. Consider the query :- q. for the following knowledge base:

p:-t. %1
q - P,T. % 2
q :-t. % 3
t :-r. % 4
t. %5

(a) Draw the search tree for this query and knowledge base.

(b) Indicate explicitly how Prolog traverses the tree.

Answers

3.4.1. There are many ways to do this; here’s one.

o Prolog wants to see if q is true. It knows that if t is true, then q is true,
so it decides to try to prove t.

o It knows that if s is true, then t is true, so it decides to try to prove s.

o Since it has no way to prove s, it looks for another way to prove t, but
finds none.

e As a result, Prolog is back to looking for another way to verify the
original query q.

o It knows that if p and r are true, then q is true so it turns its attention
to them.

o It knows that if r is true, then p is true, so it only needs to verify r.

o Prolog knows that r is true—it’s a fact in its knowledge base.
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*Prolog Lists and Recursion

We’ve mentioned recursion in connection with Prolog. The next example is
a classic Prolog example of recursion. To understand it, you need to know
something about how Prolog represents lists. A list is enclosed in brackets
and the entries in the list are separated by commas as in [a,b,c,d] and
[], where the first list has four items and the latter is the empty list. A
particularly useful notation allows us to separate off the first element in a list:
In the syntax [X|Y], X is the first entry in the list and Y is the remainder of the
list—which could be the empty list. For example, [a,b,c,d] can be unified
with [X|Y] by setting X equal to a and Y equal to the list [b,c,d]. In other
words, [al [b,c,d]] and [a,b,c,d] are the same list in Prolog. In still other
words, [X1Y] is a list whose first element is X and whose remaining elements
are the elements in the list Y. We cannot unify [] with [X|Y] because X must
be the first element of the list and there is none.

Example 3.13 A Recursive Prolog Example: append

We want to write Prolog code for a predicate append(L,M,LM) so that the
list LM will consist of the elements of the list L followed by those of the list M.
Here’s a solution.

append([],L,L). %1
append([X|L],M,[X|LM]) :- append(L,M,LM). % 2

The first line of code obviously describes what to do when the first list is empty.
But what does the second line do? It simply asserts—makes a declarative
statement—that, if the variable LM is the result of appending M to L, then
[XILM] is the result of appending M to [XIL]. Phrased that way, it’s obviously
the correct thing to say.

This explanation of the second line of code usually engenders howls of
outrage (at least subvocally) from procedural programmers. After all, there’s
no code to do anything! That’s the beauty of Prolog. If we can say in Prolog’s
logic what it takes for something to be correct, Prolog will usually be able to
do the rest. The above code does just that:

e The first line states the fact that the result of appending a list L to an
empty list is just L.

o When the first list is not empty, the second statement tells how to decide
if append is correct by looking at a portion of the first list.

You can think of what we have as a recursive definition.

It may be helpful to follow a simple example. It is important to remember
that the variables in the Prolog statement are bound—that is, for procedu-
ral programmers, regarded as local. To keep repeated usage straight, let’s
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employ subscripts. Consider the query :- append([1,2],[a,b],X). State-
ment 1 cannot be unified with the query because [1,2] is not an empty list.
Thus Prolog tries the second statement, obtaining

append([1|[2]], [a, b), [1|LMy]) : —append([2], [a,b], LMy).
In order to satisfy the right side, Prolog must use Statement 2 again:

append([2|[]]) [a) b], [2|LH2]) : _append([]) [aa b]vLM'-’)'

(Note that the third argument on the left is also called LM;, so that LM; equals
[21LM2].) Now the first statement applies to the right side, giving [a,b] for
LM,. Going backward in the sequence of equalities, LM; is [2] [a,b]], which
is [2,a,b], and [1|LM,;] is thus [1,2,a,b].

It’s tempting to think of the code as the core of a recursive algorithm,
but this can be misleading. We tend to think of an algorithm as running in
one direction. For example, you might set the query

: —append([1,2],[a,b],X). and get the answer X =[1,2,a,b]
as we did above. However, you’re less likely to consider
: —append(X, Y, [a, b, c,d]).

Nevertheless, this is a perfectly acceptable query. Using the first knowledge-
base clause, Prolog finds the solution

X=[], Y=[a,b,c,d].

If asked to find another solution, Prolog will try the second statement, in
which X is a and LM is [b,c,d]. This leads Prolog to seek a solution to
append(L,M, [b,c,d]), which can be found by the first clause. This leads
to the solution

X =[a], Y=[b,c,d)].

Again, Prolog can be asked to find another solution and will do so. Altogether,
it will find all five possible solutions. Details are left as an exercise. W

The Prolog list structure has no direct analog in FOL; however, we can
implement lists in FOL by using a function. Here’s a way to do it. Let the
constant e be the empty list and let I(X,Y) be the function that produces a
list whose first entry is X and whose remaining entries are the elements of
Y. Some accommodation must be made for the situation in which y is not a
list; for example, the value of [ could be a special constant indicating that the
arguments are bad. We may also want functions that extract the first element
and remainder of a list.
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Exercises
3.4.C. Explain Prolog’s list notation.
3.4.4. Draw the entire search tree for the query :- append(X,Y,[a,b,c,d]).
3.4.5. Suppose you want to reverse the order of elements in a Prolog list. Explain
why this is described declaratively by
reverse([],[]).
reverse([X|L],Y) :- reverse(L,M), append(M,[X],Y).
3.4.6. Using the idea sketched after Example 3.13, express the definition of append
in FOL.
3.4.7. An ordered tree is defined in Definition 2.3 (p.38). The definition can be

modified to define unlabeled ordered trees, such as those shown in (a) below.
Instead, we’ll take a Prolog approach. An unlabeled ordered tree is either
the empty list (a single vertex) or a list containing one or more unlabeled
ordered trees.

(a) How are the following trees represented as Prolog lists?

AN

(b) We call an ordered tree binary if each nonleaf vertex has exactly two
children. On page 253 of Foundations of Applied Combinatorics by Ben-
der and Williamson, a function f that establishes a 1:1 correspondence
between n-vertex ordered trees an n-leaf binary ordered trees was given.
It was defined recursively to map from all ordered trees to the binary or-
dered trees. With the trees in Prolog notation, the function is given by

£ =[] and STy, Tel) = [£(T), £y Te])]- Xk = 1, the

rightmost f is f([]). Write Prolog code for a predicate £ (Any,Binary)
where Any is an arbitrary unlabeled ordered tree and Binary is the
corresponding binary one.

(c) What tree is produced when the previous algorithm is applied to the
leftmost tree in (a)? Show your work. Give the answer as a picture and
as a Prolog list.
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Translating Prolog to Logic

Here we’ll examine a translation mechanism T for converting Prolog to pred-
icate logic.

Prolog has three types of statements—facts, rules, and queries. The facts
¢; and the rules p; constitute the knowledge base K with which we are working:

knowledge base K = {¢1,...,¢7,p1,...,pr}.

All statements in the knowledge base are true, that is, the “and” of these
statements is true. Thus we have

T(K) = T(¢1) A -~ AT(6s) AT(p1) A - AT(py).

Since a fact consists of a predicate with constant arguments, T(¢;) is
simply ¢; read as a formula in predicate logic.

Rules are a bit more complex. A typical Prolog rule has the form
p(X,Y) :- q(X,2), r(Z,c,Y).

The prose version of this Prolog, namely “If q(X,2) and r(Z,c,Y) for some
Z, then p(X,Y),” is ambiguous because X and Y have not been quantified. The
Prolog statement is supposed to hold for all X and Z. We can be precise by
translating to predicate logic:

T(p(X, 1) - a(X,2), £(Z,c,))
=vx v ((32(a(X, 2) Ar(Z,c,Y))) - p(X,Y)).
By Corollary 3.4.1 (p.115), we can rewrite this translation as

T(p(,¥) :- q(X,2), 2(z,c,1))
=VXVYVZ (p(X, Y)V (~g(X, 2)) V (~(Z,c, Y))).

This entire process can be extended to any Prolog rule: Let X,..., X} be the
variables in the rule p. Let C be the “atomic formula” (Definition 3.5) on the
left of :- and let Hi,..., H, be those to its right. Then

T(p) = V¥X1...VXx(CV (=H1) V-V (-Hy)).

This translation is an example of a Horn clause.
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Definition 3.8 Horn Clause

A Horn clause is a formula of the form VX; ... VXp(a1 V -+ V ag) con-
taining no free variables and such that each «; is an atomic formula or
the negation of one. Furthermore, at most one of the atomic formulas is
not negated. The notation {ai,...,ax} is used for a Horn clause.

Warning: Do not confuse the comma in a Horn clause—where it
means “or” —with a comma separating Prolog predicates—where it means
(‘a'nd.”

According to the translation rules, we have the following:

e A Prolog fact translates to a Horn clause with one atomic formula, and
it is not negated.

e A Prolog rule translates to a Horn clause with all but one of the atomic
formulas negated.

e A Prolog query translates to a Horn clause in which all atomic formulas
are negated, since a query is written like a rule with no head.

The translation of a query looks strange. Since we want to know if it can
be satisfied, why in the world would we translate it into a Horn clause with
negated atomic formulas? For example, if the query is :- p(X), it means,
“Does there exist an X such that p(X) is true?” In other words, the query
means “Is the statement T(K) — (3X p(X)) true?” With a little work, you
should be able to show that

(o = @X p(x)) = ((me) v @X (X)) = ~(a A (VX (-0(X))))
Thus, proving that T(K) — (3X p(X)) is true is equivalent to proving that
T(K) A (VX(ﬁp(X))) (3.27)

is false. In other words, we can verify that the query can be satisfied by proving
that (3.27) is false. Thus the translation scheme converts the Prolog problem
into a collection of Horn clauses that must be proved contradictory.

Is showing that something is false better than using the decision tree de-
scription of Prolog? Actually, you’ll see in the next chapter that both methods
carry out the same manipulations! In that case, why use contradiction? The
reason for using the contradiction approach is that it’s sometimes easier to
prove theorems about contradictions. As a result, logicians often think about
Prolog inference as a process of obtaining contradictions in the way we’ve just
described. Does this mean you should think about Prolog’s algorithm as a
proof by contradiction? Sometimes. From a practical viewpoint, it’s simpler
to think of Prolog as trying to find solutions to the query. However, when the-
oretical insight is needed to study the power and limitations of Prolog, the
“solution by inconsistency” viewpoint is often better.
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{-sis(a1,X)}
|
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{1}

Figure 3.5 The Prolog search tree of Figure 3.4 (p.124) written in Horn clause
resolution form.

Our translation of Prolog, including the query, consists of universally
quantified Horn clauses joined by “and.” In predicate logic terms, the Pro-
log search process involves resolving Horn clauses. Suppose we have two Horn
clauses with no variable names in common. Let one clause contain p(...) and
the other contain —p(...). Their resolution is another Horn clause that con-
tains all the atomic formulas from both clauses except the p(...) and —p(...)
just mentioned. In addition, the variables and constants have been unified to
make these two predicates agree except for the —. To obtain the Horn clause
resolution search tree for Prolog, simply take the search trees drawn earlier,
negate each predicate, and convert lists to clauses. Figure 3.5 illustrates this
procedure. Horn clause resolution will be taken up more fully in the next
chapter.
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Exercises

3.4.D. What are Horn clauses and how are two Horn clauses resolved?

3.4.E. Explain how a goal clause (query) is translated into logic for the purposes
of resolution and explain why this a priori counterintuitive translation is
correct.

Notes

The discussion of FOL in this chapter is far from complete: It lacks theorems
and proofs (which is remedied in the next chapter), and its definition of FOL is
not the most general. The semantics defined here do not specify interpretations
for variables, so we’re limited to interpreting formulas with no free occurrences
of variables. The most general formulation of FOL avoids these limitations;
however, the limited version is more easily explained and adequate for our
purposes.

In the United States, early experiments with high-level, logic-based lan-
guages “proved” that such languages were hopelessly inefficient. But in the
early 1970s, the foundations of Prolog were developed by Robert Kowalski
and demonstrated by Maarten van Emden, both at the University of Edin-
burgh. Alain Colmerauer’s group at the University of Marseille-Aix developed
a Fortran implementation of Prolog. Then, in the mid-1970s, David Warren
of Edinburgh developed an efficient implementation that made Prolog practi-
cal. In light of their own earlier experience, Americans largely ignored these
European developments. Although Prolog gained considerable popularity in
Europe, Lisp was essentially the only Al language in the United States. When
the Japanese selected Prolog as the language for their Fifth-Generation com-
puter project in 1981, Americans first criticized the choice and then looked at
Prolog more seriously. Most current researchers regard both Prolog and Lisp
as major Al programming languages, each with its strengths and weaknesses.

In addition to the usual manuals, various texts on Prolog are available.
They usually contain examples of interest in AI and some discussion of Pro-
log’s logical foundations. Among these books are the texts by Bratko [2],
Covington et al. [4], Maier and Warren [7], Shoham [14], and Sterling and
Shapiro [19]. Some familiarity with Prolog is advisable (but not necessary)
when reading [19]. Merritt’s text [8] is devoted to expert systems and assumes
familiarity with Prolog.

Lisp is the other major programming language for AI. My neglect of it
should not be regarded as taking sides in the Lisp versus Prolog debate. I’ve in-
troduced Prolog simply because its close connection with predicate logic makes
it easy to illustrate aspects of logic without delving deeply into a language.
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Anyone doing serious symbolic programming in Al should be familiar with
both Lisp and Prolog. Among the introductory Lisp texts, Touretzky’s [21]
may be the gentlest. Winston and Horn’s text [22] discusses applications to
Al but the introduction to Lisp is fast-paced. Revesz’s [11] and Stark’s [18]
books provide the mathematical background for Lisp. Some familiarity with
Lisp is assumed in Norvig’s extensive text on Lisp programming for AI [9].

“Logic” puzzles of various sorts have been popular for ages. The logician
Raymond Smullyan has written books, such as [15, 16], that teach some logic
through the medium of puzzles.

All general AI texts discuss logic to some extent, but usually not to the
depth I’m doing. On the other hand, texts on logic for computer scientists
usually have deeper and broader coverage than that found here. Among these
are the texts by Thayse [20], Genesereth and Nilsson [5] and Sperschneider and
Antoniou [17]. However, the text by Schoning [13] covers just propositional
and predicate calculus and Prolog—but in greater depth than here.

Example 3.5 dealt briefly with some problems concerning the meaning
(or, rather, meanings) of “If P, then @.” Implication has been debated in phi-
losophy and logic for more than two millennia. The first part of [12] gives
the history. Reprints of some research appear in [6]. Nute [10] provides an in-
troduction which you’ll probably find easier to read after Chapter 6. I briefly
compare implication and conditional probability in Example 7.8 (p. 273). Var-
ious philosophical attempts to deal with causality are discussed in [1].
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The Theory
of
Resolution

A mathematical work that attempied to glide over all the
difficulties of the subject matter would be completely unfit for
training a reader in mathematical thinking and giving insight into
this special field

—Heinrich Tietze (1965)

[Niels Bohr] never trusted a purely formal or mathematical
argument. “No, no,” he would say, “You are not thinking; you
are just being logical.”

—Otto R. Frisch (1979)

Introduction

The focus of the previous chapter was conceptual: What are the ideas of
predicate logic and how do they relate to Prolog? The focus of this chapter
is more theoretical and more limited: It concentrates on the theoretical basis
for the resolution method of proof and its specialization to Prolog.

Some practical people may dispute the need for this chapter, arguing

Many people have used Prolog. It has produced correct answers. In
the face of such evidence any theoretical work is an unneeded ivory
tower pursuit.

To this, we can come up with several objections:

135
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e There are important issues about Prolog itself that cannot be answered
empirically: Will Prolog always find all the answers? If not, when and
why? Will it find wrong answers? If so, when?

e There may be difficulties in the Prolog interpreter: How can we identify
and understand them? What can we use besides guessing and testing to
overcome them?

e Predicate logic is an inadequate foundation for AI: How can it be extended
to include some kind of “default” and/or “nonmonotonic” capabilities?
There have been a variety of attempts to do this, some of which we’ll
explore in Chapter 6. These attempts provide overwhelming evidence that
theory is needed.

At the same time, we don’t need all the details of the theory, particularly in
a first text. As a result, we won’t fully explore the theoretical foundations of
predicate logic.

In the next section, we’ll expand on the previous chapter’s discussion of
the distinction between truth and proof. Next, the theories of propositional
and predicate caculi are studied, with an emphasis on resolution proofs. In
the following section, we return to Prolog for a discussion of its features in
light of the previous material. Finally, we briefly discuss FOL in general and
Prolog in particular as a tool for Al

Prerequisites: Chapter 3.

Used in: The material in this chapter is useful in Chapter 6; however, only
Section 4.1 is required.

4.1 Truth versus Proof

What is truth?
—Pontius Pilate (ca 30 AD)

Mathematics takes us into the region of absolute necessity, to
which not only the actual world, but every possible world, must
conform.

—Bertrand Russell (1902)

Since truth is defined in the semantics of a language, there is only one notion
of truth in a given language. In contrast, there may be many methods of proof
because a method of proof is simply a method for manipulating the syntax
to obtain valid results. You’ve already seen two distinct methods of proof for
propositional calculus—truth tables and resolution. What is the connection
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between proof and truth? A proof method exists solely as a means of extracting
truth. Truth is the more fundamental notion.

Truth

The notion of truth for propositional logic is given in Definition 3.2 (p.97)
and that for predicate logic in Definition 3.6 (p.110). These ideas are based
on truth assignments to the propositional letters and predicates, respectively.
There are three interrelated truth notions for a formula:

e valid: All possible interpretations make the formula true.
e satisfiable: Some possible interpretation makes the formula true.

e unsatisfiable: No possible interpretations make the formula true.

In particular, it follows that « is valid if and only if (—«) is unsatisfiable. The
latter two notions are extended to a set S of formulas, but the terminology
differs:

e consistent: Some interpretation makes all the formulas in & simultane-
ously true.

e inconsistent: No interpretation makes all the formulas in § simultaneously
true.

In propositional logic, “all possible interpretations” are easy to list: Simply
consider all possible assignments of T and F to the propositional letters in
the formula. This shows that validity, satisfiability, and unsatisfiability of a
formula can all be determined in a finite amount of time.

In predicate logic, the situation is more complicated: The number of in-
terpretations is infinite. As a result, the semantics of predicate logic does
not automatically provide an algorithm for validity the way the semantics
of propositional logic does. In Definition 3.6 (p.110), it’s unclear how many
constants, functions, and predicates our interpretation must allow. Our inter-
pretation must allow a number of constants at least equal to the total number
of constants and variables in the formula we’re looking at. As far as functions
are concerned, we should have all possible functions. Even this is not quite
enough because, when we see f(c), we may want its valuwe to be different from
other constants we’re considering.

As you can see, the “universe” for an interpretation can be quite large.
Too large? What does that mean? Mathematicians have become quite adept at
conjuring up and manipulating very large sets, but even they are interested in
keeping infinities “small” when possible. Of course, any infinity is too large for
an algorithm. How large a universe must we allow? The answer is provided by
what are known as Herbrand universes, which are infinite, but not too large.
We won'’t discuss these here, but a discussion can be found in almost any
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text on logic for computer scientists or mathematicians. Now, laying aside
the notion of semantics, let’s look at the notions of validity, satisfiability, and
unsatisfiability, which can be extended to a situation where we have a set §
of hypotheses. Here’s a formulation for validity.

Definition 4.1 Consequences

Let S be a set, possibly empty, of formulas in the syntax of some logic
and let a be another formula in that logic. We say that « is a consequence
of S if, whenever all the formulas in' S are true, « is also true. This is
written as S | a. If § = 0, we usually write = «, call a a tautology,
and say that a is valid. Note that if S is inconsistent, then S |= « for all
formulas « in the language because there is no interpretation in which §
is true and « is not.

If § is a finite set consisting of the formulas o1, ...,0,, then

S E a ifandonlyif [k ((-o)Va), (4.1)

where o is the formula o1 A - - - Ag,,. This is easily shown: By definition, S = «
if and only if o |= a. By definition, the latter is true if and only if, whenever
o is true, « is also true. In other words, either & must be true or ¢ must be
false for every interpretation. This is simply the definition of | (a V (—0)).

Example 4.1 Simple Examples of Consequences
In propositional logic, we have
{B,6—7} E .

You can see this by constructing a truth table:

By |B—
T T T
T F F
F T T
F F T

Since S is true in the first and second rows and # — 7 is true in the first,
third, and fourth rows, all the formulas in § are true only in the first row. In

the first row, v is also true.
When dealing with predicate logic, we cannot simply appeal to truth
tables. For example, consider the following

(3X VY p(X,Y)} E VY 3X p(X,Y).

This is correct, but it’s not so evident how to establish it. ®
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Proof

Our difficulty is not in the proofs, but in learning what to prove.
—Emil Artin (ca 1950)

Consider the statement
This statement cannot be proved. (4.2)

Let’s try to prove by contradiction that it is true. Suppose it is false. In
that case, what it claims is not true. Hence (4.2) can be proved; but if it
can be proved, that means it’s true. We’ve obtained a contradiction from the
assumption that (4.2) is false. Hence we have proved that (4.2) is true, which
means it cannot be proved. But we just proved it!

This discussion shows that we must have a precise definition of what is
meant by a proof if we hope to avoid paradoxes.

Definition 4.2 Proof Method, Soundness, Completeness

A proof method is a procedure for manipulating the syntax to deduce con-
clusions from assumptions. If the set of assumptions is the formulas in §
and if the formula « is a conclusion that the proof method deduces for S,
we write S F o. If § = 0, we usually write F «. Note that F depends on
the proof method.

For a proof method to be useful, it should not prove false formulas, that
is, whenever S - o, we also have S |= . Such a proof method is called
sound.

It’s also helpful if all consequences are provable; that is, whenever
S | a, we also have S F a. Such a proof method is called complete.

When a method of proof is sound and complete, precisely those formulas that
are consequences of S are provable. Except for the simplest logics, such proof
methods do not exist. Yes, they do not exist—which is much stronger than
saying they are not known. More on this later.

In addition to soundness and completeness, certain aspects of proof meth-
ods are important from a practical point of view. In computer science, we want
to use such a method as the basis of an algorithm for carrying out proofs. Thus,
we want the method to lead to a reasonably efficient algorithm. Satisfying this
requirement is far from trivial.

Thus, given a method of proof, there are at least three questions we should
address:

e Is the method sound? (If not, it is probably useless.)
o Is the method complete? (If not, it might still be useful.)
e Can the method be used as the basis for a reasonable computer algorithm?
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We’ll take up these issues in the next couple of sections, focusing on SLD-
resolution—Prolog’s proof method. (The acronym SLD derives from the fact
that the resolution has a Selection function, is Linear, and deals with Definite
clauses. Now you can forget what SLD means.)

There is another practical aspect of proof methods. A proof method is an
algorithm for proving the truth of a given conclusion. It does not address the
issue of how to discover interesting things to prove. Discovery is an aspect of
learning and is in a more primitive state of development than proof methods.

Aside. The syntax and semantics of a logic seldom give an operational method for
establishing S |= «, whereas proof methods give techniques for establishing S + «.
Thus it seems resonable to reserve the term logic for the syntax and semantics and
the term calculus for the proof methods. This is seldom done—predicate logic and
predicate calculus are used interchangeably.

Truth Tables

The manipulation of syntax via truth tables is a method of proof in proposi-
tional calculus. This method is the same as the definition of semantics. Hence
the truth table method of proof is complete and sound when the formulas
in S contain only a finite number of propositional letters. Unfortunately, the
amount of work required to construct a truth table is exponential in the num-
ber of propositional letters since a truth table for n propositional letters has
2" rows. As a result, the truth table method is impractical when we have
a large number of propositional letters. A more serious drawback is the fact
that the method cannot be extended to predicate logic, and we need predicate
logic for AL

Axiomatics

You’re already familiar with one style of proof method for FOL from Euclidean
geometry. This method is used throughout mathematics. The subject being
considered is described by a series of azioms and the methods for manipulating
the axioms are described by rules of inference. Let S be the set of axioms
together with hypotheses of a theorem we wish to prove and let « be the
theorem’s conclusion. The rules of inference comprise a proof method for
establishing S F .

This approach to reasoning goes back, at least, to Aristotle (384-322 BC)
and has been taught as the method of logical reasoning for centuries. In the
1890s it was popularized by David Hilbert (1862-1943) as a method for pro-
viding a firm foundation for mathematics. Typically in a mathematical area,
the axioms specific to that area are spelled out. However, the more general
axioms of mathematics and the rules of inference are rarely stated explicitly.



4.1  Truth versus Proof 141

The specific axioms and rules of inference vary from system to system,
but are all equivalent. It is standard to include at least modus ponens. This
says that, if we are given @ and @ — 3, we may infer 3. You might say, “Why
do we need this—it’s obvious from truth tables.” But truth tables are another
proof method, so they are not included in the axiomatic method.

Unfortunately, axiomatics suffers from a severe drawback that everyone
who has attempted a proof has encountered: “What should the next step be?”
In order to implement an axiomatic system on computer, guidance concerning
the next step is needed. It’s not necessary to determine the step completely,
because we can always use a search strategy as long as the amount of search
needed is not excessive. Some success has been achieved using heuristics; how-
ever, finding other proof methods has proved more fruitful for automating
mathematical logic. For this reason, we’ll say no more about axiomatics.

Resolution

Resolution was introduced in the previous chapter as the basis for Prolog.
Before resolution can begin, the formulas must be in clausal form. Resolution
then constructs a proof by contradiction; that is, it proves that the formulas
are inconsistent.

It turns out that the resolution method is sound and complete for FOL.
Unfortunately, it has some drawbacks. First, it can be time-consuming to
rewrite formulas in clausal form. Second, there is still the problem of “What
should the next step be?” To some extent, we have to expect such prob-
lems because establishing validity in propositional logic is NP-complete.
(NP-completeness is discussed very briefly on page 15.)

Prolog overcomes the first problem by limiting its syntax to statements
that are easily converted to clausal form. It partially overcomes the second
problem by further limiting syntax so that Horn clauses are obtained. This
allows us to use a limited form of resolution called SLD-resolution without
sacrificing completeness. It is easier to decide “what next” in SLD-resolution
than it is in general resolution. But we pay a price for these improvements:

Prolog does not include all of FOL. For example, we cannot say (4.3)
p— (g Vr)or (-p) — ¢ in Prolog. ’

The remainder of this chapter is devoted to resolution and Prolog,.

Exercises

4.1.A. What does it mean for a formula to be valid? satisfiable? unsatisfiable?

4.1.B. What is the distinction between truth and proof?
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4.1.G.

4.1.1.

4.2
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. What are the meanings and usage of = and F?

. What do satisfiable and unsatisfiable mean? What can you say about S | o

if S is unsatisfiable?

. Why didn’t we discuss truth tables further?

. What is axiomatics and why are we not discussing it further?

If our goal is a proof method for FOL, what are some problems and why is
Prolog a compromise?

Suppose we have two proof methods, Method A and Method B, for a given
system of logic such that anything provable by Method A is provable by
Method B.

(a) Show that if Method A is complete, then Method B is complete. Why
is the converse not necessarily true?

(b) Show that if Method B is sound, then Method A is sound. Why is the
converse not necessarily true?

. Write both of the formulas in (4.3) in clausal form and explain why neither

is a Horn clause.

Resolution and Propositional Calculus

In the first part of this section, we discuss the resolution method for proposi-
tional calculus and prove that it is sound and complete. In the second part,
we do the same for SLD-resolution of Horn clauses.

The Resolution Method

There are two features of the resolution method you need to keep in mind
to avoid confusion. First, it is a method of proof by contradiction. Second, it
requires that formulas be in clausal form.



4.2 Resolution and Propositional Calculus 143

Clausal Form

Definition 4.3 Literals and Clausal Form

A literal is either a propositional letter or its negation. The former is
called a positive literal and the latter, a negative literal. If I is a literal, |
denotes its negation with —— canceled; that is,  is —p and =p is p. Recall
that a formula « is in clausal form if it has the form

ajA---Aoap where a;is f;1 V-V Bk,

and each f; ; is a literal. Each of the a;’s is called a clause and is usually
written in the form {B;1,...,Bik,}. One often thinks of a as a set of
sets, each of which corresponds to a clause. Clausal form is also called
conjunctive normal form, or simply CNF.

The important result about clausal form is given by the following theorem.

Theorem 4.1 Clausal Form for Propositional Calculus

If a is a formula in propositional calculus, then there exists a formula ¥
such that (a) v is in clausal form and (b) | (@ = v). Furthermore, there
exists an algorithm for obtaining v from «. (Warning: There may be more
than one such v for a given «.)

Let’s recall what = (« = 7) means. Given any assignment whatsoever of
truth values to the propositional letters, (a = ) will be true. In other words,
(o = ) is valid; that is, it’s a tautology.

Proof: By exhibiting the algorithm and showing that it works, we’ll auto-
matically prove the existence of 4. We’ll need the following tautologies in the
proof:

((a = B) = ((ma) vV B)), for step 1;
((@=p8)= ((aAB)V((ma) A(=P)))),  for step 2;
(=(aVB)) = ((~a) A(=B))), for step 3;
((=(a A B)) = ((-a) V (-0))), for step 3;
((—‘("P)) = P), for step 4;
(((a/\ﬂ)V'y) = ((CVV‘)’)/\(ﬂV'Y))); for step 5.

You can prove these tautologies by using truth tables. (Two of them are special
cases of de Morgan’s laws.)

Imagine applying the tautologies by replacing occurrences of a formula
to the left of = with the formula to the right, repeating this procedure until
such replacements can no longer be made. This will transform the « given in
the theorem to a new formula. Note that when we substitute one side of = in
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a tautology for the other, we obtain a statement with the same truth value
for every assignment of truth values to the propositional letters. Since we’ll
obtain v from « by just such a series of substitutions, (o = ) will be valid.

The first step involves using the first formula to eliminate —. Suppose —
occurs in the formula we are transforming. Move leftward from the — until
the number of left parentheses from your position to the connective exceeds
the number of right parentheses. Find the right parenthesis that is paired
with this left parenthesis. You will now have found a formula contained in
your original formula that has the form a« — B. Replace it using the first
tautology on the list. For a complete proof, we would have to show that such
parentheses can always be found and that they do in fact delimit a formula.
We won’t do that. The process must eventually stop because each application
eliminates an —-.

The second step involves essentially the same process to eliminate =.

The third step involves moving negations inside parentheses using the
third and fourth tautologies. The left parenthesis now immmediately precedes
the — and the right parenthesis is found as in the first step. This process
must eventually stop because each application moves a - “deeper” inside
parentheses. (A formal proof requires a more precise formulation of the last
statement.)

The fourth step involves using the fifth tautology to eliminate multiple
negations on a propositional letter. When this is done, we are left with literals
connected by V and A.

The fifth step involves moving V inward and A outward simultaneously.
In this case, we use the last tautology and the one that results from the
commutativity of V. If you think of V as addition and A as multiplication, this
process is like expanding a complicated combination of sums and products to
obtain an expression that is a sum of products. It can be done in a manner
similar to that used in the first and second steps. It will eventually stop
because each application moves a V deeper inside parentheses. B

An alternative approach to proving Theorem 4.1 is given in Exercise 4.2.1.

Given a clause, we can sometimes simplify it: First, if a propositional
letter appears more than once in the clause, it can be eliminated. Second,
the same is true for the negation of a propositional letter. This elimination
of duplicates agrees with the notation of writing a clause as a set since the
elements of a set are all distinct. Third, if one clause is a subset of another,
the smaller clause may be dropped because

((aA(aVpB)=(aVp)

is valid. Finally, if both p and —p appear in a clause, we can eliminate the
clause because it is a tautology. (For any truth assignment, either p or —p will
be true.)
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Example 4.2 Converting Formulas to Clausal Form

Let’s convert ((p — ¢) — (p A ¢)) to clausal form. Eliminating — one at a
time gives

((=p) V) = (p A Q)
and then
(=P VD) V(PAY).
Moving - inward gives
(==p)) A (=) V (P A ).
Eliminating —— gives
(A (=) V(P A Q).
Distributivity now gives, with some parentheses omitted,
(PVP)A(PVA((—) VP) A ((—9) V)
Finally, the simplifications give
(Ve A((~9)Vp).

Of course, you needn’t slavishly follow the steps in the proof—you can use
any manipulations that don’t change truth values. B

A Resolution Algorithm

Let’s recall how two clauses are resolved. Suppose that we have two clauses
Cj and C?, one containing the propositional letter p and the other containing
—p. The resolvent of C; and C, on p is a clause consisting of all elements of
C, and C, except p and —p. We speak of resolving C; and C on p.

If Cy and C; consist of only p and —p, their resolvent is empty and is
denoted by { } or 0. What does it mean? Since the elements of a clause are
joined by “or,” at least one element of a clause must be true for the clause to
be true. Since our formula is a conjunction (“and”) of clauses, a formula with
an empty clause will be false.

The following is a nondeterministic algorithm for resolution proof in
propositional logic. (The nondeterministic part is due to the use of “choose.”)
At the end of the previous chapter, we used an algorithm similar to this one
for Prolog.



146 Chapter 4 The Theory of Resolution

Algorithm 4.1 Resolution Proof in Propositional Logic

Let S be a set of formulas and let o be a formula.

e Imagine converting —a and all of the formulas in § to clausal form.
(We can only “imagine” because S may be infinite.) This gives a set
C of clauses.
o Repeatedly:
e Choose a propositional letter p and two clauses C; and C3 in C
that can be resolved on p.
e Create the resolvent, simplifying by eliminating duplicate ele-
ments.

o Discard the clause if it contains both a propositional letter and
its negation.

e If the resolvent is not in C, add it to C.

If it’s possible to obtain the empty clause in this manner, we say that
S F a (by resolution).

The following theorem answers two basic questions about the algorithm.

Theorem 4.2 Propositional Logic Resolution

The resolution method of proof is sound and complete. That is S F « if
and only if S | a.

Proof: Suppose that S is finite. By (4.1) (p. 138), we can move § to the right
side of |=. Thus, we’re reduced to proving |= « if and only if - « for all .

Recall that a collection of formulas is satisfiable if some possible assign-
ment of truth values to the propositional letters makes all the formulas true.
Also recall that a collection of formulas which is not satisfiable is called un-
satisfiable. These terms are often abbreviated SAT and UNSAT.

Soundness:

Proof by resolution is a proof by contradiction; it converts -« to clausal form
and resolves clauses to obtain [J. We must show that if this happens, then
= a. Let’s give a proof by contradiction. Thus, we assume F « and }£ a and
want to deduce a contradiction.

The statement £ o means that -« is saT. To see this, note that H£ «
means there is some assignment of T and F to the propositional letters so that
« is F and so -« is T. Fix this assignment.

We now claim that, for this assignment, the resolution of two clauses will
also be T. This claim is equivalent to “If V(pV @) = T and V((-p) VB) =T,
then V(a vV B8) = 1.” It can be proved directly or, instead, the equivalent
tautology

( (pVe)A((=p) V) = (aV ﬁ)) (4.4)
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can be proved by using a truth table. The claim shows that all clauses pro-
duced by resolution will be true for our fixed assignment of truth to the propo-
sitional letters. Since [J is always false, it cannot be obtained by resolution.
Thus i @, a contradiction.

Completeness:
Suppose that C is the clausal form of —~a. Completeness means that if C is
UNSAT, then resolution can deduce (J from C.

Since « is a formula, it, and hence C, contains only a finite number of
propositional letters. We’ll prove completeness by induction on the number
of propositional letters. Let’s start the induction with a single letter, say g.
The only UNSAT collection of clauses is {{g},{—g¢}}, from which it’s easy to
deduce 0.

The idea behind the induction proof is to construct from C some clauses
CP that contain neither p nor —p and then prove

(a) if C is UNSAT, then CP is UNSAT;
(b) if resolution can deduce O from CP, then it can do so from C.

Before showing how to construct C?, let’s prove that (a) and (b) are enough
to complete the induction proof. Suppose that C is unsaT. Apply (a). Apply
the induction hypothesis: completeness for fewer letters tells us that, since CP
is UNSAT, resolution can deduce O from CP. Finally apply (b).

It remains to define C? and to prove (a) and (b).

The set of clauses CP is defined as follows:

e If C' € C contains neither p nor —p, then it is in CP.

e If C1,C2 €C, p € Cy, and (—p) € Cy, then the resolvent of C; and C3 on
pis in CP.

Result (b) follows from the definition: The clauses in CP are either in C
or obtained by resolving two clauses in C. Thus, anything obtainable from C?
by resolution is also obtainable from C.

Result (a) takes more work. We’ll prove it by establishing the contrapos-
itive; that is, we’ll assume that CP is SAT and prove that then C is SAT. Since
CP is SAT, we may fix an assignment of values to all the propositional letters
(except p) so that all clauses in CP are true. Let C(p) be those clauses in C
that contain p and let C(—p) be those that contain —p.

If every clause in C(p) is such that at least one of its elements (other than
p) is true, then defining V(p) = F makes all clauses in C(p) and C(—p) true.
Since all other clauses in C lie in CP, this would make C sAT and we would
be done. In other words, either we are done or there is a clause C; € C(p) all
of whose elements except p are false. Interchanging the roles of p and —p, we
conclude that either we are done or there is a clause C € C(—p) all of whose
elements except —p are false.

It suffices to show that at least one of C; and C; doesn’t exist. If both
exist, resolve them on p to obtain a clause in CP all of whose elements are
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false. This contradicts the assignment of truth values, which was based on CP
being SAT.

Compactness:

We began by assuming that § is finite. In actual applications, our knowledge
base can contain only a finite number of statements, so & will be finite. In
general, this need not be true. Logicians usually assume that there can be
an infinite but “countable” number of propositional letters. They then prove
compactness: « is a consequence of § if and only if « is a consequence of some
finite subset of S. You should readily see that the “if” direction is trivial. The
proof of the “only if” direction requires the Axiom of Choice. Rather than
develop this tool, let’s leave the proof incomplete for infinite S. W

Example 4.3 Double Resolution—A Common Mistake

How can the clauses {p,~¢,7} and {-p, g, s} be resolved? A common mistake
is to “resolve” on both p and ¢ to obtain {r, s}. This is WRONG. It may be
instructive to look at the reason from different viewpoints.

Before doing so, let’s look at the correct way to resolve these clauses. We
can resolve on p to obtain {—¢,r,g¢,s}. Unfortunately, this clause is useless
because it is always true—either ¢ is true or —q is true. Similarly, resolving
on g gives the useless clause {p,r,-p, s}.

One way to see that double resolution is wrong is by looking at a simpler
case: {p, ¢} and {-p, q}. We’d obtain the empty clause, indicating inconsis-
tency; however, making both predicates true satisfies the clauses. This shows
that the method is wrong, but it does not explain why this is wrong while
resolution is not.

To explore the why, let’s look at the idea behind resolution. It’s based on
the tautology (4.4). A double resolution form of this tautology would be

((eVIve) A((=p) V(D) V ) = (aV B)), (45)

where ! is ¢ or —¢q. I’ll leave it to you to prove that this is not valid. ®

Example 4.4 Two Resolution Proofs

Let’s begin with a resolution proof for

{({(=P) = ), (p— 5),(r = 9),(s = (-1),2} + q. (4.6)

We’ll go through the details of all the various conversions that set the stage
for resolution and then turn to the resolution.
Calling the formulas on the left oy,..., 05, rewrite (4.6) as described in
(3.25) (p.115):
F (ﬂ(O'l /\--~/\o5)Vq).

Resolution attempts to derive a contradiction to the negation of the right side
of this, that is, a contradiction to o; A --- A 05 A (—g). Let C; be the clausal
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form of o; and let Cs be {—¢}. Replacing @ — § with (—a) V § converts the
o;’s to clausal form. We get

Ci={p,r} C:={-p,s} Cs={q,~r} 4.7
Ci={-s,—t} Cs={t} Ce = {—q} '
for the given clauses.

Here’s our procedure for doing resolution: Set ¢ = 1, resolve C; with all
other clauses, increment 7 and repeat resolution and incrementation until the
empty clause is reached. (Stop if no new clauses are generated for a given i.
This happens if there is no proof.) To keep things straight, let C; % C; denote
the resolution of C; and C;. It will always be evident what propositional letter
we resolved on. This procedure leads to

Cr =C1xCy ={r,s}, Cs =C1xCs ={p,q},
Co =Cy%Cy = {-p,—t}, Cio=C2%Cs ={q,s},
Ci =C3%Cs = {-r}, Cia =CyxC5 = {-s},
Cia =CyxC7 = {r,t}, Ci4 = Cy % Cyo = {q, -1},
Cis =Cs xCy = {-p}, Ci6 = Cs % Ci3 = {r},
Ci7 = Cs *C1a = {q}, Cis = Cs % Cs = {p},
Ci9 =Cs*Cyo = {8}, Cypo =CsxC14 = {—\t},

and Cg * C17 = [0. This completes the proof.
There are shorter proofs. One is

((((C3 % Cs) % C1) % C3) x Cy) x Cs =00.

This proof has another, more important feature than its length. It starts
with the negation of the goal and then repeatedly resolves it with “given”
information—the o;’s.

This approach is not always possible. Consider the problem of resolving
the four clauses

{r,q}, {p,~q}, {-p,q}, {-p,—q} (4.8)

to obtain the empty clause. This is easily done: Resolve the first two to obtain
{p}, the last two to obtain {-p}, and these two results to obtain 0. The proof
that linear resolution is impossible is left as an exercise. W

Example 4.5 The Lewis Carroll Example Revisited

In Example 3.10 (p. 116) we used a truth table argument to prove a result in
one of Lewis Carroll’s problems. Now we’ll use propositional calculus resolu-
tion. In that example we argued that, although the statements are in predi-
cate logic, it suffices to use propositional logic. In propositional logic notation,
we’re given

(c—s), ((-g)—d), ((~g)Veo),

and want to prove ((—s) — d).
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In clausal form, the given conditions are

((me)Vs), (gVvd), ((-g9)Ve)
Since the negation of the conclusion is ((—s)A(—d)), it gives rise to two clauses.
Our list of clauses is
Ci ={(-c),s}, C2={g,d}, Cs= {(_'g))c}) (4.9)
C4 = {-rs}, C5 = {"d}
Rather than go through the systematic procedure of the algorithm, let’s simply
state the result using the notation of the previous example:

(((CZ * C5) * C3) * Cl) *xCy=0.n

It should be obvious after the last two examples that we need to under-
stand resolution better. As it stands, Algorithm 4.1 has problems.

e First, there are typically many choices of clauses to resolve. How should
we choose among the possibilities?

e Second, it may be that proof is impossible so we should give up. How do
we decide when we’ve tried enough; that is, when we can conclude that
the result is not true?

As noted earlier, SLD-resolution of Horn clauses will partially solve.the first
problem.

The second problem has a solution in propositional logic when § is finite:
Since the number of propositional letters present is finite, there are only a
finite number of possible clauses. At some point, we will either obtain the
empty clause or discover that all of the (finite number) of possible resolutions
give clauses already present in C. In the latter case, no further resolutions are
possible, so we are done.

Unfortunately, the second problem has no solution in FOL. In fact, even
a weaker problem—the “decision problem” —has no solution:

It is impossible to produce an algorithm that takes as input
an arbitrary formula « in FOL and produces as output the (4.10)
answer to the question “Is a valid?”

(In 1928, Hilbert and Ackermann, who called this the Entscheidungsproblem,
had declared it to be the principal problem of mathematical logic.) You may
be familiar with the halting problem—design a Turing machine H such that:

e The input of H consists of (a) the description of any Turing machine T
and (b) the input on which 7 is to run.

o The output of H is the answer to the question “Will 7 stop?”

Turing proved that it’s impossible to design such a machine H. The decision
problem for FOL is equivalent to the halting problem.
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Exercises

4.2.A.
4.2.B.
4.2.C.

4.2.D.

4.2.1.

4.2.2.

4.2.3.

4.2.4.

What is a positive literal? a negative literal?
What is clausal form?
What is the resolution method of proof? How does it use contradiction?

The resolution method of proof is sound and complete (Theorem 4.2). What
does this mean?

The purpose of this exercise is to use truth tables to prove Theorem 4.1.
(The exercise uses truth tables because each V in (c) corresponds to a row
of the truth table for —a.)

(a) A formula is in disjunctive normal form, or DNF, if it is the “or” of
one or more formulas, each of which is the “and” of one or more liter-
als. Suppose that (—a) = v is a tautology, where v is in DNF. Let §
be the result of interchanging the symbols V and A and replacing ev-
ery literal I with I in y. Prove that § is in CNF and that « = 6 is a

tautology.
(b) In view of the above, it suffices to construct a DNF for —a. Let the
propositional letters appearing in o« be pj,...,pn. Prove that, if -« is

always false, then (p1 A (—p1)) is a DNF for —a.
(c) Suppose that -« is satisfiable. If V is an assignment of T and F, define

pi, ifV(p)=T,

YV) =l A---Aln, where "={—-pi, if V(pi) = F.

Let v be the “or” of those ¥(V) for which V(—-a) = T. Now prove that
(—a) = v and conclude that Theorem 4.1 is true.

Prove that formula (4.5) is not a tautology; that is, prove that it is not
valid.

Suppose that clauses (4.8) are used for resolution in Algorithm 4.1.

(a) Show that after the first resolution you will have one of the four
clauses {p}, {¢}, {-p} and {—q}. (Ignore clauses that the algorithm
discards.)

(b) Show that resolving any of the four clauses in (a) with a clause in (4.8)
gives another clause in (a).

(c) Conclude that it’s impossible to deduce the empty clause from (4.8) by
repeated resolution starting with one of those clauses and repeatedly
resolving with any of the other three clauses in any order.

Redo Exercises 3.3.13-3.3.15 (p.119) using resolution as in Example 4.5.
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4.2.5. Let R(C) be the set of all clauses that can be obtained from the clauses C by
repeated resolution—including C. In other words, this is just the augmented
C produced by the resolution algorithm, without stopping if [J is reached.
For each of the following sets of clauses, compute R(C).

(a) Clauses C1, Cy and C3 of (4.7).
(b) All the clauses in (4.7).

(o) {{_'p’ -¢,-r}, {p, g, s}, {-p,q,~r}, {~g, _'7:3}}

SLD-Resolution of Horn Clauses

Recall that a Horn clause is a clause containing at most one positive literal.
We saw in Section 3.4 (p.120) that, in simple Prolog, each knowledge-base
entry is a clause containing exactly one unnegated propositional letter and
the query corresponds to a clause with all propositional letters negated; that
is, they are Horn clauses. A Horn clause with no positive literals is called a
goal clause.

Algorithm 4.2 SLD-Resolution for Horn Clauses

Suppose that we have some rule for ordering the literals in any goal clause
and assume all goal clauses are ordered using this algorithm. We are given
a set of Horn clauses containing exactly one (ordered) goal clause Go.

Here is the SLD-resolution algorithm. For : = 0, 1,.. ., select a clause C;
to resolve with the first literal of Gj, thereby producing a new (ordered)
goal clause Gj4y. In contrast to Algorithm 4.1 (p. 146), duplicate literals
need not be removed from the G;’s.

If there is some choice of C;’s that leads to [, we say that -Gy has
been proved by SLD-resolution.

Note that SLD-resolution is a special case of general resolution because it
specifies that the resolution proceeds by repeatedly resolving one goal clause
to obtain another. Furthermore, the literal to resolve on is dictated by the
ordering algorithm. This ordering may depend on anything, including all the
previous steps in the resolution. The basic result is stated in the next theorem.

Theorem 4.3 SLD-Resolution for Horn Clauses

Regardless of what ordering algorithm is used for the G;, SLD-resolution
is sound and complete for the propositional calculus of Horn clauses.
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Proof:  Since removing duplicate literals only makes it easier to obtain (J and
since Algorithm 4.1 is consistent, this algorithm is also consistent. Thus, we
only need to prove completeness. That is, if S contains nongoal Horn clauses
and G is a goal clause, then S |= (-G) implies that there is a Horn clause
resolution. The proof will be in three stages:

1. We show that if there is a fact {p} in S, we can assume that no other
clause contains the positive literal p

2. We show that if we can select the ordering rule, then an SLD-resolution
proof exists.

3. We show how to convert such a proof into one for which the ordering rule
is arbitrary.

From now on, we’ll assume that S | (—=G). As in Theorem 4.2 (p. 146),
we’ll assume that § is finite, thus avoiding a compactness argument.

First Stage:

For every propositional letter p such that {p} € S, remove from § all clauses
containing both the positive literal p and at least one negative literal. Call
the resulting set of clauses §'.

Suppose that §' £ (=G). This means that there is some assignment of
truth values V such that V(C) = T for all C € §’ and for G. Now suppose that
D € S and D ¢ §'. Then D contains a positive literal p such that {p} € §'.
By the definition of V, we have V({p}) = T. Hence V(D) = T. This shows that
V =1 for all clauses in S. Since we also have V(G) = T, this contradicts the
fact that S |= (—G). It follows that the assumption &' £ (—~G) is incorrect.
Hence, &' = (—G). This completes the first stage.

Second Stage:

Use induction on the total number of distinct propositional letters. If there is
only one letter p, then G = {-p} and the only possible clause in &' is {p}.
Hence the proof is trivial.

By Theorem 4.2, a resolution proof &' | (—G) exists. The resolution
of two clauses containing a negative literal produces another clause with a
negative literal. Thus the resolution proof must use some clause that has no
negative literals, that is, a clause {p}. Let 8" be &’ with {p} removed. Let G’
be G with —p removed if it is present.

We claim that 8" |= (=G"). The proof is similar to that in the first stage
for &' = (=G): Suppose V is a truth assignment that proves §” £ (—G’). Note
that V(p) need not be defined since p does not appear in 8" or G’. Extend
V to p by defining V(p) = T. You should be able to show that V gives the
contradiction 8’ £ (=G). Thus the assumption 8" [ (—~G’) is false.

By induction, there is an SLD-resolution proof of 8” - (—G’) where the
ordering of goal clauses is under our control. Take this proof and insert —p in
those clauses from which it was removed in creating §” and G'. The resolution
now leads to a clause containing some number of copies of —p rather than to
0. Repeated resolution with {p} leads to 0. This completes the induction.
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Third Stage:
We now have an SLD-resolution with

G=G0,G1,...,Gn+1 =0 and Co,Cl,...,Cn,

but it may not involve resolving in the order dictated by the ordering rule we
are given. It remains to prove that the resolution can be rearranged to satisfy
that requirement.

There are various ways to establish that resolution can be so rearranged.
One simple method is by counting. Since duplicate literals are not eliminated
after resolution, each resolution eliminates some p and its negation. Since we
end up at [, it follows that the number of times p appears in Go and Cy, Cy, . ..
must equal the number of times —p appears.

Put all the C;’s in a collection and set Gj = G. Now let’s use the order
rule. It tells us to resolve G} on some p. Remove a clause C] containing p
from the collection and use it. The counting argument in the last paragraph
guarantees that we’ll always be able to find such a clause. B

Exercises

4.2.E. What are Horn clauses?

4.2.F. Describe an algorithm for SLD-resolution. How does it differ from general
resolution?

4.2.6. Use SLD-resolution of the Horn clauses
S = {{q}’ {P, -q, _'3}’ {_'p: q, _'T}1 {-'Q) -, 3}{—'q) T}}

and the negation of ¥ = (p A ¢) to show that S | «.

4.3 First-Order Predicate Calculus

As we’ll soon see, the presence of constants makes the truth table proof
method untenable for predicate logic. Axiomatic methods can be extended. In
fact, that’s the way theorems are normally proved in mathematics. Of course,
we don’t actually reformulate the statements in terms of predicate calculus
the way we did for the definition of a limit in Example 3.8 (p. 112). As we saw
in the last chapter, resolution can also be used. After discussing the semantics
of predicate calculus, we’ll explore resolution theoretically and algorithmically
in this section.
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To carry out a resolution proof we must rewrite a formula so that all
the quantifiers are universal and on the outside while the formula inside the
quantifiers is in clausal form. This can be done as follows:

e Adapt the algorithm in the proof of Theorem 4.1 (p.143) to produce a
clausal form containing quantifiers. Use (3.23) (p.115) to move negation
inward through quantifiers.

e Assign unique names to all quantified (=bound) variables and then use
(3.24) to move the quantifiers to the left side of the formula. The result
is said to be in prenez form.

e Use “Skolemization” to eliminate existential quantifiers.

This process isn’t needed for Prolog. For a simple Prolog statement, we can
use (3.25) (p. 115) to put it in normal form. To combine Prolog statements,
all we need do is make sure that no two statements use the same name for
a variable. The fact that this procedure is so easy for Prolog is one of the
features that make Prolog practical.

Once this normal form has been achieved, resolution can begin; however,
it’s complicated by the need for “unification.” The unification must be done
so as not to impose any equalities that are not absolutely required—the “most
general unification.” Unification is no simpler in Prolog than it is in general. In
fact, you’ll see that Prolog interpreters usually cheat when doing unification.

Skolemization

Suppose we have a formula 8 = VX;...VX,3Y «, where a may involve
quantifiers. It’s possible to create another formula £/’ not containing Y such
that @' is valid if and only if 3 is valid. The idea is simple enough if you think
about what validity of § means:

For every choice of values for Xi,..., X, from the set of constants,
we can find a value for Y such that « is valid when X, ..., X,,Y are
replaced by these values.

Thus, Y depends on the formula o and the values assigned to X1,...,X,.In
other words, Y is a function of Xi,...,X,, the actual nature of the function
depending on . We can express this by creating a new function name, say
f, and saying that Y is f(X1i,...,X,). This leads to a simple algorithm for
Skolemization.
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Algorithm 4.3 Skolemization

Let Q stand for a quantifier and let @ be a formula without quantifiers.
Denote the formula QX ...QX, a by . In general, let #;_; be

VX, ... VX4, QX; 7.

The Skolemization of 8y is 8, where §; is computed as follows.

e If X; is universally quantified, 3; is B;—1.

o If X; is existentially quantified, §; is VX,, ...VX,, 6, where § is ob-
tained from v by replacing all occurrences of X; with f(X,,,..., Xs,)
and where f is a new function name that is added to the list of func-
tions in the language.

It’s possible that there are no universal quantifiers preceding X;. In this
case, k = 0 and the new function f would have no arguments; that is, it
is a new constant.

This is a departure from what we’ve done previously. All previous manip-
ulations of FOL formulas have involved working within the given language.
In this manipulation, we’ve created new, Skolem, functions and added them
to the language. If we could choose the interpretations we wanted for these
functions, #p would be valid if and only if 5, was. Unfortunately, in the no-
tion of validity, we must allow all possible interpretations of these functions,
and not all of these preserve validity. Thus

| Skolemization of a formula does not, in general, preserve validity.

In order to understand what Skolemization does give us, we need the concept
of satisfiable, which was defined earlier for propositional logic. Here it is for
FOL.

Definition 4.4 Satisfiability

Let o be a formula with no free variables. We say that « is satisfiable if
there is some interpretation in which « is true.

Since a rigorous proof of the following theorem requires more precise attention
to semantics, we won’t give one. The discussion preceding the definition makes
the theorem plausible, and even indicates the way a proof would proceed.
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Theorem 4.4 Skolemization and Satisfiability

Let « be a formula with no free variables, let 8 be its Skolemization, and

let fi1,..., fn be the functions introduced in the process of Skolemization.
Let Z be an interpretation that does not mention fi,..., f, and let Z* be
an extension of Z to include fi,..., f,.

e If Bis valid in Z*, then « is valid in Z.
e If o is valid in Z, then there is an extension Z* in which @ is valid.

We say that « and § are equisatisfiable.

Early in the previous chapter, we claimed that validity is a good idea since
it does not depend on interpretation. Since satisfiability does depend on inter-
pretation, can it possibly be any good? Yes, sometimes. The most important
situation is when something is not satisfiable:

A formula « is not satisfiable if and only if (—¢) is valid. (4.11)

You should be able to prove this. (If not, see p.137.) Unsatisfiability is the
idea behind the resolution method and some other proof methods. By proving
(—P) is unsatisfiable, we prove that 8 is valid.

Example 4.6 Clausal Form and Skolemization

To illustrate how the previous ideas apply, let’s convert the formula defining
a limit to the form we’ve been discussing. We can rewrite (3.20) (p.113) in
more standard FOL form as

VZ{p(Z) - (ay{p(y) AVX ((a(X,a,Y) Ar(X,0)) = ¢(£(X),1,2)) }) }
Now let’s work on this. First, getting rid of the —» gives

vz{ (o) (37 {pr )X ({=(a%, 0, VA 0) Ials 00,1, 2)) }) |
Moving negations in and quantifiers out, we get

vz 3vx{ (@) (o)A (a0 V)V (K ValF 0.1, 2)) ) |

Finally, replacing Y with ¢(Z) and using the distributive law to obtain a
clausal form, we have

vzvx{ ((-5(2) v plo(2)
A ()Y (0K, 0,52 Y (r(X, ) V700, 1,2)) |

The function g(Z)—or g(€) in the original form of the definition—is explored
in calculus. To prove that a limit exists, we must give a rule for determin-
ing é as a function of €. The rule we obtain is simply the function g(Z) that
replaces Y. You may find it interesting to translate the two clauses back to
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something more like English. The first says that either € < 0 or g(€¢) > 0. This
simply guarantees that § = g(¢) is greater than zero whenever € is. The sec-
ond clause is more interesting. It states that either |f(z) — L| < € or one of
the three conditions

€>0, |z—al<s =z#a

fails to hold. Perhaps the process of Skolemization and finding clausal form
has helped you understand the notion of limits better—or maybe it made
limits more confusing! B

Unification

The unification problem is as follows. Suppose we have the Skolemized clausal
form of a formula. Let p(¢y,...,t,) and —p(t},...,t,,) be predicates from two
different clauses, where ¢; and t; are terms. Unification is the process of substi-
tuting terms for some (or all) variables so that, after the substitution, ¢; and
t; are the same term for 1 < ¢ < n. This is unification, and the substitution
is called a unifier of p(t,...,t,) and p(t},...,t,).

I said “a unifier” because many unifications are possible. For example, a
unifier of p(X) and p(Y) is obtained by substituting f(a, Z) for both X and
Y. Another unifier is obtained by replacing X and Y with ¢. Still another is
obtained by substituting X for Y. The last unification is “more general” be-
cause the first two can be obtained by a further substitution for the variable
X in the last substitution—either f(a, Z) or ¢, respectively. The goal of uni-
fication is to obtain a “most general” unifier; that is, a unifier from which all
others can be obtained by further substitutions. A priori, it’s not clear that
a most general unifier exists.

There are various ways of describing an algorithm for finding the most
general unifier. The most easily understood involves depth-first traversal of
ordered trees associated with predicates. The trees are called formation trees.
The description of the tree construction parallels Definition 3.4 (p. 106) and
part of Definition 3.5. Here’s the definition and the tree construction in par-
allel.

The terms in £ and the associated formation trees are defined recursively
as follows.:

D1. Every variable as well as every constant is a term.
T1. A vertex labeled with any variable or constant is a formation tree.

D2. If t,,...,t, are terms and f is a function that takes n arguments, then
f(t1,...,ts) is a term.
T2. Ifty,...,t, are terms and f is a function that takes n arguments, then the

ordered tree whose root is labeled f and whose ith child is the formation
tree for t; is a formation tree.

Finally, we have the atomic formulas:
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F(a(b, X1), f(X2,h(a))) (X, X, F(X))  p(Y,9(2,a), W)

f p y4
PN PN Pl
g 7 X X f Y 90w
/\ /\ | /' \
lelell X Z a

Figure 4.1 Some formation trees. Above each tree is the term or atomic formula
to which it corresponds. The asterisks are explained in Example 4.7.

D3. If ty,...,t, are terms and p is a predicate that takes n arguments, then
p(t1,...,t,) is an atomic formula.
T3. If t1,...,t, are terms and p is a predicate that takes n arguments, then

the ordered tree whose root is labeled p and whose ¢th child is the forma-
tion tree for t; is a formation tree.
Figure 4.1 shows some formation trees.
Notice that, since a variable takes no arguments, it can occur only as the
leaf of a formation tree. Here’s the algorithm for finding a most general unifier.

Algorithm 4.4 Most General Unifier

Let To and T; be two formation trees. The algorithm terminates with
both trees displaying the result of the most general unifier, or it reports
failure. Start at the root of each tree and carry out a depth-first search
and substitution as described below until both trees have been traversed.

1.

2.

Compare: Let L; be the label at the present vertex in T;. If Lo = Ly,

go to Step 3.

Substitute: Let U; be the formation tree rooted at the current ver-

tex in T;. Since the roots Lo and L, are not equal, there are three

possibilities:

(a) Neither Lo nor L is a variable: In this case, stop with failure.

(b) One of L; is a variable V and V appears in U;_;. In this case,
stop with failure.

(c) Onme of L; is a variable V and V does not appear in Uj—;. In
this case, replace all leaves labeled V with a copy of U;—;. (This
substitutes U;_; for V')

Advance: If there are no more vertices in the depth-first search, ter-

minate with success. Otherwise, move to the next depth-first vertex

in both Ty and T3 and go to Step 1.

The subscript 1 — 1 is used to refer to the tree other than 7T;. This works since
f=0—-(1-¢=1and (i=1)—(1-7i=0).
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4 )4 4 P
Pl — 1T~ el
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Z a

Figure 4.2 Application of the unification algorithm. See Example 4.7 for details.

Example 4.7 Unification

Let’s see how the algorithm works on the rightmost trees in Figure 4.1. The
asterisks indicate where the first disagreement occurs in the depth-first search.
In this case, Ly and L, are both variables so we can replace X with Y or Y with
X. Choosing the former leads to the two trees on the left side of Figure 4.2.

Again, the vertices where disagreement occurs are marked by an asterisk.
Now Lo = X and L; = g, so we must substitute U; for X everywhere. The
results are shown on the right side of Figure 4.2. Finally, the last substitution
that the algorithm requires is replacing W with f(g(Z,a)). The final result is

p(9(Z,a),9(Z,2), f(9(Z,))).

Now let’s make a slight change in the original T;. Replace the variable
W with X. In this case, the algorithm reaches its third disagreement at f in
To and g in Ty (g instead of X because an earlier substitution for X). As a
result, it reports failure because no substitution for a variable will change the
function symbols.

Let’s make a different change. Replace W with Z in Tj. The third dis-
agreement is at the same place as before, but now there is a Z in Ty and Uy
contains Z because Uj corresponds to f(g(Z, A)). The algorithm ends in fail-
ure. Why can’t we simply substitute f(g(Z, A)) for Z everywhere? If we were
to do so, we would have to make the substitution in f(g(Z, a)) as well, and this
would lead to an infinite repetition: f(g(Z,a)) becomes f(g(f(9(Z,a)),a)),
which becomes f(g(f(9(f(9(Z,a)),a)),a)), and so on. It’s a bit easier to see
what’s happening by looking at X and h(X). Repeated substitution leads to
h(h(h(...))), where the ellipsis indicates an infinite sequence of nested h’s. W

Theorem 4.5 Most General Unifier

Algorithm 4.4 always terminates. If it terminates in failure, no unification
is possible. If it produces a unification, it is a most general one; that is,
every other unification is obtainable from that produced by the algorithm
by substituting for the variables it contains.
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Since the algorithm starts with two trees, which are finite, it may seem that
termination is obvious. This is not the case. Conceivably, the process of substi-
tution could result in larger and larger trees such that the depth-first traversal
is never finished. In fact, if we forget to include (b) in the algorithm, the al-
gorithm can go on forever as described at the end of the previous example.
This is what most (perhaps all) implementations of Prolog actually do.

Proof: How is termination proved? Very simply. At the start, the number of
variables in the two formation trees is finite since the entire trees are finite.
Because of (b) in the algorithm, each substitution eliminates all occurrences of
a variable. Hence the number of substitutions done by the algorithm is finite.
Consequently, the trees are changed only a finite number of times and so do
not grow without bound.

Any disagreement that is found by the algorithm must be eliminated if a
unification is to be found. The only substitutions that are allowed are those
replacing a variable with a term. This explains why there must be a failure
when (a) occurs in the algorithm. Case (b) must lead to failure because it
leads to an infinite chain of substitutions as discussed near the end of the
previous example.

This leaves (c). The substitution made there is the least possible to cre-
ate unification. Mightn’t a more restrictive substitution somehow allow more
freedom elsewhere in the trees? Perhaps you intuitively see that this is not the
case—and perhaps you don’t, in which case some experimentation will proba-
bly convince you. To give a proof up to present-day standards of mathematical
rigor, we’d have to spend time looking carefully at properties of substitutions.
We won’t do that, so the proof is not quite complete. ®

Aside. The entire discussion of unification could have been formulated with several
atomic formulas in the predicate p rather than just two. You should find it relatively
easy to adapt the algorithm.

Resolution

To prepare for resolution, we first put formulas in clausal form, ignoring the
location of quantifiers. Then we use Skolemization to eliminate existential
quantifiers and place universal quantifiers on the leftmost side of the formula.
At this point, we’re ready to obtain a contradiction by means of resolution.
The process is the same as that for propositional calculus, except that we
must make use of unification. We select two clauses, one containing an atomic

formula p(t1,...,t,) and another containing the negation of the predicate,
say —p(t},...,th). A most general unifier is found. The literals in the two
clauses, with the exception of p(t1,...,t,) and -p(t},...,t}), are placed in a

new clause and the substitutions of the most general unifier are applied.
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The main differences between resolution proofs for the propositional and
predicate calculi lie in the need for Skolemization and unification in the latter.
Examples of predicate calculus proofs with unification appear in the Prolog
discussion of Section 3.4 (p.120). Because of the nature of Prolog, Skolemiza-
tion is not required. The following example involves all the various features.

Example 4.8 Lewis Carroll Yet Again

We’ve been pursuing an example from Lewis Carroll in a series of examples—
3.9, 3.10, and 4.5—primarily from a propositional calculus viewpoint. This has
required some adjustments because the original statements are more naturally
stated in the predicate calculus. In fact, according to Example 3.9 (p.113),
the given formulas are

VX (e(X) - 5(X))
VX ((~9(X)) — d(X))
=(3x (9%) A (=e(x)) )

and we wish to deduce

VX ((-s(X)) — d(X)).

The propositional forms of the three hypotheses were put in clausal form
in Example 4.5 (p. 149). Those manipulations are easily adapted to give the
FOL clausal forms. The negation of the conclusion is a bit trickier since it
requires Skolemization. To begin with,

(—-vx ((—.s(X)) - d(X)))

(EIX —|(s(X) v d(X)))
= (EIX ((—-s(X)) A (—.d(X)))).

Inside the quantifier we have a clausal consisting of two clauses with one
literal each. To Skolemize, we replace X with a function f. Since there are no
variables besides X, the function has no arguments. The result is

(=s(FO)) A (=d(£()))-

Combining this with the clausal forms of the three hypotheses, we have the
following set of clauses:

Cr = {~(X)s(X)}, Cp={g(Y), d(Y)}, Cs={~9(2),c(2)},
Ca={=s(f())},  GCs={~d(fO)},
similar to (4.9). Resolution follows the same order as that with the clauses
(4.9):
e Resolving C; and Cs using the unification of Y with f() gives {g(f())}.
o Resolving this with C3 using the unification of Z with f() gives {c(f())}.
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e Resolving this with C; using the unification of X with f( ) gives {s(f())}.
o Resolving this with Cy4 gives (1.

Since a function with no arguments is simply a constant, the effect of Cj is to
to unify the variables X, Y, and Z with this constant. Since the same constant
appears in Cy4, a contradiction is reached in the final step. B

Soundness and Completeness

So far we’ve been concerned only with methods. What about a proof that res-
olution is sound and complete and that SLD-resolution is sound and complete
for Horn clauses?

First, there is the matter of Skolemization. As noted in the discussion
concerning Theorem 4.4 (p. 157), this is not a problem for resolution proofs.
Let’s review. Suppose we want to prove S |= 4. The approach is to show that
a = (8 A (—)) is unsatisfiable. Let 8 be the Skolemization of «. With a bit
of thought, you should be able to see that the contrapositive of Theorem 4.4
asserts that « is unsatisfiable if and only if 4 is. (Recall that the contrapositive
of “if A, then B” is “if ~B, then —A.”) As a result, we can simply work with
the Skolemized formulas.

Soundness can be proved by a reduction to propositional calculus as fol-
lows. Imagine a resolution proof leading to [l. In the process of the proof,
various substitutions have been made. Propagate the substitutions backward.
For example, if we resolve {p(X),q(X)} and {-p(Y),7(f(Y))}, the substitu-
tion of X for Y is made. If we then resolve the result with {—¢(b)}, the sub-
stitution of b for X is made. Propagating these substitutions backward, our
three clauses become {p(b), ¢(8)}, {-p(b),7(f(b))}, and {—q(b)}, respectively.
The result of such replacements is a resolution derivation of [J that involves
no unifications. Finally, replace any variables that appear in this derivation
with arbitrary constants to obtain a resolution derivation of [0 without vari-
ables. As discussed in Example 3.10 (p. 116), this derivation can be viewed as
a resolution proof in propositional logic, where we know consistency holds.

Can this idea of reduction to propositional logic be exploited to prove
completeness? Yes, but more argument is required. What needs to be shown
is the following. If a set S of universally quantified clauses is inconsistent,
then the same is true for a finite set 7 of clauses containing no variables,
where each clause in 7 is obtained from a clause in § by substituting terms
for all bound variables and deleting the universal quantifiers. One clause in
S may give rise to several in 7 through various substitutions. Except for the
following example, we won’t discuss the proof of completeness further here.
You’ll have to look in a text on FOL logic for the details.
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*Example 4.9 Reduction to Propositional Calculus
Recall the Prolog definition of append from Example 3.13 (p. 126):

append([],Y,Y). %1
append([X|L],M,[XILM]) :- append(L,M,LM). % 2

Let’s look at the resolution solution to the query :- append([a,b]l,[y,z]).
We’ll mix Prolog and FOL notation, but it shouldn’t be confusing.
The clauses are
Cy = {append([],Y,Y)},
C = {append([X|L], M, [X|LM]), ~append(L, M, LM)},
Cs = {_'append([ay b]) [c) d]) Z)} .
The resolution proof that Prolog constructs is ((C3 *x C3) * C2) x Cy. The first
resolution requires that a be substituted for X, that [b] be substituted for L,
that [c,d] be substituted for M, and that [X|LM] be substituted for Z. (The
expression [X|LM] is simply a function of X and LM.) To distinguish the LM
occurring in this result from the LM in Cj, let’s prime it. Putting all these
substitutions together, Prolog uses
Cili = {“append([awb]» [C, d]: [alL"I])}
Cé = {append([al[b]]’ [C, d]) [aILMI])’ ﬂappend([b], [C, d]) LMI)}'
to obtain {—append([b], [c,d],LW)}. This is resolved again with C;. The result
of the substitution is that LM’ becomes [b|LM] and various other substitutions
are made so that Prolog uses
C3 = {append([b|[]], [c,d], [b|LY]), ~append([], [c,d],LM)}

to obtain {—-append([], [c,d],LM)}. After unification by replacing Y and LM with
[c,d], this is resolved with C; to obtain (1. Making the backward substitution
for LM and LM, we see that Prolog has used the clauses

Cs = {-append([a, b], [c,d], [a,b, ¢,d])},

C3 = {append([a[v], [c, d], [a|[b][c,d]]]), ~append([b], [c, d], [bl[c,d]])},
C3 = {append([bI[]], [¢, d], [bllc, d]]), ~append((], [c,d],[c,d])},

C1 = {append([], [c,d], [c,d))}

to obtain 0. (I've taken the liberty of using the fact that, in Prolog, a term
like [a,b] is just different notation for the term [al [b]].) Since none of
these involves variables, we can simply treat them as being propositional logic
statements:

Ci={-p}, Ci={p,mq}, Ci={g,~r}, Ci={r},
where p is the proposition append([a, b], [c,d], [a|L¥]), and so forth.
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Don’t be misled by this example. It doesn’t show you how to carry out a
reduction to propositional calculus that will lead to a resolution proof. What
we did was start with a resolution proof and derive the propositional calculus
reduction that lies behind it. The difficulty is in showing there is such a reduc-
tion without having a resolution proof to work from. To prove completeness,
we must first do the reduction and then use completeness of propositional
logic resolution to obtain a resolution proof. W

Decidability

A logic is decidable if there exists a method such that, for each formula «,
the method will tell us whether or not « is satisfiable. Since validity of «
is equivalent to nonsatisfiability of ~a (p.137), decidability is equivalent to
being able to determine if a formula is valid.

If a proof method is sound and complete, it will be able to prove the
validity of any valid formula and will never “prove” the validity of an invalid
formula. However, there is no guarantee that the proof method will be able
to tell that a formula is not valid. How can this be? Certainly, if the proof
method terminates, we have an answer one way or the other. But it’s possible
that, for some invalid formula, the proof method will not terminate.

The discussion in the previous paragraph shows that the notion of de-
cidability is stronger than the notion of soundness and completeness. Does it
matter? That is, are there logics of interest that are not decidable and do we
care? A resounding “yes” on both counts. For the first, we have

Theorem 4.6 Semidecidability of FOL

FOL is not decidable; that is, it’s impossible to construct an algorithm
that will determine whether or not a given formula in FOL is valid. (Or,
equivalently, it’s impossible to construct an algorithm to determine satis-
fiability.) However, there exist proof methods for FOL that are sound and
complete. This situation is described by saying that FOL is semidecidable.

We omit the proof of the first statement in the theorem. The equivalence of
the parenthetic statement to the first statement was already proved in the
preceding discussion. The soundness and completeness of resolution proves
the final claim.

Why do we care about decidability? When using FOL, it might be use-
ful to know that a formula is not valid. In some forms of “nonmonotonic”
reasoning, it’s essential. (See Chapter 6.) As a result, the nonexistence of
such algorithms in FOL implies the nonexistence of sound and complete proof
methods for some nonmonotonic logics.
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Exercises

4.3.A. What does a formula in prenex form look like? Give an example of one in
prenex form and one not in prenex form.

4.3.B. What is Skolemization? Give an example of a formula and its Skolemization.

4.3.C. Explain what the statement “Skolemization preserves satisfiability but not
validity” means.

4.3.D. What is unification?

4.3.E. For FOL, describe the method of using resolution to obtain a proof by con-
tradiction.

4.3.F. Since a proof method should establish validity and not merely satisfiability,
why is Skolemization okay when giving a proof by the resolution method?

4.3.G. Explain the statement “FOL is semidecidable.”

4.3.1. Earlier you were asked to give propositional calculus resolution proofs for
Exercises 3.3.13-3.3.15 (p. 119). Now give FOL resolution proofs for them.

The remaining exercises have asterisks because they require familiarity with Prolog’s
list notation.

*4.3.2. What is the FOL resolution proof of :- append([a,bl,Z,[a,b,c]) in
Prolog? Reduce it to propositional logic.

*4.3.3. Prolog finds three answers to :— append(V,W, [a,b]). What are the FOL
resolution proofs? Reduce them to propositional logic.

*4.3.4. Consider the Prolog clauses

sub([],L). rule 1
sub([X|L],[XIM]) :- sub(L,M). rule 2
sub(L, [XIM]) :- sub(L,M). rule 3

(a) Give a simple non-Prolog explanation of when a query sub(L,M) will
succeed, where L is the list a1,...,a; and Mis the list by,...,bm.

(b) Draw the complete Prolog search tree for query sub([a,X], [a,b,al),
indicating which rule is used at each edge. Indicate those terminal ver-
tices (leaves) where Prolog finds a solution.

(c) Translate the rules to clausal form and give an FOL resolution proof for
the query that leads to X=a.
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4.4 Prolog

Let’s review basic Prolog in light of the information in this chapter. The main
goal in doing this is to obtain a better understanding of what happens when
a clean mathematical theory collides with the real world of programming.

Let K denote the knowledge base and T(K') the translation of K into FOL.
Each knowledge-base fact or rule leads to a Horn clause in which all the vari-
ables are universally quantified. Since each knowledge-base clause contains
exactly one predicate that is not negated, it is easily shown that T(K) is con-
sistent: Simply interpret all predicates to always be true. The interpretation
of functions and constants is arbitrary.

When we give Prolog a goal, we are asking it to exhibit some values of
the variables which make the goal true. Thus, the quantifiers on a goal are
existential. However, Prolog negates the goal and attempts to show that it is
inconsistent with the knowledge base. Since negation converts existential to
universal quantifiers, the translation of the goal can be written as a clause v in
which all variables are universally quantified and all predicates are negated.
We now have a collection of Horn clauses in Skolem normal form, just the
form needed for resolution.

Resolution proceeds by resolving clauses, using unification, until the
empty clause is found. When this state is reached, the unifications have made
substitutions that establish the inconsistency of K A (—7). This is just what
we wanted: First, the inconsistency of T(K) A+ is equivalent to T(K) | (—7).
Second, the rcsolution proof has determined values for the variables in the
goal in the process of establishing inconsistency.

Prolog uses SLD-resolution. As discussed earlier, its use of depth-first
search rather than breadth-first or iterative-deepening leaves open the possi-
bility that Prolog may fail to terminate even when an SLD-resolution proof
exists.

When Prolog uses unification, it ignores the possibility that the term being
substituted for a variable may contain the variable. As discussed earlier, this
lack of an “occurs check” can lead to a nonterminating algorithm. It will
probably become standard for Prolog interpreters to implement the occurs
check part of unification.

Now let’s turn to some features of Prolog that are beyond standard FOL.
From the logician’s viewpoint, these are (necessary?) evils. From the program-
mer’s viewpoint, these are features that are needed to make Prolog a viable
language.
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The Cut Operator

Perhaps you’ve been exposed to the debate over the use of goto in procedu-
ral programming. At its height, the argument ranged from ardent demands
for abolition of this habit-forming construct to impassioned defenses of its
moderate use. Among the arguments against goto are:

e It is most often used because the concept being programmed is poorly
formulated.

o It makes it harder to verify that code is correct.

e It encourages poor thought and programming practices.

Virtually the same arguments have been raised in the debate over the Prolog
“cut” operator.

What does the cut operator do and why does it cause problems? Recall
that, at any given stage of its SLD-resolution, Prolog is looking at knowledge-
base clauses whose heads involve some predicate p. If the clause being tried
contains a cut, Prolog will not try any other clauses with head p (after this
one) at this step of the SLD-resolution. How does this fit with the objections
to goto?

Poor formulation: People often use the cut operator because they don’t see
how to structure their code to avoid infinite depth-first search. However, with
a better understanding of the problem and what Prolog does, such structuring
is often possible.

Correctness: By eliminating some parts of the search tree, the cut operator
stops Prolog from fully implementing SLD-resolution. Consequently, we can
no longer appeal to the fact that SLD-resolution is complete.

Poor thinking: The cut operator encourages procedural thinking. To write
good Prolog code, we must think declaratively rather than procedurally as
much as we can. Thus, the cut operator encourages a mode of thinking (pro-
cedural) that leads to poor code. For example, imagine programming the
predicate append(X,Y,XY), which is intended to ensure that the list XY is the
result of appending the list Y to the list X. When writing the code procedu-
rally, you may think of X and Y as being instantiated. When writing the code
declaratively, you are less likely to do so. If your code is well written, someone
will be able to use it when XY is instantiated and both X and Y are not.
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Negation

Suppose we were to allow the Prolog statement “p :- q, -r.”, where - is
FOL negation. The corresponding clause is {p, —q,r}, which is not a Horn
clause because it contains two positive literals. Thus, Prolog cannot allow
negation. Since negation is important, how does Prolog get around this prob-
lem?
The Prolog not connective means failure, not negation. It is often
called negation as failure.

Suppose Prolog encounters not p(X,Y) and it has unified Y with c. In this
case, Prolog temporarily takes p(X,c) as a new goal. If the goal fails, then
not p(X,Y) succeeds, and conversely.

What does this mean in FOL terms? Let ~ denote the Prolog not. Prolog
attempts to show that —p(X,c) is inconsistent with the T(K). Suppose it
succeeds. Since SLD-resolution is a complete proof method, this means that

T(K) E (3X p(X,c)) and so T(K) ¥ (-3X p(X,c)).
Now suppose that Prolog fails. Similar reasoning leads to
T(K) # (3X p(X,c¢)) and, we hope, T(K) E (-3X p(X,c)).

Unfortunately, the hope is not justified, as a simple propositional calculus
example shows: We have both p £ ¢ and ¢ £ p—simply take the propositional
letter the the left of f£ to be true and the other to be false.

Removing some of the negations from the previous paragraph, it is simply
the statement that

The fact “a is not consequence of T(K)” does not imply the fact “—«
is a consequence of T(K).”

Since this is the case, how can we justify using negation as failure in Prolog?
Various justifications are offered.

The most common justification is the closed world assumption, abbrevi-
ated CWA. The closed world assumption says that all facts and rules relevant
to the problem at hand are contained in the knowledge base K. What does
this mean? From a Prolog viewpoint, it means that anything not deducible
from K may be assumed false.

What does the CWA mean from a logical viewpoint? Let a be a formula.
In FOL, the CWA means that the truth value of a is the same in every
interpretation where T(K) is true. In other words, every formula is either
valid or unsatisfiable. In practice, this is unlikely to be the case, unless we
assume that there are some “hidden facts” in K, namely all formulas of the
form —p(a,b,...) that are consistent with the knowledge base.

Another justification of negation as failure is the completed data base as-
sumption. This means that the Prolog knowledge base gives all the ways in
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which a predicate can be true. (Data base and knowledge base are used inter-
changeably.) Here’s what this means. Suppose we attempt to unify the heads
of clauses with p(a, ). Those unifications that succeed produce a collection of
bodies ay, ..., an. The Prolog data base asserts that

(1 V- Vay) — p(a,b).
The completed data base assumption strengthens this to
(1 V-V ay) = p(a,bd).

Using this approach, researchers have established a framework in which Pro-
log’s negation as failure is based on a proof method that is sound and complete.
Thus, Prolog’s negation as failure is an elegant work-around for the problem
of introducing negation in the context of Horn clauses. (As noted earlier in the
discussion, simply allowing logical negation takes us out of the Horn clause
domain.)

Equality, Arithmetic, and Procedural Code

Prolog contains various features not contained in FOL. These include equality,
arithmetic, and procedural code. How do these features fit into the scheme of
things?

Equality is the least disruptive. It can be included in FOL with some
effort. People speak of “first-order logic with equality.” The idea is twofold.

First some axioms must be added to the knowledge base concerning the
equality predicate. Writing e(a,b) to indicate a = b, the axioms logicians
usually add are

o e(X,X).

. (e(Xl,Yl)/\~~/\e(X,,,Yn)) — e(f(Xl,...,X,,),f(Yl,...,Y,.)) for all
n-ary functions f and all n.

o (e(Xl,Yl)/\---/\e(X,,,Y,,)) — e(p(Xl,...,X,,) —>p(Y1,...,Yn)) for all
n-ary predicates p and all n.

This list contains infinitely many axioms because there are infinitely many
choices for f, p and n.

Second it must be proved that proof methods for FOL remain sound and
complete when we insist that e(a,b) be interpreted the way we understand
equality. Don’t the axioms guarantee that equality has this property? No. For
example, we might take e(X,Y) to be true for all X and Y.

This does not entirely solve the problem of allowing Prolog’s equality
because Prolog has another meaning for it: In Prolog X = Y means that X
and Y can be unified.
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Prolog allows arithmetic. This leads to complications that aren’t found
in FOL. Turing and Church showed that it is impossible to solve the validity
problem; that is, there can never be an algorithm whose input is a general
formula and whose output is the validity/nonvalidity of the formula.

Worst of all, Prolog has procedural code. Procedural code causes theo-
retical problems when it interacts with the declarative code. For example,
assert or retract may be used to alter the knowledge base in the process of
a depth-first search attempt to find a resolution proof. These alterations are
not undone by backtracking. More than the soundness and completeness of
SLD-resolution are at stake. We can’t attach any FOL meaning to T(K) = «
when our “proof method” changes T(K)!

Exercises

4.4.A. What is the CWA (closed world assumption)?

4.4.B. How does Prolog handle negation? When might this be reasonable? unrea-
sonable?

4.4.C. How does Prolog procedural code present problems from a theoretical view-
point?

45 FOL and Prolog as Al Tools

Ezxpressing information in declarative sentences is far more
modular than expressing it in segments of a computer program or
tables. ... The same fact can be used for many purposes, because

the logical consequences of collections of facts can be available.

—John McCarthy (1987)

Let’s begin this section by reviewing the goals, problems, and compromises
that led to the logical aspects of Prolog. Then we’ll look at the much fuzzier
issue of the suitability of FOL and Prolog for Al
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Goals and Compromises

The goal was to provide a system that could be used as the basis of intelligent
reasoning—the sort human beings supposedly do. Unfortunately, the lack of
understanding of human reasoning, and commonsense reasoning in particular,
makes it impossible to decide what should be done. As a result, deductive logic
was proposed as a compromise.

Deductive logic is not one thing—you’ve already seen propositional and
predicate logics. Thus, the question becomes “What deductive logic?” There
are two conflicting measures of desirability. On the one hand, a limited form of
logic is more likely to be tractable both algorithmically and theoretically. On
the other hand, a powerful form of logic is more likely to provide an adequate
framework of Al

In such a situation, the best route is usually to start at the simple end
and introduce more complexity only when the present level is well understood
and a serious limitation has been found. The understanding and the serious
limitation provide powerful guides for adding complexity. Furthermore, un-
derstanding the simpler level helps in developing and understanding the more
complicated level.

Propositional logic is probably the simplest level. Theoretically, it has
some very nice features. The semantics is defined by truth tables which are
finite in nature. Thus, truth tables lead to a proof method that is consistent
and complete. Furthermore, truth tables show that, given any formula, we can
decide whether or not it is valid—the decision problem. (This is different from
completeness, which only ensures that a valid formula has a proof.) Finally,
truth tables can provide the basis of a computer algorithm.

As discussed earlier, propositional logic is inadequate for our needs. FOL
is much more promising. There exist sound, complete proof methods for FOL,
which is good. One of the nice features of propositional logic is lost, however:
It’s impossible to design an algorithm that will take as input an arbitrary
formula in FOL and produce as output the answer to “Is it valid?” (This is
the decision problem for FOL.)

The goal of constructing an adequate reasoning method has led from
propositional logic to the compromise of FOL. Even FOL is inadequate as a
general language for reasoning in Al. Various modifications and extensions
have been explored by philosophers and logicians. An explosion of interest
and study began in the 1970s when AI researchers became interested in such
logics and their algorithms. Before considering extensions of FOL, we should
look at another goal that is implicit in all of AI: The existence of adequate
algorithms.

What can we say about algorithms for FOL? Resolution is perhaps the
best known proof method. It requires that the formulas be rewritten in clausal
form, a task which is NP-hard. The resolution algorithm itself can be quite
slow. If such behavior is typical and no better algorithms can be found, we’ll
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have to compromise. Horn clauses provide a reasonable choice for a compro-
mise because

e Horn clauses are already in clausal form.

o We can use SLD-resolution, which involves much less search than general
resolution.

o When we make statements in FOL, they are often in Horn clause form.

What have we lost in restricting ourselves to Horn clauses? Horn clauses
restrict our use of negation. For example, we can’t say

(pA(—g)) — r or, equivalently, p — (g Vr).

Prolog is based on Horn clauses and SLD-resolution, but it goes beyond
them in order to provide a useful programming language. (See the discussion
in the previous section.) Prolog’s addition of procedural features make it prac-
tically impossible to define, much less prove, the soundness and completeness
of its algorithm.

Prolog also compromises by using depth-first search rather than breadth-
first or iterative-deepening search in its resolution. Even limited to Horn
clause logic, such an algorithm is not complete—it can fail to halt when a
proof exists. This compromise forces a further compromise on Prolog, the cut
operator. Why use depth-first search? It’s usually significantly faster than
the alternatives—a compromise for speed. Also, the effect of procedural code
is more easily visualized and controlled by the programmer with depth-first
search. Thus, adding procedural statements almost forces this compromise. As
computers become faster and more parallel, the possibility of using a different
search method for nonprocedural Prolog code becomes more attractive.

We’ve discussed the limitations of FOL and Horn clauses mainly from
a programming perspective. Limitations of FOL from an Al perspective are
discussed briefly in the next chapter as a prelude to ¢hapters on other logics
and on quantitative reasoning methods.

Exercises

The following two exercises explore two simple idealized situations in Prolog search.
In a way, the exercises lie at opposite extremes. The second is probably more realistic
than the first.
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4.5.1. Suppose that a Prolog knowledge base is such that each predicate appears
as the head of exactly k statements. Suppose that the search tree for SLD-
resolution has all its leaves at a depth of d.

4.5.2.

(a)
(b)

(c)

(d)

Show that the tree has k% leaves.

Suppose that the goal is reached by taking, on the average, the lth
choice at each vertex where ! is much smaller than k. (This is not un-
realistic in many situations because the programmer controls the order
of statements in the knowledge base.) Since we lack the tools to deal
with averages, assume it is always ezactly the lth choice. Show that the
number of nodes examined by DFS (depth-first search) is

1-1k“1-1+(k-0w+1)
E-1 k-1 E—-1

There’s some ambiguity here: Just when is a node examined? Consider
it to be examined when it is expanded, rejected as a nongoal leaf or ac-
cepted as a goal.

Hint. Let Dg be the number and express D; 41 in terms of D;.

Under the previous assumptions, show that the number of nodes exam-

ined by BFS (breadth-first search) is ! kd__ll +1.

Hint. Using the approach for D;, compute a formula for the position of
the goal leaf among the k¢ leaves.

Show that when k¢ is large, the ratio of the number of vertices examined
by DFS to those examined by BFS is approximately l';_l lk. What does

this say about the comparative running times of DFS and BFS?

Suppose that a Prolog knowledge base is such that each predicate appears as
the head of exactly k statements. Suppose that failure leaves on the search
tree for SLD-resolution all occur after f steps off the correct path and that
the goal lies at a depth of d. Suppose that the goal is reached by taking
the lth choice at each vertex. Show that the number of nodes examined by
depth-first search is

d@i - 1)k —1)
- — tL
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Are FOL and Prolog Good Choices for Al?

Asking about the appropriateness of FOL and Prolog for Al can stir up tra-
ditional AI debates. We’ll avoid these by taking a narrower view.

People have proposed various criteria for evaluating knowledge represen-
tation and manipulation methods. Those that have been proposed have much
in common. Here’s one possible list of interrelated criteria.

e Completeness: Does the representation method allow us to represent all
relevant knowledge? Does the manipulation method allow us to do what
we wish with the knowledge?

e Flexibility: Can the representation of a given set of knowledge be used in
many ways? Can the method be used in a variety of situations.

o Efficiency: Is it easy to enter knowledge? (This usually requires modu-
larity and a natural representation.) Do the algorithms for manipulation
produce results in a reasonable amount of time?

e Understandability: Is knowledge entered and stored in a clear and natural
manner? How easily can a skeptical user understand the manipulation
method so as to be able to accept or reject it?

e Modularity: To what extent can modifications of the knowledge base be
made locally with little concern for global effects? (Besides simplifying
initial construction, modularity makes extending and updating easier.)

e Debugging: Does the representation method tend to enforce correct usage?
How easy is it to debug the entered knowledge?

For any representation and manipulation method, the answers will depend to
some extent on the use to which it is being put and on the person answering
the questions. Nevertheless, some general observations are possible. The fol-
lowing assessments are based on my own opinions and not just on facts. Thus,
assessments by others may differ because they are based on different opinions.

Aside. Evaluations of Al methodologies later in the text will be much briefer. I
strongly encourage you to carry out such evaluations on your own or in class discus-
sion. It will help you appreciate the strengths and weaknesses of the methodologies.
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Completeness

Completeness depends heavily on the problem at hand. Some limitations of
FOL and Prolog have been pointed out in this chapter and others will be
discussed in the next chapter. The limitation of Prolog to Horn clauses and
negation as failure is often not important. The use of DFS resolution in Pro-
log can have more severe consequences. First, it makes representation of some
information impossible or unnatural, even with the use of a cut. For exam-
ple, suppose we have an equivalence relation such as “sibling.” (To make it an
equivalence relation, we’ll allow someone to be his own sibling.) Call the rela-
tion p. We enter certain facts in the form p(a,b) and would like to be able to
deduce others. The natural way to represent the fact that p is an equivalence
relation is via the definition of an equivalence relation:

p(x,X). P(x:Y) : —p(Y,X). p(x,Y) : _P(x)z))P(Z’Y)'

You should be able to explain why this will not work with DFS and you should
have considerable difficulty attempting to find an adequate remedy.

A potential difficulty with FOL and Prolog is the size of the knowledge
base. For a well defined limited problem, this doesn’t arise. On the other hand,
vaguer and broader situations may raise severe difficulties.

Score: It depends on the problem.

Flexibility

Both FOL and Prolog score high marks for flexibility. Declarative representa-
tion of knowledge is usually quite flexible. It’s more difficult to achieve flexi-
bility when we think about knowledge procedurally. However, this distinction
is not as sharp as it may at first appear. For example, Kowalski observed that
a Horn clause such as p :- q,r can be interpreted procedurally: to solve p,
do q and r.

Score: Good.

Efficiency

There can be difficulty in translating ordinary English into FOL; however, it
is often fairly straightforward to translate more technical information. The
algorithms for FOL can be quite time-consuming.

Prolog has a much more efficient algorithm than that for general FOL,
but it imposes some problems on entering knowledge. The speed of the DFS
can depend heavily on the order in which clauses with the same head are en-
tered. In extreme cases, changing the order can convert a reasonably efficient
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knowledge base into one that leads to infinite searches. Efficiency also relates
to the cut operator and the previous discussion of flexibility.

Score: Good.

Understandability

Often, the knowledge bases in FOL and Prolog are rather easy to understand;
however, some recursively defined predicates can be rather tricky. Naturally,
texts have a tendency to overemphasize such definitions, this one being no
exception. On the positive side, it is usually possible to define and use complex
data structures in Prolog in an understandable way. (It’s also usually possible
to do so in a confusing manner.)

There are two levels at which a user might be skeptical. The first deals with
the soundness and completeness of Prolog’s proof method. We’ve discussed
that in this chapter. The second deals with the particular application: Does
the knowledge base accurately reflect the skeptic’s view of reality? Rather
than looking at the knowledge base directly, users need a mechanism that
explains the steps that led to a particular conclusion and/or the reason certain
information is being requested. There is no explanatory mode built into SLD-
resolution. On the other hand, the sequence of steps in the resolution proof
can easily be adapted to provide an explanation. Expert system shells based
on SLD-resolution frequently include this and other automatic explanations
as options. They also include options for programmer supplied explanations.

Score: Good.

Modularity

Like any language, Prolog can be used to create or subvert modularity. The
form of Prolog statements and the fact that the inference process is controlled
by the interpreter both support the production of modular code.

At another level, Prolog supports and encourages the separation of knowl-
edge statements from reasoning statements (how knowledge should be used).
This promotes clearer thinking, modularity, and reusability. We haven’t dis-
cussed the implementation of new reasoning statements in Prolog; however,
texts relating Prolog to Al often contain such examples.

Score: Very Good.
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Debugging

As with any other language, debugging Prolog can be a frustrating experience.
This is made worse because of the tension between declarative and procedural
code. Programmers are trained to think procedurally and an SLD-algorithm
(or any other) is by nature procedural. On the other hand, much of Prolog is

declarative in nature and it is probably best to approach Prolog programming
with a declarative mindset. When, and if, this adjustment has been made,

Prolog seems much more natural.

An additional complication is provided by the SLD-algorithm. Program-
mers are used to having rather limited system code lurking in the background
(e.g., converting floating point to ASCII for output). The hidden, all embrac-
ing DFS version of SLD-resolution is a new experience. Fortunately, Prolog
provides a trace facility that lets the programmer step through the resolutions.

Another, subtle point goes deeper than declarative versus procedural and
the hidden Prolog resolution engine. This is the different usages for the Pro-
log implication. Purely procedural usage, as in obtaining user input, is fairly
benign. A definitional use can cause problems if it involves recursion or is
bidirectional, as in

married(X,Y) : —married(Y, X).

(which is likely to lead to an infinite loop). More subtle are “real-world”
usages. They frequently involve a time flow, as the following show:

e Diagnostic time flow is from head to body, as in

rain(Locale) : —wet(Street,Locale).

e Causal time flow is from body to head, as in

wet(Street) : —within(Locale, Street),rain(Locale).

e Action-producing time flow is from body to head, as in

heat(Room, on) : —temp(Room,low), occupied(Room).

Why is time flow important? The fact is,

Unless we’re very careful, including statements with different time
flow directions in a knowledge base will probably cause difficulties.

Why is this so? If we can move both forward and backward in time, we have
the potential for creating loops. Unfortunately, Prolog is incapable of detecting
time flow; moreover, the structure of the language doesn’t make considering
time flow a natural part of programming.

Score: Mixed.



Notes 179

Exercises

4.5.A. Give at least three criteria for evaluating knowledge representation and ma-
nipulation methods.

Notes

Aristotelian logic, which predates Aristotle, is a primitive form of FOL; how-
ever, its use of quantifiers is rudimentary and no solid foundation is given. The
publication of George Boole’s The Mathematical Analysis of Logic in 1847 can
be regarded as the birth of mathematical logic and the beginnings of proposi-
tional logic as a mathematical subject. A variety of richer logics—richer even
than FOL—were studied in the years that followed. (Logicians use “stronger”
rather than “richer.”) First-order logic was recognized as a distinct entity in
lectures given by David Hilbert in 1917; however, the ideas had been devel-
oped several years earlier by others. Hilbert advocated basing mathematics on
a system of formal logic. Godel made an important contribution to this pro-
gram when he demonstrated the completeness of FOL in his doctoral thesis.
Hopes for the program were soon dashed, as Godel began proving incomplete-
ness theorems. The first of these is roughly as follows.

Let a consistent logic containing FOL and the ability to add and
multiply integers be given. There exists a valid formula in that logic
which cannot be proved by a sound proof method.

The second incompleteness theorem showed that it is impossible to prove the
consistency of any system this rich without recourse to a still richer system.
Thus, any attempt to prove consistency would lead to an infinite regression
of richer and richer systems of logic. At about the same time, Church and
Turing showed that it is possible to write a program to decide the validity of
formulas. For a discussion of the interactions between logic and the founda-
tions of mathematics, see Moore [4]. Smullyan [11] discusses and proves the
incompleteness theorems.

The search for practical computer algorithms for FOL began in the late
1950s. Robinson’s 1963 discovery of resolution and his proof of its complete-
ness was the turning point in achieving practicality. The restriction to SLD-
resolution of Horn clauses made logic programming practical and resulted in
the birth of Prolog. Robinson has written a nice brief history of logic program-
ming and the discovery of resolution [9] as have Lobo et al. [3]. The pre-Prolog
classical papers of computational logic are reproduced in [10]. For references
on Prolog and on logic for computer science, see the previous chapter. For a
discussion of the computational complexity of logic, see Part II of [7].
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There are a variety of texts on mathematical logic oriented toward mathe-
matics students. One such is by Nerode and Shore [6]. It contains an extensive
annotated bibliography arranged by subject and so can be used as a source
for further references in the history, theory, and applications of logic.

Unification is an example of a situation in which worst-case analysis of
an algorithm can be misleading. There exists an algorithm whose worst-case
running time is linear in the input size. However, the best average-case time
appears to be provided by an algorithm whose worst-case time is exponential
in the input size. See [1] for details.

Prolog texts usually go deeper into the issues that I touched on in the
last two sections. See the Notes of Chapter 3 for some references. In addi-
tion Naish [5] goes much deeper into the problem of negation. Researchers
have explored ways of overcoming Prolog’s shortcomings. For example, see
the monograph [8] and its bibliography.

Biographical Sketches

Kurt Godel (1906-1978)

Born in Briinn in the Austro-Hungarian empire, he received his mathemati-
cal education from the University of Vienna. In 1929, he began a decade of
pioneering work:

o In his 1929 thesis he proved the completeness of FOL.

o In 1931 he proved the incompleteness of any system of logic that was pow-
erful enough to allow elementary arithmetic. That is, in any logical system
allowing mathematics, one can construct statements that can neither be
proved nor disproved within that system. In this regard, John Barrow
quipped that, if one defines a religion to be any system of thought es-
pousing unprovable truths, then only mathematics has been proved to be
a religion.

o In 1937, he proved that the aziom of choice and the generalized continuum
hypothesis are both consistent with standard set theory. “g is consistent
with o” means that, if & contains no contradictions, then adding the as-
sumption that 8 is true will not introduce any contradictions. Essentially,
the axiom of choice says that, given an infinite collection § of sets, one
can assume the existence of a function f whose domain is the collection
of sets such that, for all S € S, f(S) € S. That is, f selects one element
from each set. The generalized continuum hypothesis talks about sizes of
infinite sets. The continuum hypothesis asserts that there are as many
real numbers as there are sets of integers. In 1963 Paul Cohen proved
that assuming both the axiom of choice and the generalized continuum
hypothesis are false is also consistent with standard set theory.
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In 1940 Gédel moved from Vienna to the Institute for Advanced Study
in Princeton, New Jersey. From then on, he worked mostly in philosophy.
However, in 1949, he found a solution to Einstein’s equations of general rel-
ativity that described a rotating universe in which time travel is possible.
(Such research is important in exploring the limits of general relativity and
in attempting to determine the nature of our universe.)

This material is based primarily on the biography in [2].

John Alan Robinson (1930-)

Born in Halifax, England, he received his B.A. degree in classics from Corpus
Christi College, Cambridge, in 1952. In 1956 he received his Ph.D. in philoso-
phy from Princeton University. His interest in automatic theorem proving and
computational logic began in 1960. Working at Rice University, he developed
resolution and refined unification. In 1967, Robinson moved to Syracuse Uni-
versity where he continues his research in computational logic and automatic
theorem proving. For more details on the history of resolution, see [9].
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Let’'s Get Real

Nor is there requir’d such profound knowledge to discover the
present imperfect condition of the sciences, but even the rabble
without doors may judge from the noise and clamour, which they
hear, that all goes not well within.

—David Hume (1740)

The great danger in computer implementation of approzimate
reasoning is the use of inappropriate, unjustified, ad hoc models.
Newcomers in the domain of common-sense reasoning could be
overwhelmed by the multitude of models.

—Philippe Smets (1991)

Introduction

Predicate calculus is designed for determining eternal truths in tidy worlds.
Since the “real world” is seldom so tidy, FOL must be extended, modified, or
abandoned to meet the needs of Al.

After exploring some of the problems the real world causes for FOL, we’ll
look at some partial solutions. You should be wary whenever many partial so-
lutions or explanations exist. Such a multiplicity may indicate that we’ve con-
fused the issue by lumping together different phenomena. Or it may indicate
that we need a new way to look at the phenomenona. Or, worst of all, it may
indicate both. You probably think, “Now he’ll tell us which of these applies
to reasoning in AI.” Sorry. Cogent arguments exist for almost any opinion.

The chapter concludes with a brief discussion of missing and conflicting
information, including the Arrow Impossibility Theorem, which asserts that
there is no ideal method for resolving conflicts.

Prerequisites: Nothing.

Used in: This chapter sets the stage for Chapters 6-9, but isn’t needed in
them.
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5.1 Real-World Issues and FOL

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

—William Shakespeare ( Hamlet)

When we reason about the real world, we usually lack the certainty provided
by FOL—often due to information problems:

e Relevant information may be missing,.

e Like weather predictions, the information we have may not be in a simple
yes/no form.

e Perhaps worst of all, some information may simply be wrong,.

The “obvious” solution of gathering all possible information won’t work: The
sheer volume of information available in the real world is too great ever to be
collected and stored. Worse yet, the very piece of information that’s needed
may be unobtainable or may require too much effort to obtain. In summary,
we must often reason with an uncertain, incomplete information base—just
the opposite of what FOL requires.

As an added complication, the world changes. In some situations, this can
be ignored or can be taken care of by changing our knowledge base. In other
situations we may have to change the reasoning process itself. For example,
in the statement “If I do this, then that will happen and then ...,” time and
causality are integral parts of the reasoning process.

To develop new tools, we have to be clear on what the difficulties are.
The following list classifies the problems discussed above and adds some new
ones. Let’s begin with the organization of knowledge.

e Time: Some things must be done in a certain order; for example, you
can’t bake the ingredients for a cake and mix them afterwards. FOL has
no time sense.

o Relevance: What information (some of which may not be available) is
relevant in the situation being considered? There is simply too much in-
formation to collect it all, so an Al system must decide what it needs.
This is essentially the “frame problem,” which is discussed a bit more on
page 190.

o Causality: We often use causal relationships in reasoning. Sometimes we
reason from cause to effects (deduction) and at other times, from effects
to cause (abduction). Causality is closely related to time and probably
plays a role in the commonsense solution to the problem of relevance.
Unfortunately, it’s unclear how to incorporate it into a reasoning method.
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Now let’s look at some attributes of the pieces of knowledge we have. One
possibility is that it is wrong. Although detecting and correcting erroneous
“facts” is an important problem for reasoning systems, let’s ignore it. Here
are other aspects of knowledge.

o Exceptions: General rules usually have exceptions. For example, the state-
ment “Birds can fly” has exceptions related to species, health, age, and
so on. Exceptions may, in turn, have exceptions.

o Uncertainty: Betting odds and weather predictions are day-to-day events
that reflect uncertain knowledge about the world. Day-to-day use of in-
formation about uncertainty is often confused and inconsistent.

e Ignorance: Many researchers believe there’s a subtle distinction between
ignorance and uncertainty, but some disagree. I am uncertain about what
to include in this text, but I’'m ignorant about whether you’re enjoying it
or not.

e Vagueness: Some concepts are vague. Suppose you ask Joe’s friends if he
is tall. Some may say “yes,” others “no,” and still others something in
between. This is because “tall” is a vague or “fuzzy” concept.

Exercises

5.1.A. List some difficulties that FOL encounters in the real world.
5.1.B. Why is causality important?

5.2 Some Alternative Reasoning Tools

Alice: “Would you tell me, please, which way I ought to go from here?”
Cheshire Cat: “That depends a good deal on where you want to get to.”

—Lewis Carroll (1865)

We’re really in desperate need of some kind of overall
architecture that would enable us to integrate something like a
probabilistic model and something like the classification and
inheritance models into a coherent framework where the right
pieces play the right roles with respect to each other.

—Bill Woods (1991)

A variety of tools have been proposed for dealing with the limitations of the
predicate calculus. There will undoubtedly be more in the future, as well
as improvements of existing ones. Most tools are either primarily qualitative
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(nonnumeric) or primarily quantitative. Here’s a partial list, with references
to further discussion.

Qualitative Methods

Qualitative methods avoid the use of numeric information. Sometimes numeric
information is not relevant. At other times it may be unavailable or unreliable.
Furthermore, human reasoning processes do not normally employ numeric in-
formation. Researchers have proposed a variety of nonstandard logics—any
logics other than FOL. Here are three overlapping categories of nonstandard
logics.

o Nonmonotonic Logics: The logic we’ve studied so far is monotonic, which
means that once a result has been established, it remains true regard-
less of additional information. In nonmonotonic logic, something that was
presumably true may be found to be false in light of additional informa-
tion.

e Temporal Logics: Temporal logics incorporate time explicitly in the syn-
tax of the logic. Although time is numeric in nature, temporal logics are
usually qualitative because they are concerned with the order in which
events occur, not their durations.

o Autoepistemic Logics: FOL focuses on validity and unsatisfiability, largely
ignoring the vast middle ground where something is neither certain nor
impossible. Autoepistemic logic reasons about belief. This approach is
based on modal logics, which introduce other truth values “between” T
and F to reflect concepts like possibility and belief.

Representational methods other than logic are used for qualitative meth-
ods. They include the following:

e Rule Systems: Superficially, rule systems resemble logic—“If A then B.”
In logic such a statement says that the truth of A implies the truth of
B. Furthermore, the contrapositive asserts that the falsity of B implies
the falsity of A. In rule systems, the truth of A implies that the action B
should be carried out. (This action might be assigning a truth value to a
statement as in FOL.) The contrapositive plays no role. Issues of tempo-
ral order arise when “If A then C” is also present and the actions B and
C interact.

o Graphical Systems: Several types of knowledge systems are based on
graphical representations, usually with directed graphs. (See Definition 2.1
(p.36).) The vertices of the graph contain information about conceptual
units and the edges indicate relationships between units.
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C C> .
Cy = “It rained.”
Co = “The automatic sprinkler was on.”
R; = “The grass looks wet.”
Ry = “The sidewalk looks wet.”
R Rs

Figure 5.1 Multiple possible causes C; and results, R;. Suppose the sprinkler sys-
tem is activated only if a built-in moisture sensor decides the ground is too dry. A
simple rule-based system could equally well have the four probable rules “If C;, then
R;” or the four probable rules “If R;j, then C;.” They must be dealt with in differ-
ent ways: if Ry is true, then it is much more likely that Ry is true; if C; is true,
then it is much less likely that Cj is true.

Most of the subjects listed above are discussed in the next chapter. Those
discussions are intended to give you a brief introduction to the ideas, accom-
plishments, and problems of some of the methods.

Quantitative Methods

Commonsense human reasoning tends to break down when information is far
from certain. Qualitative AI methods are useless then, too. The canonical
mathematical method for dealing with uncertainty is probability theory. Al
researchers have used it and have also developed alternative numeric methods
for dealing with uncertainty.

o Bayesian Networks: This method uses probability theory to deal with un-
certainty in causality problems. Roughly, “If A then B” has an associated
probability measuring the chance that A will cause B. Figure 5.1 shows
a simple example.

o Belief Theory: This theory incorporates both ignorance and uncertainty
and includes Bayesian networks as a special case.

o Fuzzy Sets: The notion of set membership is “crisp”; that is, either s € S
or not—there is no intermediate situation. Fuzzy sets are based on the
idea that not all membership is crisp. For example, consider the set of
good students. Some people certainly belong and some certainly do not,
but others are somewhat in and somewhat out—so the concept of “good
student” is fuzzy. Logic can be based on set theory and, similarly, “fuzzy
logic” can be based on fuzzy sets.

Bayesian nets are discussed in some detail in Chapter 8. Chapter 7 con-
tains the probability theory on which Bayesian nets are based. An introduction
to belief theory and fuzzy logic is provided in Chapter 9.
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The notion of fuzzy logic contains a mixture of the qualitative aspects of
logic with quantitative methods. Other such marriages have been attempted
using probability theory. In attempting such a fusion, the meaning of the
probabilities is an issue. Suppose you’re given a statement S and associ-
ated probability p. How should it be interpreted? One possibility is a sta-
tistical statement about the world—p measures the frequency with which S
is true. Another is probabilistic logic, which considers a collection of possi-
ble worlds such that p is the probability of choosing one in which S is true.
Another is based on the idea the probability reflects belief. See Sections 7.1
and 9.1 for further discussion on the meaning and appropriateness of proba-
bility.

Why Such Diversity?

The reasons for the variety of methods fall into three main categories related
to knowledge and its uses:

e Knowledge Content: What we know influences how it is described. In this
text we use the numeric (quantitative) versus purely qualitatitive knowl-
edge distinction to divide up the methods listed above as well as the
presentations in the following chapters. In the preceding brief descrip-
tions, you should be able to find less obvious examples of how content
influences method.

o Understandability and Modularity: If alarge system does not have its knowl-
edge organized in an understandable and modular way, it will collapse.
First, a lack of understandability almost guarantees that someone trying
to develop a knowledge base will enter some information incorrectly, even
though it will appear to be correct. This makes debugging difficult. Sec-
ond, a lack of modularity almost guarantees that unexpected undesirable
interactions between parts of the knowledge base will occur. Attempts
to correct these problems will probably be ad hoc and create new prob-
lems.

e Knowledge Manipulation: How we intend to manipulate the knowledge can
strongly influence our choice of method. To overcome the need for such
a choice, we might try to design a very general system that could rea-
son in many ways. It would probably be faced with severe computational
problems that could be overcome only by restricting the system. Various
methods for restricting reasoning lead to different types of nonmonotonic
logics and to rule systems.
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Exercises

5.2.A. What do nonmonotonic logics allow that FOL does not? modal logics? tem-
poral logics?

5.2.B. What is the basic idea behind fuzzy sets?
5.2.C. What numeric method focuses on causality?

5.2.D. Why is there such a large variety of reasoning systems?

5.3 Incomplete Information

A problem faced in most reasoning situations is that all the
information that may be relevant is not available and that which
is available is confusing and not necessarily relevant.

—Raj Bhatnagar and Laveen N. Kanal (1992)

Life is the art of drawing sufficient conclusions
from insufficient premases.

—Samuel Butler (1912)

Providing complete information on a subject in a knowledge base may be
impractical or even impossible. One approach to the problem is to be as
thorough as possible and then make the closed-world assumption, or CWA:
All relevant information is contained in the data and rules of the sys-
tem. (We’ve discussed the CWA in connection with Prolog negation on
page 169.)

While the CWA is reasonable in certain circumscribed domains such as
commercial expert systems, it is usually unrealistic in daily life. The amount
of information potentially available even in simple situations is so vast that
collecting it and reasoning about it are both impractical. This problem is re-
lated to bounded rationality—reasoning when data and computational power
are limited. People’s brains deal with this superabundance of information as
a matter of course. We somehow use what knowledge we have plus “common
sense.” At times, common sense will tell us to make certain “reasonable” as-
sumptions about missing information; at other times, it will tell us to seek
more information. Designing a system with these abilities is a core problem
for Al

Two key problems have been identified in connection with deciding what
information is (likely to be) relevant in a given situation:
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e The qualification problem is concerned with missing information that may
invalidate a general rule. General rules about the day-to-day world are in-
complete. That is, a general rule requires so many preconditions that it is
infeasible and perhaps impossible to list all of them. Needless to say, it is
therefore impossible to check them. How can we deal with this? A classic
example is

general rule: Birds can fly.
application: Tweety is a bird; therefore Tweety can fly.

The general rule should have preconditions that eliminate penguins,
nestlings, birds with broken wings, and so forth.

e The frame problem is concerned with the fact that, potentially, any
change in the environment may influence any other part of the en-
vironment. How can we reasonably determine what conclusions per-
sist as time passes and actions are taken? As Hayes [13, p.125] put
it,

One feels that there should be some economical and principled way of suc-
cinctly saying what changes an action makes, without having to explicitly
list the things it doesn’t change as well; yet there doesn’t seem to be any
way to do it. That is the frame problem.

The classic example of the frame problem is the Yale shooting problem,
named after the university where it was proposed:

Rule: If a loaded gun is fired at someone, the person dies.
Fact: Fred is alive at time Tp.

Fact: A gun is loaded at time T3.

Fact: The gun is fired at Fred at time T} > Tp.

If T1 — Tp isn’t large, it’s reasonable to assume Fred will be dead because
it’s reasonable to assume that no intervening event unloaded the gun.
However, it’s also “reasonable” to assume that Fred is still alive (and so
the gun was somehow unloaded), because people who are alive at Ty are
unlikely to be dead at 7. Thus one abnormal event or the other must oc-
cur (Fred dies or the gun becomes unloaded). How can a reasoning system
be built with the common sense to decide correctly? Crockett [5] believes
that a solution to the frame problem is the key to designing intelligent
systems.

People continually deal with the qualification and frame problems in
everyday life by using common sense. They do not always reach the cor-
rect conclusion, but that is to be expected in any system where bounded
rationality is important. Similarly, any AI system will also sometimes fail
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to reach the correct conclusion. Designing a system that exhibits such com-
mon sense will require coming to grips with the qualification and frame prob-
lems or finding some unsuspected way of sidestepping them. These problems
are the subject of research and debate in Al, cognitive science, and philoso-

phy.

Exercises

5.3.A. What is the closed-world assumption?

5.3.B. What are the qualification and frame problems and why are they important
in AI?

5.4 Inaccurate Information and Combining Data

It is better 1o know nothing than to know what ain’t so.
—Josh Billings (1874)

Data may be based on expert opinion or on observations. Variations in data
affect results. The media often report data problems related to global is-
sues such as nuclear winter or global warming where obtaining accurate data
is difficult. The classic example of this is Forrester’s World Dynamics [8],
which presents a model of what will happen in the next few decades as-
suming there is no nuclear war. The model requires enormous amounts of
data, most of which are not available and some of which can never be ob-
tained. As a result, most of the “data” presented in the book are simply
the guesses of researchers, who found that the model made dire predictions
that could be averted only by rapid, major, counterintuitive global action. As
the debate developed, other researchers used guesses they thought were bet-
ter and obtained other results. It may never be known whose guesses were
best.

Inaccuracies can be of various types, ranging from totally incorrect infor-
mation to slightly inaccurate numerical estimates. Sensitivity analysis studies
how slight variations in input or computational accuracy affect output. These
variations may be either quantitative or qualitative. (An example of qual-
itative is the ranking of alternatives from best to worst.) Problems where
slight input and/or computational variations produce major output varia-
tions are called ill-conditioned and should be avoided if at all possible. Un-
fortunately, sensitivity analysis is a difficult subject in all but the simplest
cases.
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Example 5.1 Simple Examples of Ill Conditioning

Suppose you want to find the roots of the quadratic equation 22 + bz +c¢ = 0,
where b is a large positive number and c is small. By the quadratic formula,
one of the roots is given by

z= —bt Vb —de which is the same as ¢ = 2
h 2 T —b—VbB2—4c

Mathematically, either formula is an equally good choice. In actual compu-
tations, the last formula is preferable because of roundoff error. To see why
this is so, imagine an error § in computing the square root. In the left-hand
formula, the leads to an error of §/2 in the estimate for &, which is a large rel-
ative error because « is small, about —¢/b. (The relative error is about b6/2c.)
In contrast, setting D = b + v/b2 — 4¢, the second formula leads to an error

that is about
2c 2c 2¢é 2cé

D §-D _D-Ds " DF

Since D =~ 2b, the relative error is about 6/2b, which is much smaller than
b6 /2c.

Estimating parameters from data may be ill-conditioned. For exam-
ple, suppose you believe a sample consists of two unknown radioactive el-
ements in unknown proportions. From the theory of radioactive decay, the
amount of radioactivity produced by the first element at time ¢ should be
about Ae~%; by the second, Be~**. (We use the term “about” because
the theory only predicts average behavior.) The total radioactivity is then
about

r(t) = Ae™® + Be™® where q, b, A, and B are unknown.

Since you can measure r(t) at various times by using a geiger counter or other
instrument, you can collect several data points and estimate the unknown
parameters. Unfortunately, this problem can be ill-conditioned, a situation
that has trapped the unwary neophyte. B

In the design of expert systems, data is often based on the estimates pro-
vided by an expert. One approach to inaccurate estimates is to consult several
experts and then create a reasonable compromise based on their estimates.
Such reconciliation is an important problem in expert system implementa-
tion [2].
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Example 5.2 Sex Discrimination

Here’s a simple example of problems with numerical data. The numbers are
fictional, but the example is based on a situation that occurred at the Uni-
versity of California, Berkeley.

Suppose that a school is divided into an Engineering Division and an
Arts and Sciences Division. In a particular year, 2,000 men and 500 women
applied to the Engineering Division. Of these 70% of the men and 80% of the
women were admitted. For Arts and Sciences, there were 1,000 male appli-
cants and 2,500 female. The admissions rates were 45% and 50%, respectively.
It appears that women were favored over men. But when we combine the fig-
ures for both divisions (do it!), we find that of the 6,000 applicants (3,000
of each sex), we find that the university admitted 1,850 (62%) of the men
and 1,650 (55%) of the women. It now appears that men were favored over
women! W

The Arrow Impossibility Theorem (proved by K. J. Arrow) shows that
reconciling qualitative data can also be a problem. What does the theorem tell
us? Suppose several experts individually rank some alternatives A, B,...,Z
from most likely to least likely. Thus, each expert gives us a list that is sim-
ply a rearrangement of A, B,...,Z. We want to use these lists to prepare a
master list from most likely to least likely, without interjecting any opinions
except our prior assessment of each expert’s accuracy. Imagine a computer
program into which we can feed a list of alternatives, an assessment of how
reliable each expert is, and the experts’ lists. The program will then produce
our master list, resolving conflicts in some reasonable, consistent manner us-
ing some method. What method? The Arrow Impossibility Theorem asserts
that there is no “reasonable” method for the general problem. Thus, we must
force our experts to alter their opinions or we must make some compromises
about what is “reasonable.”

*The Arrow Impossibility Theorem

[The Arrow Impossibility Theorem] has deeply influenced
theoretical welfare economics, moral and political philosophy, and
mathematical approaches to microeconomic theory.

—Jerry S. Kelly (1978)

The aziomatic method has many advantages over honest work.
—Bertrand Russell (1872-1970)

Let’s proceed in three steps:
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e define an “election procedure,” simply called an “election”;
o list the axioms a “fair” election must satisfy; and

e prove that the axioms are inconsistent.

Since the axioms for a fair election are inconsistent, it follows that fair elections
are impossible. An election turns out to be simply the resolving of conflicts
to produce a consensus among experts. Thus, Arrow’s theorem asserts that
there is no “fair” way to do that in general.

Uppercase letters will denote candidates and lowercase letters will denote
voters. In an election, each voter provides some ordering of the candidates.
We’ll refer to the ordering provided by voter ¢ as a ranking by voter ¢ and
denote it >;. For example, with candidates A, B,C and voters ¢, j, k, m, we
might have the rankings

A>B=;C, A=;C>jB, C> A> B, B=,n,C=nA,

where A >; B is read as “voter ¢ prefers A to B” and A =; C as “voter j
prefers A and C equally.” Now let’s say what we mean by an ordering. An
ordering satisfies

(a‘) A Zi A:
(b) A>; B >; C implies A >; C,
(c) exactly one of A >; B, B >; A, and A =; B holds.

Suppose we have some fixed set of at least three voters. An election pro-
gram is a computer program that incorporates our assessment of the voters’
reliability, takes the rankings by the voters as input, and produces an ordering
“>” of the candidates as output.

Arrow stated certain axioms that the ranking > should reasonably satisfy
for the election program to be fair. He proved that the axioms were inconsis-
tent; that is, it is impossible to create a fair election program. Here are the
axioms:

Axiom 1: All conceivable rankings by the voters are allowed as input.

Axiom 2: A unanimous desire is obeyed; that is, if A >; B for all ¢, then A > B
with equality if and only if A =; B for all 3.

Axiom 3: Let primes denote rankings in a second election. Suppose that A >/
B whenever A >; B. If the program concludes that A > B, it must
also conclude that A >’ B.

Axiom 4: There is no dictator; that is, given 7 and >;, there is some ranking
by the other voters such that >; and > are different rankings.

Theorem 5.1 Arrow Impossibility Theorem

The axioms for fair elections are inconsistent; that is, fair elections are
impossible.
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Proof: In the course of the proof, various special cases arise because the
consensus ranking may have ties. Dealing with ties complicates and obscures
the proof, without introducing any new ideas. Therefore, let’s consider only
the case without ties.

The proof will be by contradiction. We assume Axioms 1, 2, and 3 and
then prove that there must be a dictator. This contradicts Axiom 4.

A set D of voters is decisive for A > B if, whenever A >; B for all i € D,
we have A > B. In other words, if the voters in D agree that A is better than
B, then the fair election program must agree, too. Note that the set of all
voters is decisive for every A and B by Axiom 2.

The proof that there is a dictator consists of two steps:

e First, show that if D is decisive for A > B, then it is decisive for C > D
for all candidates C' and D.

e Second, show that if D is decisive for A > B and has more than one
element, then a proper subset of D is decisive for some pair of voters.

Putting these two results together, we can repeatedly reduce the size of the
decisive set for A and B until it contains only one element. By the first step,
the voter in this set is a dictator.

Before carrying out these two steps, we need a simple observation. Suppose
we have an election in which A > B. Then the set D={i |A>; B} is
decisive for A > B. This follows from Axiom 3: The role of the first election
is played by the election that was used to construct D. Any election for which
A >! B for all i € D would play the role of the second election in the axiom.

We now take the first step. Let D be decisive for A > B. Consider an
election in which C' >; A >; Bfori € D and B >; C >; A for j ¢ D. By
decisiveness, A > B. By unanimity, C > A. Putting these together, C > B.
Looking at the election we just created, it follows that D is decisive for C > B.
In a similar manner, using C >; B >; D and B >; D >; C, we get that D is
decisive for C > D.

Now let’s take the second step. Let D; and D2 be nonempty disjoint sets
whose union is D. Consider the election in which

C>; A>; B, forieD,
A>; B>;C, fori€D,,
B>, C>; A, fori¢gD.

Since we must have A > B, only three possibilities exist:

e C > A > B and so D; is decisive for C > B;
e A> B > C and so D, is decisive for A > C};
e A > C > B and so D; is decisive for C > B and D, for A > C.

This completes the second step and hence the proof. W
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Exercises

5.4.A.

5.4.1.

*5.4.2.

Without recourse to mathematical symbolism or terminology, explain the
concept of fair elections. How do fair elections relate to the problem of re-
solving conflicting expert opinions?

Over a period of 35 years, birdwatchers observed the following numbers per
year of a rare species of bird stopping at a swamp along the migratory route.

9 7 7 8 11 12 11 8 6 6
11 15 10 8 0 3 9 11 4 18
21 9 6 6 7 11 14 9 7 6

7 9 11 11 10

A conservation group, realizing that the data fluctuates too much to examine
it year by year, decides to divide it into seven-year blocks and examine the
total for each block. To their horror, they find that the totals are decreasing
steadily from 65 at the start to 61 at the end. (Do the calculations.) You
want to drain the swamp for a housing development. Explain why grouping
the data into five-year blocks might help your cause.

Majority voting on ranking seems an easy way to satisfy the axioms. Suppose
for simplicity that the number of voters is odd and that equality is not
allowed. Define A > B if and only if A >; B for more than half of the voters.

(a) Verify that the axioms are satisfied.

(b) Show that > may not be an ordering—this is a “hidden assumption”
that was stated in our definition of the computer program.
Hint. Look for an example involving three voters and three alterna-
tives.

(c) Where does the proof of the Arrow Impossiblity Theorem break down for

the so-called ordering produced by using majority vote? In other words,
why does the proof fail for the example you constructed in (b)?

Notes

Shafer and Pearl [16] have collected a variety of papers on uncertain reasoning,
arranged them by topic, and provided introductions to the various topics.
These papers are primarily quantitative. Ginsberg [12] has done the same for
the qualitative case. Nilsson gives a discussion of his probabilistic logic in
[14]. A good reference on the problems of combining logic and probability is
Bacchus [4]. Although a monograph, it’s like an introductory text. I'll give
more references when I discuss relevant topics in Chapters 6 and 9.

Bounded rationality is discussed by Russell and Wefald [15]. Some recent
discussions of the frame problem are found in papers in [7]. Most of the papers
are rather technical, but the introduction by Ford and Hayes is not.
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The situation in Example 5.2, where combining information reverses an

ordering, is known as Simpson’s paradoz. See [9] for two examples drawn from
baseball.

Arrow published his theorem in 1950. The proof here is based on [3], which

contains the full proof and a discussion of related topics. Feldman [6] proves
the theorem and discusses other methods of evaluating social alternatives.
For further discussion of the problems encountered in combining quantitative
data see [10] and [11]. They require some background in probability theory, so
you may need to read Chapters 7 and 12 first. Abidi and Gonzalez [1] discuss
some methods for combining input from several robotic sensors.
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Nonmonotonic
Reasoning

It is logically impossible to reason successfully about the world
around us using only deductive reasoning. All interesting
reasoning outside of mathematics involves defeasible steps.

—John L. Pollock (1989)

First ponder, then dare.
—Helmuth von Moltke (1800-1891)

Introduction

Inquiring AI researchers want to know “What is common sense?” because
they want to mimic it. Since most people have common sense, discovering the
answer should be easy. But it isn’t—duplicating common sense has proved
surprisingly difficult.

e Some researchers believe we understand common sense well enough and
that it involves knowing a considerable amount about the way the world
is. They believe that, once we’ve captured this information in a knowl-
edge base, we’ll be able to implement commonsense reasoning. Proposed
implementations are based on some form of nonmonotonic reasoning.

o Most researchers believe that the problem is more fundamental—we don’t
really know how our commonsense reasoning works. Much of the research
on the problem has involved nonmonotonic reasoning methods. Many peo-
ple believe that further research in this area will eventually lead to a
solution.

What is nonmonotonic reasoning and why is it so important?

199
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Ordinary first-order predicate logic (FOL) is timid—if something is uncer-
tain, FOL makes no assumptions. Human beings would get nowhere doing this
in the real world. We all must make (tentative) assumptions all the time—I
assume the building I’m in is structurally sound, you assume the other drivers
will obey the traffic signals, and so forth. If an assumption seems wrong at
the moment, we discard it for that particular situation, a process called non-
monotonic reasoning. Some methods of nonmontonic reasoning are based on
extensions of FOL; others on tools outside mathematical logic. Which is best?
Researchers disagree on this, but they generally agree that it’s important to
find approaches that can provide a solid theoretical foundation—the problem
seems too complex and our ignorance too great to rely solely on intuition and
experiment. Since classical mathematical logic has a solid foundation, some
people look for ways of extending it to deal with uncertainty. Others look for
solutions outside mathematical logic, arguing that commonsense reasoning
employs methods that don’t comfortably fit into the framework of mathemat-
ical logic.

Where does the name nonmonotonic reasoning come from? As a result
of FOL’s lack of assumptions, results stay proved. That is, if you prove the
truth of a statement using only part of a knowledge base, you won’t discover
that your proof is invalid when you look at the entire knowledge base. Such a
theory is called monotonic because adding to the knowledge base never inval-
idates previously discovered truths. In non-monotonic reasoning conclusions
reached by using part of the knowledge base may become invalid when the
entire knowledge base is used. For example, suppose I tell you that Prolog is
a programming language and that good programmers usually learn new pro-
gramming languages easily. From this you’d conclude that a good programmer
would probably learn Prolog easily. Now add the information that good pro-
grammers frequently have difficulty learning Prolog. Your previous conclusion
is invalid. This problem is attributable to the presence of words like “usually”
and “frequently,” which occur in commonsense reasoning but are not a part
of FOL.

In the next section, we’ll examine some issues in commonsense reasoning
and sketch some methods developed to deal with them. In the remaining
sections, we’ll discuss these nonmonotonic approaches in more detail.

Prerequisites: You’ll need some of the graph theory concepts from Sec-
tion 2.1. Knowledge of first-order logic is required—you should be familiar
with the concepts and results in Chapter 3 and in Section 4.1. Other parts of
Chapter 4 are helpful but not necessary.

Used in: No other chapters require this material.
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6.1 Coming Attractions

What’s most depressing is the realization that everything we
believe will be disproved in a few years.

—Sidney Harris (ca 1975)

Suppose that K and K’ D K are knowledge bases and that we use FOL to
show that £ I «. Then K' I+ «, too. What does this mean in ordinary English?
It simply says that if we’re able to conclude « from K, then the additional
knowledge in K’ won’t invalidate «. This property of FOL is referred to as
monotonicity because the set of conclusions that can be reached increases as
the knowledge base increases. It has an extremely important practical conse-
quence: Suppose we can use a small part K of a large knowledge base K/ to
reach a conclusion. Since information in the rest of the knowledge base can’t
invalidate the conclusion, we can ignore the rest of the knowledge base.

By definition, nonmonotonic reasoning methods allow us to reach conclu-
sions that may become invalid as we gain further knowledge. As a result:

It is @ priori necessary to examine the entire knowledge base before
reaching a conclusion.

This leads to a core problem for nonmonotonic methods whose solution is
crucial for designing an algorithm that runs in a reasonable time:

How can we limit our attention to a (small) part of the knowledge ©6.1)
base and still guarantee that the conclusion reached will be correct? ’

In FOL, Prolog avoids examining the entire knowledge base by using Horn
clauses. As a result, Prolog needs to look only at clauses whose heads can be
unified with the predicate currently being examined. Perhaps one should look
for something similar in nonmonotonic reasoning.

In commonsense reasoning we somehow make “reasonable” assumptions
about missing data. This leads to another core problem for nonmonotonic
reasoning methods:

During the reasoning process, how do we detect missing knowledge
. . (6.2)
and make reasonable assumptions about it?

The detection problem is closely connected with problem (6.1). The extent to
which the assumption problem is dealt with varies from method to method.

e At the most basic level, an approach would tell us what choices of
assumptions could be justified as being “rational.” However, it would not
give any reason for favoring one possibility over another. For example, it’s
rational to assume that a car will come speeding around the corner and
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it’s rational to assume that no car will speed around the corner; however,
it’s not rational to make both assumptions.

o At the next level, some procedure for selecting among assumptions is
part of the reasoning mechanism. Because there is a red light and drivers
usually obey traffic signals, it’s more reasonable to assume that no car
will speed around the corner.

e Finally, the decision problem can be brought to the fore: After determining
the gains and losses that can result from various assumptions or actions,
a procedure is used to decide which is best. This requires quantitative
methods, which are outside this chapter’s scope.

Exercises

6.1.A. What distinguishes monotonic reasoning from nonmonotonic reasoning?

6.1.B. What are two major problems that nonmonotonic reasoning must face?

Types of Qualitative Nonmonotonic Reasoning

The first step in analyzing nonmonotonic logic is to delermine what
sort of nonmonotonic reasoning it is meant to model. After all,
nonmonotonicity is a rather abstract syntactic property of an
inference system, and there is no a priori reason to believe that all
forms of nonmonotonic reasoning should have the same logical basts.

—Robert C. Moore (1983)

As already mentioned, we can distinguish two approaches to qualitative
nonmonotonicity—those motivated by a desire to expand FOL beyond its lim-
itations and those motivated by a desire to replace mathematical logic with
more appropriate methods. This distinction has blurred as researchers have
found ways to translate between various reasoning methods. Nevertheless, it’s
still a useful distinction.
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Nonmonotonic Logics

We want to adapt FOL by adding statements of the form “typically «,” mean-
ing that o is true except in “unusual situations.” For example, “typically birds
fly,” which could be written in an FOL-like form as

VX (typically (bird(X) — flies(X))). (6.3)

Unfortunately, this doesn’t tell us how to detect the unusual situations in
which « is not true. We could specify unusual situations in FOL by ANDing the
negation of a variety of conditions with bird(X). This would give us something
like

VX ((bird(X) A = (penguin(X) V injured(X) v - --)) — ﬁies(X))) ,  (6.4)

where the elipsis indicates other possible conditions. This is unacceptable for
various reasons. Here are two.

e Objection 1: Every time we discover a new condition, we must modify
(6.4), eventually obtaining an extremely long statement.

e Objection 2: More important, (6.4) doesn’t accomplish what we want.
Unless we can actually prove that X is neither a penguin, nor injured,
nor ..., we can’t use FOL and (6.4) to conclude that X can fly. In
practice, when you know Tweety is a bird, you assume that Tweety can
fly unless you have some information that makes Tweety abnormal (a
penguin, injured, etc.).

Such objections show that FOL is inadequate for formulating nonmonotonic
ideas such as (6.3).

Various nonmonotonic logics have been proposed. Perhaps there are differ-
ent aspects of reality for which different logics are needed. Perhaps researchers
have not yet discovered the right logic. Or perhaps both are true. Only time
will tell. Here are the four main approaches to nonmonotonic logic.

o Default Logic: Default logic works with statements like (6.4), but it treats
the negation appearing there in a different manner. Instead of proving that
penguin(X) and so on are each false, default logic insists only that it not
be possible to prove them true. In other words, default logic meets Objec-
tion 2 head on. With this modified interpretation of negation, statements
like (6.4) are called defaults. Default statements are rules of inference—
after we check the left side of (6.4), we can conclude that X flies. Such
statements cannot be manipulated as in FOL. In particular, we can’t re-
place (a — @) with (8 V (-«a)). (More on this later.)

You may have noticed that the preceding discussion sounds like Pro-
log’s negation as failure: Instead of proving —penguin(X), it determines
that it cannot prove penguin(X). We discussed Prolog’s negation as failure
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on page 169 and will explore its connection with nonmonotonic reasoning
in this chapter.

At first sight, default logic seems to be a complete resolution of the nonmono-
tonic reasoning problem. Unfortunately it’s not. First, default logic doesn’t
tell us how to reason; that is, how to derive results. Second, default logic says
that, if we can’t prove that X is a penguin, then we may assume that X is not
a penguin—not that we must assume it. Which defaults should we assume?
What if defaults contradict one another? Default logic lets us determine if a
certain set of defaults can be assumed by a “rational” person, but it doesn’t
tell us which defaults should be assumed.

e Defeasible Reasoning: Superficially, defeasible reasoning is like default
reasoning in that it augments FOL with rules of inference for dealing with
rules that have exceptions. There are important differences. Default logic
emphasizes the logical concepts whereas defeasible reasoning emphasizes
the reasoning methods.

e Autoepistemic Logic and Modal Logics: Epistemology is the branch of
philosophy that investigates the nature and limits of human knowing.
Autoepistemic reasoning involves reasoning about one’s own knowledge.
For example, if I have no knowledge that I am an ax murderer, I may
conclude that I’m not an ax murderer. Not all lack of knowledge can be
used this way. For example, although I do not know that all students
will do exceptionally good work in this course, I should not conclude
that they will—although they might like me to do so. Somehow, I must
distinguish between knowledge I would have if it were true (ax murderer)
and knowledge that there is no reason to believe I would have (future
student performance).

Autoepistemic logic is an example of modal logic, which is an extension
of FOL that introduces one or more operators to indicate states of belief
or (partial validity).

o Circumscription: Circumscription extends the knowledge base rather than
the language of FOL. For example, suppose we have

VX ( (bird(X) A normal(X)) — flies(X)).

A circumscriptive approach might attempt to make the predicate “nor-
mal” apply to as many terms as possible. This sounds very much like de-
fault logic and, indeed, there are connections between the two approaches.

Temporal reasoning—reasoning about situations in which time plays a central
role—is often based on adaptations of these methods.

All the above methods modify the interaction between FOL and a knowl-
edge base in some manner in order to deal with beliefs. Here’s a quick de-
scription of some major differences:
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o Default logic isolates beliefs in a new type of knowledge-base statement,
the default rule, which is used to produce additional FOL statements (in
other words, assumptions). These assumptions supply information that
is incomplete in the FOL part of the knowledge base. Thus, beliefs are
contained in a part of the knowledge base that has limited interaction with
the remainder and all reasoning is done in FOL. The theory describes how
to decide if a set of assumptions is acceptable, but it doesn’t tell us how
to find such sets.

e Defeasible reasoning introduces new reasoning rules as well as new types
of knowledge-base statements on which these rules act. The amount of
FOL that is allowed depends on the default logic. Some limit the FOL
formulas to Prolog-like statements.

o Autoepistemic logic extends the language of FOL by adding the ability
to indicate that something is believed—a modal operator. Just as it is
necessary to develop a new theory when we move from propositional logic
to FOL, it’s necessary to develop a new theory when we move from FOL
to autoepistemic logic.

o Circumscription introduces predicates for abnormality, but makes no
changes to FOL and introduces no new types of statements. Typically,
we introduce one or more predicates whose truth indicates an abnormal
situation. Beliefs are expressed as predicate logic rules in the knowledge
base by insisting that the abnormal predicate be false—the situation is
not abnormal. If the abnormal predicates were always false, the knowledge
base would be inconsistent. To maintain consistency, circumscriptive rea-
soning adds new FOL statements to the knowledge base that assert that
abnormality is true in certain situations. The number of additional state-
ments (abnormalities) should be kept small.

Other Approaches

Another way of overcoming the problems with FOL is to look for approaches
that are not based on mathematical logic. This strategy leads to alternative
methods for both monotonic and nonmonotonic reasoning. Here are three
important ones:

e Rule Systems: Although we’ve viewed Prolog clauses as a part of FOL, we
can instead view them as rules: Whenever the conditions in the body of
a clause are satisfied, the rule (i.e., clause) gives us the head of the clause
as a new fact. Obviously, the FOL and rule system approaches to Prolog
are quite similar.

e Graphical Methods (Semantic Nets): Some people—including me—use the
term semantic nets to designate graphical reasoning methods in general;
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others use it to designate a particular type of graphical reasoning struc-
ture. Semantic nets use directed graphs with knowledge stored at both
the vertices and the edges. Roughly speaking, vertices contain facts and
edges describe relationships. For example, “a cat is a feline” could be rep-
resented by “cat” and “feline” vertices joined by an “1s-A” edge. The rules
for reasoning with a semantic net are described in terms of the net’s local
structure; for example, if there are 1s-A edges from u to v to w, we can
deduce the edge u 15-A w.

Rule systems and semantic nets were developed in the search for methods
where the representation and manipulation of knowledge seemed more natural
than FOL and nonmonotonic logics. While the inventors of nonmonotonic
logics emphasized provable results over representation and algorithms, the
inventors of alternative systems emphasized representation and manipulation,
often ignoring theoretical foundations. Unfortunately, intuition alone doesn’t
provide answers to questions like “Are the algorithms guaranteed to produce
consistent results?” For that, mathematical rigor is required.

In their search for secure theoretical foundations, researchers have of-
ten translated alternative approaches into nonmonotonic logics. Thus, graph-
ical methods can usually be viewed as alternative representations of certain
nonmonotonic logics. Should we therefore abandon such systems in favor of
mathematical logic? No. In the first place, the interpretations are sometimes
incomplete. In the second place, the form in which something is represented
is important. In other words, choose the tool to fit the task. While mathe-
matical logic might be the best tool for proving something about a reasoning
method, it may not be the best tool for representing knowledge or using the
method. You’ve already seen this in connection with Prolog: The resolution
algorithm is based on finding a contradiction, but the Prolog interpretation
of it is more direct—it traverses a tree looking for solutions. (See p.129.)

Exercises

6.1.C. What are the four main approaches to nonmonotonic logic? In FOL we have a
reasoning method and a knowledge base. How do these three methods adjust
the reasoning method and/or knowledge base to allow for nonmonotonic
reasoning?

6.1.D. What are two approaches to (nonmonotonic) reasoning that aren’t based on
logic?

6.1.E. Why is a semantic net useful even if it can be described by a nonmonotonic
logic?
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How Well Do Nonmonotonic Methods Work?

Nonmonotonic reasoning has turned out to be far more difficult
than any of us ezxpected. The fundamental advantage of working
with formal methods—making falsifiable claims—is that we are
forced to address these difficulties, to confront the nasty surprises
that lie between speculation and practice.

—Matthew L. Ginsberg (1991)

How much will nonmonotonic methods contribute to Al in general and to
commonsense reasoning in particular? What will be the relative importance
of qualitative methods versus quantitative methods? It’s too soon to tell;
however, it’s possible to make some general observations. Let’s do this against
the backdrop of goals, difficulties, and compromises.

Goal

The holy grail of nonmonotonic researchers is commonsense reasoning. It’s
generally accepted that an important facet of such reasoning is the ability
to reach sensible conclusions when faced with incomplete and/or uncertain
information. Hence, designing methods for doing so is a primary goal of Al
research on nonmonotonic reasoning.

Difficulties

Nonmonotonic methods have been quite successful in some limited environ-
ments, but seem far from being able to duplicate commonsense reasoning.
Some believe the main problem is inadequate knowledge bases; others believe
it is the reasoning tools. Still others believe that both the tools and knowledge
bases need major improvements. Another possibility is that the problem is too
complex to attack directly; instead, a reasoning system and a basic knowledge
base should be combined with a learning system that augments the knowl-
edge base. A few believe that commonsense reasoning is an impossible goal.
Only time will tell who is right.

In an earlier discussion we identified some core problems for nonmonotonic
reasoning: limiting search of the knowledge base, detecting missing knowledge,
and making reasonable assumptions. (See (6.1) and (6.2).) Extending FOL
makes these problems essentially intractable:

e Problem 1. FOL is NP-hard: Since no efficient algorithm is known or likely
to exist for FOL, the same is true for any extension of it. (As we noted on
p. 172, preparing a general FOL knowledge base for Horn clause resolution
is NP-hard.)
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e Problem 2. FOL is semidecidable: Missing information is detected by being
unable to prove something: If the truth of (—a) is not implied by the
data, we may be allowed to assume that « is true. Unfortunately, FOL is
semidecidable. This means that although we can create algorithms (such
as resolution) that allow us to prove any statement which is true in an
FOL language, it is impossible to design an algorithm that will allow us
to decide if statements are true or false. (See Theorem 4.6 (p.165) for
more details.) What this means in practice is that there cannot be an
algorithm to decide if statements are undecidable; that is, we can’t create
an algorithm to decide if additional information is needed to determine
the truth or falsity of a statement.

Regardless of whether or not the method uses FOL, making assumptions is a
source of difficulties. Here are some:

e Problem 3. Consistency is hard: Whatever assumptions are made should
be consistent with one another and with the data base. It is often difficult
to prove consistency.

o Problem 4. Selecting assumptions is unclear: If the consistency problem
is overcome, how should the reasoning system choose between compet-
ing consistent assumptions? The problem here is both conceptual (what
should the decision criteria be) and procedural (how can they be imple-
mented in a reasonable manner).

Compromises

The first two problems with FOL can be dealt with in at least three ways:

1. The expressive capability of the language can be limited to the point
where both problems disappear.

2. The difficulty can be dumped onto the shoulders of the knowledge-base
designer.

3. They can be ignored. In Problem 2, for example, if a proof of § is not
obtained in a reasonable period of time, it could be assumed that 3 cannot
be proved.

The usual compromise is a blend of the first two methods. Prolog is an example
of such a compromise in FOL. While the third way is probably akin to the hu-
man approach, its lack of precision poses theoretical difficulties and researchers
have generally avoided it. I believe major breakthroughs in large-scale non-
monotonic reasoning await the development of good methods for trading time
and information that are implicit in the third approach.

Limiting the expressive capability of the language can make dealing with
assumptions easier, too—particularly the problem of determining their con-
sistency.
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One “solution” to the problem of choosing between competing assump-
tions is to declare Problem 4 to be a separate issue outside the reasoning
process. That is, the reasoning process determines what assumptions are rea-
sonable and the user must employ some other method for choosing between
them. Splitting a problem up this way is called divide and conquer, which is
an effective tool for attacking complicated problems.

If the reasoning method must actually decide what to assume, an obvi-
ous approach is to assume as little as possible. This is not as easy as it sounds
because sets of assumptions frequently conflict with one another. A conserva-
tive compromise is to make only those assumptions that, in some sense, must
be true. Unfortunately, this approach may result in too few assumptions. For
example, if two completely conflicting assumptions are possible, the system
would assume nothing. Another solution is to have some method for choos-
ing one set of assumptions over another. For example, given two assumptions
(“Birds fly” and “Penguins don’t fly”), we choose the less general one (“Pen-
guins don’t fly”). Compromises are needed to avoid slow algorithms. The
following example illustrates some problems facing anyone who must decide
among conflicting assumptions.

Example 6.1 Which Defaults Should Be Assumed?

Nixon-Republican-Quaker: Nixon is a Quaker and a Republican. Without con-
trary evidence, Quakers are doves and Republicans are not. (Although Nixon
is deceased, we’ve retained the present-tense phrasing in this classic 1960s
example.)

Consider the query “Is Nixon likely to be a dove?” Using the “Quaker,”
information, we could assume that Nixon is a dove. Unfortunately, this is
opposed by the “Republican” information, which leads to the belief that Nixon
is not a dove. What should we do? If no other knowledge is available, the most
reasonable response to the query is “Insufficient information.”

Mollusca: Species in the phylum of Mollusca, which includes clams and snails,
normally have external shells. Mollusca contains the class Cephalopoda, which
includes squid and octopi. Cephalopods normally lack external shells; however,
they include the genus Nautilus, and nautiloids normally have external shells.

Consider the query “Is the chambered nautilus likely to have an external
shell?” Since nautiloids normally have external shells, we might answer “Yes.”
On the other hand, since nautiloids are cephalopods and since cephalopods
generally lack external shells, perhaps we should say “No.” On the third hand,
since cephalopods are mollusks, which generally have external shells, perhaps
“Yes” is correct after all.

What should we do? Researchers generally agree that the most restrictive
condition should be used. Since the three conditions are nautiloid, cephalopod,
and mollusk from most restrictive to least, we should use the information that
nautiloids normally have external shells. To carry this out in general, we need
an operational definition of “more restrictive.” W
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Exercises

6.1.F. What are some problems encountered in designing a method for nonmono-
tonic reasoning?

6.1.G. What are some methods for dealing with these problems?

6.2 Default Reasoning

If I knew what was true, I’d probably be willing to sweat and
strive for it.

—H. L. Mencken (1918)

Introduced by R. Reiter in 1980, default logic is still an active research area.
We’ll begin with an informal discussion of the meaning and usage of defaults
and then explore the formal ideas. The definitions are phrased in terms of
FOL; however—

All references to FOL in the following definitions can be replaced by
references to propositional logic with no changes.

Let’s assume such replacements whenever we use propositional logic.

Recall the semantic and syntactic definitions of consistent: Semantically,
we say that f is consistent with S if there is an interpretation in which both
f and the formulas in S are true. Syntactically, 8 is consistent with S if
S I (=B). These definitions are equivalent in FOL because of the soundness
and completeness of the proof method for FOL. We’ll extend the syntactic
definition to default logic.

Definition 6.1 What Defaults Mean
If o, B, and v are formulas in FOL with no free variables, then

a:f

——— which we can also write as (a:f) — 7

is a default rule, also called a default. (The notation (a : 8) — v is not
standard.) This rule means “if « is true and f is consistent with what is
true, then we may assume that v is true.” There are two special cases:

o The rule (o :) — vy means “if a is true, then we may assume that vy
is true.” This is not the same as & — v, which says that if « is true,
then we must assume that 7 is true.

e The rule (: f) — ¥ means “if B is consistent with our beliefs, then
we may assume that v is true.”
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To indicate that (a(X) : B(X)) — v(X) is a default rule when any sub-
stitution is made for X, we write

o(X) : B(X) o(X) : A(X)
VX ( 200 o 69

The extension of this definition to more than one variable should be ob-

vious.
Often, D and W denote the sets of default and FOL formulas, respec-
tively.

> or, more simply,

Definition 6.1 says that we may assume ¥ is true—not that we must assume
it is true. Because of the may/must distinction, it’s important to regard (6.5)
as representing a collection of default rules instead of one single rule. If the
substitution of ¢ for X gives an inconsistent 3(t), then we cannot assume ¥(t).
If the substitution of ¢ for X gives a consistent 3(t) and a true a(t), then we
may assume <y(¢) but need not do so. Consequently, we might assume some
7(t)’s and not others.
Let’s look at Example 6.1 in terms of default logic.

Example 6.2 Nixon and the Nautiloids Revisited

Nixon-Republican-Quaker: Let’s use predicates for dove, Quaker, and Repub-
lican and denote them by initials. Each takes one argument—a person. With
this notation, the Nixon information translates into the FOL and default for-
mulas

W = {¢(n), r(n)} and D = {Q(Xi(;(d)(x ) "(Xl d’(;('d)(x )}, (6.6)

respectively. The only constant in the language £ is n and the only predicates
are ¢, r, and d.

Since ¢(n) is true and d(n) is consistent with W, the first default
tells us that we may assume d(n). If we do so, we have the “extension”
S = {q(n), r(n),d(n)}. Since ~d(n) is not consistent with S, we may not apply
the second default rule.

On the other hand, if we’d started with the second default rule instead of
the first, we could have obtained &’ = {¢(n),r(n), ~d(n)}.

Mollusca: In this case, the translation is
W= {VX(n(X) — (X)), VX (e(X) — m(X))}
Do {m(X) ce(X) e(X):-e(X) n(X): e(X)} ' (6.7)
e(X) T —e(X) T e(X)

The only predicates in the language £ are m, ¢, n, and e. The only constant
will be a. By adding n(a) to W, we’d be in a position to answer the query
posed in Example 6.1. Let’s consider two other cases first.
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If we add m(a) to W instead, the first default rule tells us that we may
assume e(a). There is no way we could use any other default rule, so it’s
reasonable to assume e(a).

Suppose we add c(a) to W instead. Now W tells us that m(a) is also true.
Consequently, we may assume either e(a) using the first default or —e(a) using
the second default.

Finally, suppose we add n(a) to W. Now W tells us that ¢(a) and m(a)
are also true. Consequently, we may assume either e(a) using the first default,
—e(a) using the second default, or e(a) using the third default. ®

Default logic extends FOL by allowing default rules in the knowledge base.
A central concept is the idea of an extension, which consists of everything that
can be deduced given the FOL part of the knowledge base and some additional
formulas. Such formulas v are given by default rules (o : §) — 7. A recursive
definition is provided for deciding when something is an extension—that is,
deciding whether something is based on reasonable assumptions concerning
the default rules. The theory provides neither an algorithm for producing
extensions nor an algorithm for choosing which of several possible extensions
is best. This limits its usefulness.

The difficulty with producing extensions is essentially a consistency issue.
Normal default rules are an important special case of default rules because
they overcome this problem. As a result, an algorithm exists for producing
extensions when all the default rules are normal, provided the semidecidability
problem of FOL is dealt with—we must be able to decide that a formula cannot
be proved. This can be dealt with by restricting the allowable formulas to some
subset of FOL as discussed on page 208. Fortunately, many default knowledge
bases can be written in normal form.

Extensions

The idea of assuming defaults can be described explicitly by the notion of an
extension. Underlying the idea of an extension is the concept of a rational set
of beliefs. Suppose we have A = (D, W). Our beliefs should certainly include
W and its consequences in FOL; however, we may believe additional formulas.
Suppose that (o : f) — v is in D, that « follows from our beliefs, and that
B is consistent with them. Then it’s reasonable to believe v as well. Is more
required for rationality? Yes, what we believe should be what is deducible from
applying FOL to W and those v’s obtained from D by the above procedure.
Writing this out in an explicit manner requires a somewhat convoluted and
cryptic definition. We’ll need to exercise a bit of care in stating the definition
in order to get it correct. The rest of this subsection is devoted to the definition
of an extension and a discussion of what it means.
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Definition 6.2 Some Terminology

Suppose we are given a predicate logic language £ as in Definition 3.3
(p-106). For any collection S of FOL formulas, let Th(S) be the set of
all FOL formulas « such that S F «; that is, Th(S) is the collection of
all results that can be derived from S in £. Usually, we’ll simply write
Th(S), with £ being understood.

Again, assuming a FOL language £, let W be a collection of FOL
formulas and let D be a collection of default rules. We call A = (D, W) a
default theory.

In order to define an extension of a default theory, we need to make use
of what is known as a nonconstructive definition; that is, a definition that
doesn’t tell you how to construct the object being defined. Nonconstructive
definitions don’t guarantee that the thing being defined exists or that it is
unique. You’ve already encountered such problems in calculus, as the following
example illustrates.

Example 6.3 Nonconstructive Definitions in Calculus
The derivative of f(z) is defined by
1oy — i J(@+h) = f(z)
f(=) = Jim h '

Although this definition appears to be constructive, it relies on the notion of

limit, which is nonconstructive:

We say lim;_,4 g(2) = L if, for every € > 0, there is a § > 0 such that
|f(z) = L] < € whenever 0 < |z — a| < 6.

Because this definition is nonconstructive, we must prove that if a limit ex-
ists, it has only one value; that is, we can’t have limy_,9(z) = L and
limy—q,9(z) = M with L # M. To avoid the problems of nonconstructive
definitions, we prove theorems that allow us to compute derivatives construc-
tively; e.g., (z*) = nz"~! and (f(g(z))’ = f'(9(z))g'(z).

We could define the indefinite integral of a function f(z) to be a function
F(z) such that F'(z) = f(z). This definition is also nonconstructive. One of
the basic results of calculus states that if Fi(z) is any function which is the
indefinite integral of f(z), then every indefinite integral of f(z) is of the form
F(z) + C. This result is satisfactory in one way because it tells us what all
indefinite integrals of f(z) look like in terms of one of them. In other ways,
however, it is unsatisfactory. For example, it doesn’t tell us whether f(z) has
an indefinite integral. (In fact, it may not.) W

In attempting to define an extension, let’s begin with an appealing, but
incorrect, definition and then explore how to correct it. We’re doing this be-
cause the complexity of the correct definition should be justified.
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Definition 6.3 Extension of a Default Theory (Incorrect)

Let a default theory A = (D, W) be given. For any collection S of FOL
formulas, define As to consist of W plus all formulas oo — 7 for which

-f ¢S and -a;—ﬂG’D.

If Th(As) = 8, we (incorrectly) call S an extension of A.

In this definition, we can think of S as a set of beliefs and we can think of Ag
as W plus those FOL formulas our beliefs tell us we can obtain from D. The
equation Th(Ag) = S then says that what we can deduce from our beliefs
and A is precisely our beliefs.

Where does the definition go wrong? The heart of the problem is as fol-
lows. If we are given ¢ — b and -b in FOL, then we can conclude —a. If
we are given (a :) — b and -b, we find nothing in the definition of defaults
about concluding —a. In other words, defaults work only from left to right,
but ordinary implication works in both directions because of the contrapos-
itive, (-b) — (—a). This causes problems in Definition 6.3 because -6 € W
and ¢ — b € D lead to

-be As and (a—»b)GAs

for all S. In other words, @ — b allows more reasoning than (a :) — b because
of “contrapositive” reasoning based on (-b) — (—a). How can this problem
be resolved?

e An obvious solution is to allow such “contrapositive” reasoning with de-
fault rules. There’s a good argument against allowing it: Sometimes it’s
not wanted; and if it ever is wanted, we can simply include (—y : ) —
(—«) as another default rule. As a result, such “contrapositive” reasoning
is not allowed with defaults and another resolution of the problem with
Definition 6.3 must be found.

e Another approach is to try to define a new connective, say —, that pre-

vents such reasoning. Unfortunately, this can’t be done within FOL—see
Exercise 6.2.1.

e Yet another approach is to check that « is true and then include . This
leads to a better definition of Ag—in fact, to the one that is used.

A careful refinement of the last idea could lead to the following definition. In
keeping with standard notation, we’ll use I'(S) in place of Th(As) and add
the condition Th(I'(S)) = I'(S) to ensure that I'(S) does in fact include all
the FOL formulas that can be deduced from something.

To simplify future discussion, we’ll assume that there are no rules of

the form % in D. With some care, this constraint can be removed.
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Definition 6.4 Extension of a Default Theory

Let a default theory A = (D, W) be given and let S be any collection of
FOL formulas. Define I'(S) to be the set of FOL formulas such that

(a) Th(I(S)) =T(S) 2 W.
(b) If £ € D, a € T(S), and ~f ¢ S, then v € I(S).

(¢) T(S) is a minimum with respect to (a) and (b); that is, if I satisfies
(a) and (b), then IV D I'(S).

Finally, if I'(S) = S, we call S an eztension of A.

Definition 6.4 is one of the more convoluted definitions in this text. Think
about it this way. § is what someone says is a reasonable set of beliefs given A.
We then construct I'(S) to be those things we ought to believe based on A and
the beliefs S. By (a), what we ought to believe should be closed under logical
deduction (Th(I'(S)) = I'(S)), and we ought to believe what is absolutely true
(T'(S) 2 W). By (b), we ought to believe results of default rules if we believe
a and if § doesn’t contradict the reasonable set of beliefs. By (c), we don’t
include anything in what we ought to believe unless it’s forced upon us by
A and S. Finally, if the original set of beliefs was reasonable, this procedure
should merely have reconstructed it; that is, ['(S) = S.

The definition contains two rather nasty twists. First, in (b) we use I'(S)
to help define itself. Is such a procedure valid? Yes, when used carefully. In
this case, we can simply use (b) iteratively to build up I'(S)—every time we
add more to I'(S), we may find more rules with « € I'(S). In fact, this iterative
application is the basis of Theorem 6.1 (p.217). Second, in (c) we insist that
I'(S) be a minimum. How do we know there is a minimum? Example: There
is no smallest rational number greater than 0. Example: There is no smallest
set X C A ={1,2,3,5} such that every element of A is either in X or a sum
of two numbers from X—both X = {1,2,3} and X = {1,2,5} are minimal
(nothing smaller works) but neither is a minimum (everything that works is
larger) because neither contains the other. The proof that the minimum in
(c) exists is left as Exercise 6.2.3.

Some examples of finding extensions should clarify how the definition
works.
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Example 6.4 Some Extensions

Nixon-Republican-Quaker: Consider the default theory (6.6). It has two default
extensions, namely

Th({q(n), r(n), d(n)}) and Th({q(n), r(n), —-d(n)}) . (6.8)

Why are these extensions and why are there no other extensions?

Suppose £ is an extension. By definition, it must contain W. There are
four cases to consider regarding d(n)—whether or not it and/or its negation
are in £. Here are the cases and the results.

e d(n) € £ and ~d(n) € &1 We cannot apply the first default in (6.6) since
—d(n) € £. We cannot apply the second default since d(n) € £. Hence
I'(£) = I'(W) and so does not contain d(n) or =d(n). Hence we cannot
have I'(£) = £. Since £ was assumed to be an extension, this case doesn’t
occur.

e d(n) € £ and ~d(n) € £&: We can apply the first default to conclude that
d(n) € T'(£); however, we cannot apply the second since d(n) € £. Thus
I'(€§) = Th(W U {d(n)}).

e d(n) ¢ £ and ~d(n) € &: Arguing as in the previous case, we get
I'(£) = Th(W U {~d(n)}).

e d(n) ¢ £ and ~d(n) ¢ £ Now both defaults apply and so d(n) and
—d(n) are both in I'(£), which is therefore larger than £. Since £ is an
extension, this case can’t occur.

What decision should we reach based on the two extensions in (6.8)7 A
very conservative approach is to make only those assumptions that lie in all
extensions. Doing this means no assumptions would be made concerning the
truth or falsity of d(n).

Mollusca: In a manner similar to the above, you should be able to determine
the extensions of (D, W’) where D and W are given by (6.7) and either

W =WuU{m(a)} or W =WU{c(a)} or W =WU/{n(a)}.

For the first W', there is one extension, Th(m(a),e(a)). Each of the others
has two extensions. Unfortunately, default logic does not tell us how to choose
among the possible extensions. The conservative approach suggested for Nixon
would lead to the conclusion that nothing should be concluded about a cham-
bered nautilus having a shell.

A Theory with No Extensions: Extensions need not exist. To see this, consider
the following simple default theory, which is written in propositional logic:
ta :a

W=0 and D= ,
-a’ a

Let £ be an extension. We claim that —a € £. If not, the first default can be
applied to obtain —a € I'(§) = £. Likewise, the second default tells us that
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a € £. Unfortunately, if a,~a € £, then neither default can be applied and so
neither @ nor —a is in I'(§), a contradiction. W

You may have concluded from the previous example that determining
possible extensions and verifying that they are extensions is nontrivial. This
is indeed the case. The following theorem makes verification easier. However,
the determination of extensions is, in general, much more difficult than solv-
ing an NP-complete problem. As a result, researchers have looked for special
situations in which a reasonable algorithm for finding extensions can be con-
structed. Soon we’ll discuss a classic case—normal default theories.

Theorem 6.1 Reiter’s Test for Extensions

Let A = (D, W) be a default theory and let £ be a set of formulas. Define
& =W and, for i > 0,

Eivt =Th(8,~)u{7 3o 38 ((ae&') A(=BEE)A f‘ﬂ;—ﬂ GD) }

Then £ is an extension of A if and only if £ = U2,&;.

Computer programs deal with finite situations. Since & C &1, they even-
tually have &, = &£,4; for some n. You should be able to easily show that
& =&, for all i > n and so UR & = &,. The theorem therefore leads to an
algorithm for verifying that a set £ is an extension. It does not provide an
algorithm for generating extensions since we must already have £ in order to
define &;41—the definition includes -3 ¢ £.

The following proof of the theorem is closely reasoned and a bit tricky, so
it will probably require some study on your part.

Proof: Let & = U$2,&;. In the proof, the obvious relations

D& 2Th(E)DEDE =W
will be useful. We’ll begin by proving
(a) Th(&) =& D W.
(b) f %2 €D, a €&, and ~B ¢ £, then y € £'.
We have £ D & = W. Since Th(7) D T for any 7, (a) will be proved when
we show that Th(E’) C £’. Suppose o € Th(E’). It is deduced from a finite set
of formulas in &’ (possibly just one, « itself). Any formula in £ must be in
one of the &;’s whose union constitutes £'. Since the &;’s increase with ¢, the
finite set of formulas needed to deduce o must be contained in some &. Since
&' D Th(&), we have & D Th(£’), and so (a) is proved. Claim (b) follows
because & must be in some & and so y € &;41.

Comparing (a) and (b) with the corresponding parts of Definition 6.4 and
using the minimality of T, it follows that

rE) Cé (6.9)
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for any set £.

Since the theorem is an if and only if, we’ll consider two separate impli-
cations.

First, assume that £ = I'(£) and prove that £ = £'. By (6.9) and £ =
I'(€), it suffices to prove & C £. We claim that & C £. Here’s a proof
by induction. The case ¢ = 0 is simple. Now assume that &_; C £. Then
Th(&;-1) € Th(E) = &, the last because £ is an extension. Let 372 € D be

such that o € £;_1 and -8 ¢ £. Then o € £ and so y € I'(£) = €. This proves
the claim. From the claim, &' C £.

Second, assume that £ = £’ and prove that £ = I'(£). By (6.9), it suffices
to show that & C T'(£), for then T'(£) = &' = £. To prove &' C I'(€), it
suffices to prove by induction that & C T(£). The case i = 0 is simple:
& = W C T'(€). For purposes of induction, assume &_; C I'(£). We need
to check two things. First, we have Th(&;-1) C Th(I'(€)) = T'(£). Second, if
a€&_1,f¢E, and 2;73 € D, then a € T'(£) and so ¥ € I'(£). This proves
that & C I'(£), completing the proof. W

Example 6.5 Verifying Extensions

Let’s use the theorem to verify the extensions in the previous example. First,
consider (6.6) with
& = Th({g(n),r(n),d(n)}).

By the theorem,

& =W = {g(n),r(n)},

& = Th({g(n),r(n)}) U{d(n)},

& = Th({g(n), r(n), d(n)}) U {d(n)},

&s = Th({g(n),r(n), d(n)}) U {d(n)} = &,.
Since £ = &,, it is an extension.

Next consider the Mollusca example with £ = Th(W U {e(a)}) and
n(a) € W. Since the only constant is a, we can simplify W accordingly. By
the theorem,

& =W = {(n(a) — c(a)), (c(a) — m(a)), n(a)},
& = Th(W) U {e(a)},

& = Th(W U {e(a)}) U{e(a)},

& = Th(WU {e(a)}) u {e(a)} = &s.

Finally consider the Mollusca example with £ = Th(W U {-e(a)}) and
n(a) € W. By the theorem,

& =W = {(n(a) — c(a)), (c(a) — m(a)), n(a)},
& = Th(Ww),
&, = Th(W) U {—e(a)},
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&3 = Th(W U {~e(a)}) U {~e(a)},
£ = Th(W U {-e(a)}) U {-e(a)} = &.

In the first Mollusca case, we picked up e(a) immediately because n(a) € &.
In the second case, we needed c(a) to get —e(a) and this did not appear until
£. B

You’ve just seen how Theorem 6.1 provides an algorithm for checking
proposed extensions. It can also be used in place of Definition 6.4 to simplify
proofs.

Here are two facts about the nature of extensions. Their proofs are left
as exercises.

o Incomparability of extensions: If £ C £’ are extensions of A,

then £ = £’ In other words, given any two extensions, each (6.10)

must contain formulas not contained in the other.

o Consistency of extensions: If A has an inconsistent exten-
sion, then that is its only extension. If W is consistent, then (6.11)
all extensions are consistent.

Aside. I didn’t give the general definition of defaults. A general default has the
form (e : f1,...,8m) — v, where the commas are like ANDs. The requirement
—f & £ is then replaced by the set of m requirements ~g; & € for 1 < ¢ < m. Let
B =PpP1 A -+ APBm. The default (o : §) — v is not quite equivalent to the original
default. See Exercise 6.2.6 for more details.

Exercises

6.2.A. Various desiderata for an extension were listed. What is the correspondence
between each of them and the parts of Definition 6.37 Definition 6.47

6.2.B. Let £ be a set of FOL formulas. Prove that Th(£) = £ if and only if £
consists of all the FOL formulas that can be deduced from &.
Hint. This requires nothing more than an understanding of the problem and
the definition of Th.

6.2.1. We want to define a connective — in FOL such that
(i) (@A (@ — B)) = f and
(ii) it is possible to have (-8) A (@ — f) true, but this provides no
information about a.

(a) Show that the first condition implies that whenever o and o — # are
true, g is true.

(b) Show that the second condition implies that whenever f is false, we
must have @ — f true, regardless of the value of a.
Hint. What happens if @ — 8 is both true and false when f is false?

(c) Show that the previous conditions cannot be satisfied simultaneously.
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6.2.2. Determine all extensions of the following default theories. (The number of

6.2.3.

6.2.4.

6.2.5.

*6.2.6.

extensions ranges from zero to two.) Use Theorem 6.1 to verify that each
extension is indeed an extension. In each case prove that you have found all
extensions.

ta
(a) W= {a,—-a}, D= {—b—}

b
b =4a,by, = {a._}
(b) W {a b}, D "
(c) W= {a,b,—-c}, D= {a_b}

a: b b: c b:—c
@ w={a}, p={%=2 252
ta b :c

(@ W={b—~-(ave)}, D= {7, 2l
The purpose of this exercise is to prove that the minimality condition (c) in
Definition 6.4 makes sense. Define I'*(S) to be any set that satisfies (a) and

(b) in the definition and define ['(S) to be the intersection of all I'*(S)’s.
Prove that I'(S) satisfies (a), (b) and (c) in the definition.

The goal of this exercise is to prove (6.10). Suppose £ and £’ are both
extensions of A and that £ C £’

(a) Prove by induction that when the construction in Theorem 6.1 is applied
to £ and &', we always have &; D £].

(b) Use the previous step and the theorem to conclude that £ O &’. Then
conclude that £ = £'.

Prove (6.11). Recall that, if 7 is inconsistent, then 7 |= « for all formulas
a.

<
Hint. Use (6.10) for the inconsistency claim. Prove the consistency claim by
contradiction: Assume £ is inconsistent and prove that £ = W.

This exercise refers to the discussion in the Aside preceding the exercises.
Recall that # = 81 A--- A Bm. Let £ be a set of FOL or propositional logic
formulas with Th(£) =

(a) Let D; = {(a : b,b') — ¢}, let D2 = {(a : bA DY) — c}, and let
W ={a, ((-b) vV (-t'))}. Determine the extensions of (D;,W) and
(D2, W). (You needn’t prove your results.) Which extensions contain ¢?

(b) Suppose that the §; are distinct propositional letters and that m > 1.
Show that =8 € Th(—g) and that -8; ¢ Th(-p) for all 1.

(c) Prove =8 ¢ £ implies that ~§; ¢ £ for 1 <i < m.
Hint. State and prove the contrapositive.

(d) Prove: If one may use (o : §) — 4 to include v in an extension, then
one may use (& : B1,...,8m) — 7 to do so, but not necessarily con-
versely.
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*6.2.7. Let £ be a consistent extension of A = (D, W), let B C £, and let
A’ = (D, WU B). Prove that £ is an extension of A’.
Hint. You can apply Definition 6.4. The hard part is the minimality condition.
You can also use Theorem 6.1, but it has a difficult part, too.

Normal Default Theories

To illustrate the nonmonotonicity of default logic, suppose that W = {a, b}
and D = {(a : b)) — b}. Using only a from W and the default in D, we arrive
at the unique extension Th({a,b}). Hence b is true. Using all of W and D, we
arrive at the unique extension Th({a,—b}). Hence it was incorrect to conclude
that b is true.

What can be done to avoid looking at all of A? The requirement that ~f ¢
£ in the definition of an extension means that we have to look at the entire
knowledge base W and whatever we have derived from defaults. Given the
definition, the need to use all of W is inevitable. People have created default
theories where not all of D need be used. Among these, Reiter’s “normal”
default theories are the first and best known. For them, what you don’t know
about D won’t hurt you. In other words, an extension built using part of D
can be augmented to obtain an extension that uses all of D. Not only that,
every normal default theory has at least one extension.

Definition 6.5 Normal Defaults

A default of the form (a : B) — B is called a normal default. If all defaults
in D are normal, then (D, W) is called a normal default theory.

The following theorem contains the remarks in the opening paragraph and a
bit more.

Theorem 6.2 Properties of Normal Default Theories
Let D' C D be sets of normal defaults, let A = (D,W), and let

A’ = (D', W). The following are true.

(a) The theory A has at least one extension.

(b) For every extension & of A’, there is an extension £ D £’ of A such
that
GD(&',A') C GD(€,A) (6.12)

where

a:f

GD(S,A):{TED aeé’and—'ﬂ¢£}.

(This is the general definition of GD( ). For normal theories, § = 7.)
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We call the set GD the “generating defaults” set because it, together with W,
produces &:

£=Th(WU{7|((a:ﬁ)—'y)eGD(b‘,A)}). (6.13)

What (6.12) tells us is that £ is generated by a set of defaults that include
those used to generate £’. See Reiter’s paper [20] for proofs of Theorem 6.2
and (6.13).

Theorem 6.2 allows us to construct a proof method for normal default
theories similar to SLD-resolution—the basis of Prolog. Indeed, Prolog can be
used to implement such a method.

How does this method work? For simplicity, let’s examine a pseudo-Prolog
example. Unlike ordinary Prolog, the pseudo-Prolog knowledge base will grow
as the proof progresses (and shrink upon backtracking). Suppose we are cur-
rently trying to establish pred(a,X). It may be possible to establish it by
ordinary FOL from the knowledge base. If not, we look for a default rule
(o : f) — B where B can be unified with pred(a,X). We must verify that
- is not provable from the FOL part of the knowledge base and we must es-
tablish 8. Once this is done, the fact pred(a,X), possibly with X replaced by
another term, is added to the FOL knowledge base. During backtracking, it
must be removed.

To see why this works, let A = (D,W) be the original normal de-
fault theory. Let D’ consist of those defaults (o : ) — B for which g
was added to the knowledge base. The pseudo-Prolog reasoning produces
an extension & of A’ = (D',W) in which the original query is true. In
fact, GD(&’, A’) = D’'—all the defaults in D’ are generating defaults for
&'. Theorem 6.2 shows that &£ is contained in some extension & of A.

Exercises

6.2.C. Define a normal default and a normal default theory.

6.2.D. What does it mean to say that what you don’t know about D won’t hurt
you if D contains only normal defaults? Give an answer in words and then
give an answer in terms of one extension’s containing another.

6.2.8. Using the definition of I'(S), prove (6.13) when £ is an extension of A. In
other words, prove that if £ is an extension as defined in Definition 6.4, then
the right side of (6.13) is a formula for £.

6.2.9. How does default logic deal with the four problems listed for nonmonotonic
reasoning? (See p.207.) What about normal default theories?
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6.2.10. Sir Galahad, a knight of the Round Table, is facing a dragon which is guard-
ing Lady Millicent, a damsel. The knights of the Round Table are acquainted
with the following facts of medieval life:

A dragon will kill a knight if and only if the dragon is dangerous.
Dragons guarding damsels are always green.
Fire-breathing dragons are always dangerous.
Dragons guarding damsels normally breathe fire.
Green dragons normally do not breathe fire.
Green dragons are normally not dangerous.
(a) Write the rules and facts in the notation of a normal default the-
ory.
(b) What are the possible extensions? Explain.

(c) What can you conclude about the dragon’s color and ability to breathe
fire in the various extensions? About Sir Galahad’s getting killed?
Why?

Prolog and Default Reasoning

Prolog treats negation as failure; that is, the formula —p(...) is considered
to be true if the attempt to prove p(...) fails. (You can see the discussion
on page 169 for further explanation; however, it’s not needed here.) In this
section, we’ll briefly discuss this from two points of view. First, how Pro-
log’s negation as failure can be viewed as default reasoning. Second, how
Prolog’s negation as failure might be used to implement default reason-
ing.

We claim that treating negation of a predicate as failure can be trans-
lated into a normal default theory. To do this, we add defaults of the
form

s =P (X1, .., Xn)
=Pp(X1,...,X5) '’

(6.14)

for all n and all n argument predicates P,,. Why does this work? The ex-
planation is closely related to the discussion at the end of the previous sec-
tion on normal defaults. Try to explain why (6.14) works before reading fur-
ther.

* * * Stop and think about this! * * *

Suppose we want to establish =P(ay,...,a,). According to (6.14), we can as-
sume it, provided it does not lead to an inconsistency. Recall that a consistent
FOL knowledge base together with any formula « is inconsistent if and only
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if >« can be proved from the knowledge base. In our particular case, the fact
that = P(ay,...,a,) is not inconsistent means that —(—P(ay,...,a,)) can-
not be deduced. Canceling the double negation and putting it all together,
(6.14) tells us that we may assume —Py(ai,...,a,), provided P(ay,...,a,)
cannot be deduced from the knowledge base. This is precisely negation as
failure.

In the previous section, we saw that the assumptions must be added to
the knowledge base of the normal theory before continuing. Prolog doesn’t do
this—it doesn’t add =P, (ay,...,a,) to the knowledge base. In general, failing
to add assumed formulas can lead to errors. Consider

tma b

W = {aVb} and ’Dz{ = ’—-_b}'
We can assume either —a or —b. Assuming both leads to an inconsistency be-
cause W contains a V b. Prolog’s knowledge base does not allow general FOL
statements. In particular, it doesn’t allow a V b, so we can’t conclude from
this example that what Prolog is doing can produce inconsistencies. Clearly
we need a solid grasp of the concepts and tools to decide if Prolog’s treat-
ment of negation is consistent with default logic. What Prolog does is okay,
but let’s not prove it here.

Let T(a) be the translation of the FOL formula a to Prolog. If 3 is the
negation of a predicate, define the translation of

T((a:B) —7) tobe T(y) :- not T(=4)), T(a).

*6.3 Other Modifications of Logic

In this section, we’ll briefly explore the two other approaches to adapting FOL
mentioned earlier in the chapter: circumscription and modal logic. Although
defeasible reasoning logically belongs in this section, we’ll postpone it until
Section 6.6, after we talk about semantic nets.
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Circumscription

In default reasoning, the rule (o« : #) — v means roughly that it’s okay to
assume £ in proving v as long as everything remains consistent. We’re then
told to assume as much as we can without causing inconsistency. This usu-
ally leads to more than one possible extension and so we’re faced with the
problem of what to believe.

John McCarthy’s circumscription [14] attempts to deal with this problem
by calling attention to the abnormal situation in which = is true rather than
the normal situation in which g is true. It then seeks to minimize abnormality.
If this were all, it would be no different from default reasoning. Circumscrip-
tion makes two other changes. First, it eliminates default rules, using instead
FOL statements like (a A (-p)) — 4 where the predicate p indicates abnor-
mality. Second, it insists that the circumscribed interpretation be such that p
is not true unless it is true in all possible interpretations. Interpretation here
refers to the semantics of the FOL language which was defined informally in
Definition 3.6.

The approach to circumscription that we’ve just sketched requires work-
ing with the semantics of FOL. Since proof techniques for FOL are based
on syntax, it’s reasonable to ask if and how the concept of circumscription
can be formulated purely syntactically. This can be done using second-order
predicate logic: that is, FOL with the added feature that predicates can be
quantified. Unfortunately, it is impossible to find complete proof methods for
second-order predicate logic—they’ve been proved not to exist. Nevertheless,
one could hope for something reasonable: Circumscription is only a special
case of second-order logic, and besides, a proof method that sometimes failed
might be acceptable in practice.

What is the syntactic form of circumscription? Let p(X) be the pred-
icate whose truth we want to limit and let A(p) be the conjunction of all
the formulas in the knowledge base. (Hence, the knowledge base must be
finite.) Add the following statement, where the variable ¢ stands for a pred-
icate:

o (A0 A VX (600) = p(0)) = VX (0O = (X)) (619

This looks rather confusing and intimidating. What does it say? Since the for-
mula inside the V¢ is an implication, it only tells us something when the left
side is true.

o A(¢) tells us that ¢ is a predicate for which all formulas in the knowledge
base are true.

o VX(4(X) — p(X)) tells us that p(X) is true whenever ¢(X) is true.
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The conclusion can be rewritten in the equivalent form
VX ((~6(X)) = (=p(X)))-

In this form, it says that p(X) is false whenever ¢(X) is false.

Why does this ensure that p is not true except when necessary? The left
side of (6.15) tells us that ¢ is any predicate that can be used to replace p
in the knowledge base and that is true whenever FOL tells us that p is true.
Imagine we have such a predicate and we use it in place of p because it works
just as well. Might this new predicate do better than p; that is, might it be
false sometimes when p is true? No, the right side of (6.15) says that this is
impossible.

Thus, by describing properties that p must have when compared to all
possible predicates, (6.15) creates limits on when p can be true.

Example 6.6 Applications of Circumscription

Suppose that our knowledge base contains the following FOL formulas:

VX ((bird(X) A =p(X)) — ﬂies(X)) 1
VX (penguin(X) — p(X)) 2
bird(b) 3
bird(c) 4
penguin(c) 5

Using FOL, the only simple predicate conclusions we could reach about b and
c are formulas 3-5 and, by using 2 and 5, p(c).

Now suppose we circumscribe the predicate p using (6.15). Then A(p) is
the conjunction of 1-5. By the previous paragraph, .A(¢) | #(c). Because
of this, we should try letting ¢(X) be a predicate that is true when X = ¢
and false otherwise. For this ¢, A(¢) is true. Does ¢(X) imply p(X)? Yes,
as we now show. We need to check only the situation in which ¢(X) is true.
This only happens when X = ¢; but it was noted in the first paragraph that
A(p) E p(c), and so p(c) is true.

Now for the right side of (6.15). By (6.15), p(X) must be false whenever
#(X) is false. Since ¢ was chosen to be true if and only if X = ¢, it follows
that p(X) must be false except possibly when X = ¢. On the other hand, we
know that A(p) | p(c), and so the predicate p must be true for ¢ and nowhere
else.

As a result of circumscription, we can use formulas 1 and 3 and —p(b) to
conclude flies(d).
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The previous example is a standard example in nonmonotonic reasoning.
Here’s another.

quaker(nixon) 6
republican(nixon) 7
VX ((quaker(X) A (=p1(X))) — (dove(X))) 8
VX ((republican(X ) A (mp2(X))) — —dove(X )) 9

You should show:

e By circumscribing p; we are able to conclude dove(nixon).

e By circumscribing p; we are able to conclude ~dove(nixon).

Which conclusion is correct? It seems best to circumscribe both p; and ps.
This presents difficulties that are beyond the scope of the present discus-
sion. W

Modal and Autoepistemic Logics

Modal logics enrich the language of FOL (or propositional logic) by adding
one or more modal operators. The operators are added to the language £ and
Definition 3.5 (p.107) is expanded to allow for them. One possible addition
to Definition 3.5 is:

(e) If © is a modal operator and a is a formula, then (Va) is a for-
mula.

If the operator Q is intended to capture belief, you can think of Q« as saying
“a is believed.”

In FOL, manipulation and interpretation of formulas built using con-
nectives are based on our knowledge of propositional logic. This in turn
relies on the notions of T and F. Someone defining a modal logic is now
faced with the problem of what to do with formulas containing modal op-
erators.

One possible approach is to use the aziomatic method of proof (p.140).
In this method, we provide schemes that can be used to reason about formu-
las. A scheme looks like a formula, except that it contains arbitrary formulas.
We’ve already used something like this in defining formulas; for example, if
is a formula then so is (—a). In the axiomatic approach to ordinary logic, a
common axiom is

(e A(a— B)) — B, called modus ponens.
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In modal logic, the axiom system will depend on what meaning the de-
signer intends to capture by the modal symbols. If we think of Qo as meaning
that a person believes a and if we want to reason about beliefs in a rational
manner, we might introduce the following axioms:

e (V(a = p)) = ((Va) — (VB)) If one believes that a implies 3, then
it is true that a belief in « implies a belief in £.

e (Va) — (VQa) If a is believed, then one believes that a is be-
lieved.

e (Qa) — (O-Q«). If « is not believed, then one believes that « is not
believed.

In FOL, we state an axiom system and then attempt to prove that
it is sound and complete. The notions of soundness and completeness re-
quire a notion of what formulas mean, that is, a semantics. Without any
semantics, an axiom system is rather uncertain: How do we know that it
is powerful enough to prove what we want but not so powerful that it al-
lows us to reach incorrect conclusions? Without semantics, such “knowl-
edge” is simply a belief. In some areas, belief suffices. In nonmonotonic rea-
soning, a paper proposing a reasoning method is usually followed by pa-
pers that point out unsuspected deficiencies in the method. Consequently,
it’s important to provide as much of a theoretical foundation as possi-
ble.

Modal logic was introduced by C. I. Lewis in the 1930s because of prob-
lems with implication. In FOL, the truth of « — 8 depends only on the truth
of @ and 8. The “normal” interpretation of implication says that &« — (3 is
true only when 3 “can be deduced” from a. Consider the following two state-
ments.

e If X is a unicorn, then X is a fish.

e If X is a unicorn, then X has hooves.

Since there are no unicorns, both statements are true in FOL. Only the latter
statement is true with the normal interpretation of implication. The solu-
tion proposed for this problem was to introduce the modal operator o, which
is read “it is necessary that.” The statement o« means that in all possible
worlds (which must be defined), « is true. Then

e O(if X is a unicorn, then X is a fish) is false because we can imagine
worlds with unicorns; but

e O(if X is a unicorn, then X has hooves) is true because the concept of a
unicorn, essentially a horse with a horn, includes the notion that unicorns
have hooves.

This is called strict implication.
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Note: Modal logics need not deal with belief; for example, temporal logics
deal with situations where time is important.

6.4 Rule Systems

A rule base which contains say, 500 rules, might only contain
some 10,000 words, perhaps less. Yet textbooks are seldom less
than 100,000 words. What has happened to the 90,000 words
which are omitted from ezpert systems? Were they superfluous to
the textbook? Is expertise in an expert system more refined, more
formalist even that that contained in a textbook? My suspicion is
that all the faults which flow from the textbook tradition are
simply magnified by the expert systems methodology.

—Philip Leith (1990)
We’ve already noted the distinction between & — 8 and (« : ) — B; namely,

the former allows us to conclude =« from -8 while the latter does not. This
is the essence of rule systems.

Basic Concepts of Monotonic Systems

A basic rule system consists of a language £ consisting of atomic formulas A,
which were defined in Definition 3.5, and rules of the form

VX VX (e A Aan) = B) (6.16)
where n > 0, a1,...,a,,8 € A, and the only variables in ai,...,an, 8
are Xj,...,Xg. Rule systems being used in research and commercial ex-

pert systems allow more general rules. Nevertheless, they share some features
that distinguish them from FOL. In FOL, quantifiers and connectives pro-
vide the foundation for constructing and reasoning about complex formulas.
In rule systems, both the construction and the reasoning are severely lim-
ited:

e The connectives — and A are always present, but their use is limited
to the form given in (6.16). For example, we cannot say p — (¢ — r).
The connective — is usually allowed, but its meaning differs from that in

FOL.
e Usually the only quantifiers allowed are as specified in (6.16).
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o Reasoning with the rule (6.16) is done as follows. If the a; are known
to be true, then B is also true. In particular, when n = 0 the rule
has the form — g, and so § is known to be true a priori. We are
not allowed to conclude (-8) — (-a) from @ — f as we are in

FOL.

One type of proof method in FOL, called the aziomatic method, is based on
reasoning with rules that are often called axioms. Unlike rule systems, these
rules are “metarules” about the language. An example of such a metarule
is

For all formulas « and 8, if @ and & — 3 are true, you may conclude
. (6.17)
that G is true.

Note that this is a rule that holds for all formulas « and §. In contrast, in
a rule such as (6.16), a1, ..., a,, 0 are specific formulas. Thus an axiom like
(6.17) represents an infinitude of rules in a rule system.

Given these limitations of rule systems, why are they used? Here are some
arguments in favor of rule systems:

e By limiting the expressiveness of the language, it’s possible to find more
efficient algorithms than have been found for FOL.

o The rule system interpretation of if-then statements is closer to natu-
ral language than the FOL interpretation is. This closeness facilitates the
design and maintenance of knowledge bases.

e Unlike FOL, rule systems isolate inconsistencies.

o Rule systems can incorporate procedural statements, which FOL can-
not.

e Rule systems can incorporate quantitative features, which FOL can-
not.

As a result, rule systems are a popular format for designing expert systems
and can be found in nearly every expert system shell. These shells frequently
include a numeric approach to uncertain reasoning, usually based on either
certainty factors (Chapter 8) or fuzzy logic (Chapter 9).
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Forward versus Backward Chaining

You may have noticed that rule systems look a lot like Prolog. In fact, Prolog

is a rule system. Suppose that ay,...,a, and B are atomic formulas, that is,
predicates with terms as arguments. The rule
(@1 A---Aap)— B (6.18)

is used just like a Prolog rule—we can conclude that § is true if the «;’s
are true. When rule systems use Prolog’s method of depth-first search for
answering queries, it’s referred to as backward chaining. The pros and
cons of depth-first search were already discussed in connection with Prolog
(p.122).

Rule systems also use what is known as forward chaining. Instead of
working backward from the desired conclusions, we work forward from the
given facts. In other words, if « — f is a rule and « is a fact or a con-
junction of facts, then the system adds f to its collection of facts. This is
called firing the rule @« — (. Actually, things are not this simple. We should
avoid firing rules that only give known facts. If rules were purely declara-
tive, we could simply avoid firing rules twice. Unfortunately, most rule sys-
tems allow procedural code and so it makes sense to fire a rule more than
once.

Negation

Rule systems often allow negation and deal with it the same way Prolog
does—negation as failure. (We discussed this for Prolog on page 169 and in
connection with default logic on page 223.)

If a rule system allows negation in the consequence of a rule (head of
a clause), new problems arise. As long as the heads of clauses cannot con-
tain negations, there is a consistent FOL interpretation of the knowledge
base: Interpret every predicate as always true. This is consistent because
a — [ is true in FOL whenever § is true. If negation is allowed in the
heads of clauses, we can no longer use such a simple interpretation because
any clause whose head has a negation will now have its head interpreted as
false. Here’s a simple set of three pseudo-Prolog rules that illustrate the prob-
lem:

p(X) :- q(X). -p(X) :- q(X). q(a).

This knowledge base is inconsistent and both p(a) and - p(a) can be
deduced.
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Example 6.7 Implementing Negation in Prolog

It’s actually a relatively simple matter to implement a form of predicate nega-
tion in Prolog. First, define a new operator (function), say neg, to indicate
this negation. Next introduce rules for negation:

negate(neg Literal, Literal) :- !. (6.19)
negate(Literal, neg Literal). '

If negate is applied with its first argument instantiated to either an atomic
formula or its negative, then negate will instantiate its second argument to
the negative of the literal. To see this, note that the first clause strips off a
neg if one is present and prevents the use of the second clause with a cut
operator. The second clause simply adds a neg regardless of the nature of
Literal. This is very far from being a full FOL implementation of negation.
For example, suppose we are given

p(X) :- q(X). neg p(a).

In FOL, we can deduce neg q(a), but the Prolog inference engine will not
do so. When faced with the query “?- neg q(a).” it looks for clauses whose
heads can be unified with neg q(a). Since there are none, the query fails. Ba-
sically, all (6.19) does is allow Prolog to use negations in front of predicates
and to realize that the negation of a negation is the original predicate. Nev-
ertheless, this can be a useful alternative to negation as failure. B

Limiting the Effects of Contradictions

In the various forms of logic, consistency plays an important role; however,
we cannot design an algorithm to check that a general FOL knowledge base
is consistent. (This is the semidecidability of FOL mentioned earlier.) Unfor-
tunately, if the knowledge base is inconsistent, then everything is a conse-
quence of the knowledge base—from a false hypothesis you can deduce any-
thing.

Aside. Why is this so? Recall that S | o means that, for every interpreta-
tion in which § is true, « is also true. Equivalently, we can state this in con-
trapositive form: For every interpretation in which « is not true, S is also not
true. The statement that S contains a contradiction means that there is no in-
terpretation in which S is true. It follows that § | « in this case, regardless
of what the formula o is—it may even use only predicates and terms that don’t
appear in S!
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In contrast, the limited reasoning powers of rule systems allow them to
limit the effects of inconsistencies. As a result, errors in one part of the knowl-
edge base will not affect unrelated parts of the knowledge base. This is im-
portant in practical applications because a large knowledge base may easily
contain contradictions, especially if it is produced by more than one per-
son.

If a reasoning system is to be practical for large applications, then (6.20)
it must localize the effect of knowledge-base contradictions. ’

What about Prolog? Since it’s based on FOL, it apparently doesn’t
localize contradictions. Not so, because, as recently noted, an ordinary Pro-
log knowledge base is always consistent. Suppose Prolog is extended to al-
low a form of negation in the heads of clauses, as in (6.19). Inconsisten-
cies are possible. Does Prolog localize them? Yes. Prolog with negation
is a rule system rather than a full implementation of FOL negation.

Nonmonotonicity

So far, we’ve only described statements such as “If o then 3.” Rule systems
might allow nonmonotonic statements such as

“If « then 8 unless v.” (6.21)

Such a statement could be translated into the default logic rule
(a:=y)—B.

Since negation is regarded as failure when using backward chaining, the rule
will apply if & can be deduced and 4 cannot be deduced.

When using forward chaining, the interpretation of (6.21) is different:
The rule can fire if « is known to be true and v is not known to be
true. The condition on v is much weaker than the requirement that vy can-
not be deduced because it doesn’t preclude the possibility that ¥ might be
deducible. Why would someone want such a rule? The situation is quite
common in procedural code because once something has been done, it’s
“known.” A generic example of such a rule could be phrased “If o then
do B unless v has been done.” An example of such a rule is “If going
to bed then set the alarm clock unless the alarm clock has been set.”
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Exercises

6.4.A. What is a rule system? Why is Prolog a rule system?
6.4.B. What are some of the advantages of a (monotonic) rule system over FOL?

6.4.C. Why is a rule system able to isolate the effects of an inconsistency in its
knowledge base? Why is this important?

6.4.D. What is backward chaining? forward chaining?

6.4.E. How are nonmonotonic rules interpreted differently in forward and backward
chaining?

6.4.F. Why is a Prolog knowledge base always consistent?

6.5 Semantic Nets

Information is generally organized into hierarchies with a twofold
goal: devise a conceptually clean model of the represented world,
and give rise to a compact storage organization which may also

enable easier navigation through and search of information.

—Maurizio Lenzerini, Daniele Nardi, and Maria Simi (1989)

Symbolic logic deals primarily with bricks and mortar, semantic
nets more with principles of architecture.

—TFritz Lehmann

While rule systems depart from FOL by limiting the reasoning power to a
“more natural interpretation” of if-then statements, semantic nets depart
from FOL by focusing on relationships between concepts and representing
them graphically. A semantic net is a directed graph (Definition 2.1 (p. 36))
in which each vertex contains information about a concept and each edge
describes a relationship between two concepts.
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Definition 6.6 Semantic Net

A binary relation R on a set V, often just called a relation, is simply
a binary predicate. Binary relations are sometimes written in infix no-
tation; for example, “z R y” means “R(z,y) is true.” A semantic net
is a set V of concepts and one or more binary relations R;, Rs,... on
V.
The situation is represented graphically by letting V be a set of ver-
tices and joining v and v with an edge labeled R; if u R; v. The edges are
called links.

A common alternative representation replaces each labeled directed edge in
the definition by two unlabeled directed edges connecting at a vertex whose
label is that of the original edge:

becomes

Parse trees, which you have probably seen in connection with computer
languages, are related to semantic nets. In fact, semantic nets were originated
by researchers in natural language understanding. In this case, links indi-
cate grammatical (i.e., syntactic) and semantic relations between parts of a
sentence—agent, object, manner, et cetera. Some researchers still limit the use
of the term to such situations while others have adopted the broader defini-
tion given above. A variety of semantic nets have been developed for a variety
of tasks. We’ll explore two types.

o Frames: Developed independently of the semantic net concept, frames
can be viewed as general data structures for representing semantic nets.
Frames use the same method for data representation as object-oriented
programming: A frame has “slots” for data, may contain other frames,
and may “inherit” properties from other frames. In fact, frames inspired
the development of object-oriented languages even though frames were
created to facilitate reasoning, not to design programs.

o Inheritance Systems: These are semantic nets in which attribute informa-
tion tends to be “transitive” (defined below). For example, the information
that a cat is a feline is a carnivore could be represented by the vertices
“cat,” “feline,” and “carnivore” together with the edges cat — feline and
feline — carnivore, with the edges labeled “is-a.” Through inheritance,
we can conclude that a cat is a carnivore.

We’ll look at some default reasoning with a simple inheritance system. Here’s
a definition of an inheritance system.
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Definition 6.7 Inheritance System

We say that a binary relation ¢ < y is a partial order if the following
conditions hold:

e We never have z < z.

e Whenever ¢ < y and y < 2, we have z < 2.

A partial order is also called a transitive order. If the concepts V in a
semantic net have a partial order, we say that the net is an inheritance
system (with respect to the partial order).

In drawing the graph associated with a partial order, we frequently omit
edges that can be deduced by transitivity. Thus, if (u,v) and (v, w) are edges,
we may omit (u,w). The edge (u,w) is understood to be present by inheri-
tance.

Example 6.8 Some Simple Inheritance Systems

The biological classification of organisms is a traditional example of an inheri-
tance system. The concepts (vertices) are types of organisms and the ordering
relation is “is a” as in “a lizard is a reptile” and “a reptile is a vertebrate.”
We’ll denote the ordering by 1s-A. Since Is-A is transitive, we have an in-
heritance system and we can draw conclusions such as “a lizard 1s-A verte-
brate.”

In a tournament, the entities are the players and the ordering accord-
ing to who wins each match. This ordering is not transitive. For example, it
may happen that Alice beats Bob, Bob beats Cathy, and Cathy beats Alice.
Transitivity would have required that Alice beat Cathy. Thus this is not an
inheritance system.

A semantic net may have more than one relationship (edge). A common
type of relationship indicates an attribute as in “a reptile has four limbs.”
This can be converted to 1s-A: “A reptile 1s-A four-limbed creature.” Because
Is-A is transitive, it follows that “a lizard has four limbs.” We may still want to
distinguish between the two types of edges, since one indicates a classification
and the other indicates attributes.

Unfortunately, if we add “a snake 1s-A reptile,” we would be able to con-
clude “a snake has four limbs.” One solution to this problem is to not declare
that reptiles have four limbs, but rather declare it for each type of reptile
that has four limbs. Since snakes are practically the only exception, it would
be better if we could override the inheritance by declaring that a snake has
no limbs. In 1s-A terms, “not(a snake 1s-A four limbed creature).” Since the
ability to override default information is a key attribute of nonmonotonic
reasoning, inheritance systems provide a method for implementing such rea-
soning. W
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Exercises

6.5.A. What is a binary relation?
6.5.B. What are semantic nets? inheritance systems?

6.5.C. Give an example of an inheritance system that is not found in the text.

Frames

A frame is something that contains slots. An attribute is associated with each
slot. For example, the frame for a matrix might contain three slots whose at-
tributes are:

(a) number of rows,
(b) number of columns, and

(c) entries in the matrix.

For any particular matrix, each slot (a) and (b) contains a positive integer
and slot (c) contains a list of real numbers. Frames are related to one another
in two ways:

e Containment: Usually a slot is simply filled with a value or values, but it
may contain a frame; for example, the frame for automobile may contain
the frame for internal combustion engine.

e Specialization: The frame for computerized classroom is a specializa-
tion of the frame for classroom which is a specialization of the frame
for room. A specialization may inherit slots (door, blackboard), delete
or override others (desk), and introduce new ones (computer termi-
nal).

A frame is often represented pictorially as a tabular array, as shown in Fig-
ure 6.1.

We’ve seen that defaults play a major role in nonmonotonic reason-
ing. They first appeared when Minsky introduced frames in 1975. How do
frame defaults work? The default value for the fuel type of an auto-
mobile’s internal combustion engine subframe may be gasoline. This
leads to nonmonotonicity since we would normally conclude that the fuel
is gasoline, but might override the default value with diesel for some en-
gines.
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Sports Car |—| Automobile

doors: 2 doors: 4
wheels: 4 -
engine;--- ---»[I.C. Engine

fuel: gasoline
cylinders: ?

Figure 6.1 Part of an automobile frame system. I.C. stands for Internal Com-
bustion. A dashed arrow points to a frame that is part of another frame and a
solid arrow to a superframe of a frame. The values of attributes are inherited un-
less the frame contains a value that supersedes the inherited one. A question mark
indicates that the value is not specified by the frame.

Example 6.9 Converting Frames to Rule Systems

The description of frames can be phrased in terms of rule systems or default
logic. One possibility is to introduce predicates for the various frames and
slots. This leads to a mess. The key idea for a cleaner translation is to in-
troduce predicates that express the relationships of a frame system. Here’s a
possible (partial) set of predicates.

predicate meaning

frame(X) X is a frame.

1s-A(X,Y) Frame Y is a special case of frame X.
slot(X,S) S is a slot of X.

default(X,S,V) | Vis the default value of slot S of X.

Some of the relationships in Figure 6.1 are described by the following Prolog
facts

frame(automobile).

slot(automobile, doors).

default(automobile, doors,4).

slot(automobile, engine).

default(automobile, engine, ic_engine).

1s-A(automobile, sports_car).

default(sports_car,doors, 2).
In addition to the facts, the knowledge base must have some axioms or rules
so that conclusions can be drawn. One FOL axiom is the transitivity of
IS-A:

VXVYVZ ((IS-A(X, Y) A1s-A(Y,2)) — 1s-A(X, z)) ,
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which can easily be rewritten as a rule for a rule-based system.

This quick sketch omits quite a bit. For example, there must be ax-
ioms that allow defaults to be inherited and to be overridden. Also, a
complete translation of a real frame system would use additional predi-
cates. B

Manipulating Simple Inheritance Systems

We can take two approaches to the manipulation of inheritance systems. First,
we can interpret the system in terms of another reasoning tool, as was illus-
trated in Example 6.9. Second, we can develop methods directly without con-
verting to another system. We’ll explore this approach for semantic nets in
which 1s-A edges provide a partial order. (Remember that this may involve
some rewriting, as in “a reptile 1s-A four legged creature” rather than “a rep-
tile has four legs.”) The nets we’ll consider will be directed graphs with two
types of vertices and four types of edges.

o The edges are absolute (—) and default (---), each of which may be
negated. (We’ll temporarily ignore default edges.)

e The two types of vertices are constants and predicates. No edge may point
toward a constant and only absolute edges and their negations may point
away from a constant.

e An edge 7 — s means s(r) if r is a constant and VX (r(X) — s(X)) if
and s are predicates.

e An edge r + s means —s(r) if 7 is a constant. If r is not a constant, it
means VX (r(X) — —s(X)), which is equivalent to VX (=r(X) V =s(X)).
From this symmetric form, it follows that, when » and s are not con-
stants,

s #=r and r -+ s are equivalent. (6.22)

Although we’ve translated — and -4 into FOL terms, full FOL reasoning
with them is not allowed in inheritance theory. All that’s allowed is (6.22)
and transitivity based on —. This is like reasoning in a rule system. Here are
the rules of inference:

(a) Symmetry: If £ 4 y and z is not a constant, we may add the edge y /= z
to the digraph.

(b) Positive chain: If &; — z;4; for 1 < i < k are edges in the digraph, we
may add the edge £, — z to the digraph.
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(c) Negative link: If z; — z;41 for 1 <i < k, y; —y;j41 for 1 < j < m, and
Tk - Ym are edges in the digraph, we may add the edge z; = y) to the
digraph if y; is not a constant.

These inference rules can be justified by FOL interpretations. They can also
be justified from the inheritance net viewpoint. In that case, we adopt them as
axioms (or definitions) based on the intended meaning of the digraph. Which
approach is better?

e In either case, we must introduce axioms or definitions. To convert to
FOL, we must define the meaning of the digraph in FOL terms and then
use the axioms and definitions of FOL.

e In converting to FOL, we make available the machinery of FOL, but this
is trap. Notice that the allowed rules of inference are limited, so any FOL
result must be checked to see that it uses only those rules. If we get sloppy
on this, we’ll make mistakes.

On balance, it seems preferable to justify (a)—(c) as axioms based on what we
want the digraph to mean. Let’s do that now.

Symmetry: An edge r = y means that no z is a y. Suppose that y /- z is
not true. Then there must be some u that is a y and also an z. This contra-
dicts the meaning of z 4 y, and so we’ve justified (a). Note that this is not
a proof, because we’ve shown that (a) should be assumed given our under-
standing of what & /= y should mean. This is comparable to the geometry
assumption (axiom) that says, based on our understanding of what points
and lines mean, precisely one straight line can be drawn through two distinct
points.

Positive chain: Since x — y — z means that every z is a y and every y is a
z, every z is a z. This forms the basis of (b).

Negative link: We can justify (c) in one step, but it’s probably easier
to see if we do it in parts. First, p — ¢ - r says that every p is
a ¢ and no ¢ is an r. It follows that we should conclude no p is an
r; that is, p # r. This argument can be expanded to justify (c). Do
it!

* * * Stop and think about this! * * *

Alternatively, we can deduce (c) using the p-g-r result with (a) and (b):
For simplicity, assume that neither z; nor y; is a constant. From (b),
z; — z and y; — yp,. It follows with p = 21, ¢ = x4, and 7 = yp,
that ©; #> ym. By (a), ym #> 1. Since y1 — ym, we have y; # z;. Ap-
ply (a).
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black widow —— spider — arachnid

lives with humans <——— pet exoskeleton

Spot beagle dog mammal

Figure 6.2 An inheritance network without default rules. All the vertices are
predicates except for “Spot,” which refers to some constant—a particular thing. See
Example 6.10 for a discussion of possible inferences.

Example 6.10 Reasoning with — and -/~

Figure 6.2 shows a small inheritance network. Here are some of the conclusions
that (a)—(c) allow us to reach.

e Using (a), we can reverse the directions of the two negative edges if we
wish.

e Using (b), we can reach conclusions such as “a black widow spider has an
exoskeleton,” “Spot is a dog,” and “beagles live with humans.”

e Using (c) with m = 1, we can conclude things like “spiders are not pets,”
“dogs do not have exoskeletons,” and “pets are not arachnids.” (Actu-
ally, the first is not correct in the real world because some people keep
tarantulas as pets.)

o Using (c) and the paths from Spot to pet and black widow to pet, we can
conclude that “Spot is not a black widow spider.” This conclusion can also
be reached by using the paths from Spot to mammal and black widow to
mammal, where the latter ends with a negative edge from exoskeleton to
mammal. B

We’ve interpreted “Spot” and “beagle” in Figure 6.2 as a constant and
a predicate, respectively; however, they could both be considered constants.
Simply let “beagle” be the set of all X that are beagles. For consistency, let
“Spot” be the singleton set {Spot}. Then & — y simply means that z C y.
This process of converting a predicate (like beagle) into a constant is called
reification.

What we’ve seen so far is just a subset of FOL. Now we come to an
important distinction. Like rule systems, inheritance nets localize contradic-
tions.
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mammal

AN

exoskeleton ——milk

XN\

bird =— pigeon

Figure 6.3 Additional edges and vertices for Figure 6.2. See Example 6.11 for a
discussion.

Example 6.11 Limiting the Effects of Inconsistencies

Let’s include information about milk giving and about birds in Figure 6.2 by
adding the edges and vertices

mammal — milk and bird 4 milk,

because we believe that mammals give milk and birds do not. Actually, pi-
geons secrete a cheeselike substance, called pigeon’s milk, into their crops
and regurgitate it for nestlings. Figure 6.3 shows the new parts that we’ve
added to the digraph in Figure 6.2 plus two facts related to exoskele-
tons.

The figure contains a contradiction because we can conclude pigeon -+
milk, contradicting pigeon — milk. In FOL, the existence of a contradic-
tion allows us to deduce that anything whatsoever is true. Because of the
limited rules of inference in an inheritance net, this does not happen. Since
the contradiction involves pigeons, any contradictory result must involve the
mention of pigeons. (This is true in FOL as well as inheritance nets.) From
the rules (a)-(c), we see that the derivation of a contradiction will involve
a path through “pigeon.” In other words, a contradiction will involve state-
ments about pigeons or about things that are pigeons, such as Tweety in
Tweety — pigeon. Thus, the contradiction does not affect other parts of the
digraph. ®

While localization of contradictions is important, we need more—a way to
eliminate the contradiction and still preserve the structure of the net. That’s
the purpose of default edges. In particular, we should replace bird + milk
with bird -/~ milk and introduce appropriate interpretations and rules for rea-
soning with such edges. The edge  ---» y corresponds to the default rule x — y.
The edge © -/> y corresponds to the statement “most z are not y” or to the
statement “normally, x’s are not y’s.”

What reasoning rules should be used when the nets contain default edges
as well as absolute edges? Let’s revisit Example 6.1 (p. 209) to get some guid-

ance.
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dove
RN external shell
.. .. IR R
Quaker Republican <
Na,utih'l's — Cepha.iopoda —— Mollusca
Nixon

Figure 6.4 The information from Example 6.1 (p.209) as an inheritance system.
See Example 6.12 for a discussion.

Example 6.12 Nixon and Nautiloids Revisited Again

The information about Nixon and the Mollusca phylum that was given in
Example 6.1 is represented pictorially in Figure 6.4.

In the Nixon diamond on the left in Figure 6.4, there are two directed
paths from Nixon to dove. If we treat the default edges as solid, we could con-
clude that Nixon is a dove by using the left path and that he is not by using
the right path. There are two options. Either accept one of the contradictory
conclusions or accept neither.

In the Mollusca digraph, there are various paths that could allow us to
conclude that nautiloids and/or cephalopods have or do not have external
shells. Unlike the Nixon example, there are correct choices: Nautiloids usually
have shells and cephalopods usually do not. W

How can the issues raised in Example 6.12 be dealt with in the context
of inheritance systems? Let’s sketch the basic ideas.

As a first step, pretend that all edges are absolute; that is, replace ---»
with — and -/» with -4=. Then use the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>