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Preface

If A] is ever to become a respectably hard science,
then a firm, formal basis is needed.

—Derek Partridge (1991)

Philosophy

Teaching an AI course presents a problem. The field is so broad that an
attempt to cover most of it is bound to result in a fairly shallow survey
course. Nevertheless, it is important to discuss some important tools of AI
in some depth. The tools can be roughly divided into three types: tools for
implementing a plan (e.g., Lisp, microprocessors), tools for designing a plan
(e.g., algorithms), and tools for designing tools.

A hands-on approach based on implementing plans is often pursued in
computer science. Unfortunately, toy AI problems are of limited pedagogical
use while real AI problems are often on such a scale that programming only
one of them is a major project. Moreover, a hands-on approach often gives
students the ability to implement some plans without giving them the ability
to understand or develop the tools on which such plans are based.

As a result, I believe it’s critical to focus on tools for designing AI tools.
Since AI is a young science, we must to some extent anticipate what these tools
will be. Mathematics has been the major tool designing tool in the sciences;
therefore, I am persuaded that AI will not be an exception.

Possible Courses

It’s popular to say that a book does not require much formal mathematics,
but does require some mathematical maturity. That’s true here. Much of the
material can, in theory, be read and understood with no more background than
high school algebra. In practice, however, students need more than this or they
will be overwhelmed by the need to think mathematically. Furthermore, after
the first ten chapters, some background in calculus is needed.

This text can be used for an introductory course in AI for upper-division
or graduate students who have had a standard lower-division calculus course.
Many courses are possible, depending on the time available, the capabilities
of the students, and the interests of the instructor. All courses should include

XV



xvi Preface

at least Chapter 1 and most of Chapters 2, 3, 5, and 10. Possible supplements
are (a) logic from Chapters 4 and/or 6; (b) neural nets from Chapter 11;
(c) probability and its uses from Chapters 7, 8, and 9; and (d) material from
Chapter 14. The more mathematical exercises and proofs can be emphasized
or deemphasized as circumstances dictate.

This text can also be used for a second course in AI for students interested
in AI research. Many monographs and research papers are inaccessible to such
students because they assume a mathematical background not provided by
standard AI courses. The mathematics in this text helps bridge that gap.

Instructors may obtain a TEX diskette containing solutions to many of
the exercises from Computer Society Press.

The following diagram illustrates some dependencies among all chapters
but the last, ranging from weak (dotted lines) to nearly complete dependency
(solid lines). Dashed lines indicate that only some sections are essential. More
details on dependencies are found at the end of each chapter introduction.

2
' 7 10I I ,l
l l / |V l ,’ '\i” . r :

/. I 12 . 11I I , ,
4 I l

\l

/I . I I I
-. I .- I ’

‘6’ 9 13

Acknowledgments

Various people have helped with this text. I’d particularly like to thank my
students Whose confusions and misunderstandings uncovered poorly written
passages, my colleagues Frederic Bien, Te C. Hu, Fred Kochman, Alfred Man-
aster, Jeff Remmel, and Malcolm Williamson for their suggestions, my copy
editor Emily Thompson for her ample, apposite use of red ink, and Computer
Society Press for their helpful editorial assistance.



Dear Student

History teaches that new technology will require new mathematics.
The question is: Which mathematics to use?

—Monique Pavel (1989)

Many introductory AI texts give the impression that AI is a collection
of heuristic ideas and data structures implemented in Lisp and Prolog.
The prognosis for such a discipline would be grim. Fortunately, AI re-
searchers use mathematics and are developing new tools. Unfortunately,
most of what you need is found in monographs and research articles—-
inappropriate material for a beginning course. This text is my attempt to
fill the gap.

Since some of the mathematics used in AI is not part of a standard un-
dergraduate curriculum, you’ll be learning mathematics and seeing how it’s
used in AI at the same time. As with most mathematically oriented texts,
this one isn’t easy. I’ve written the next couple of pages to help you through
it. Please read them.

Goals

In this text I hope to introduce you to some mathematical tools that have
been important in AI and to some of their applications to the design of al-
gorithms for AI. Since expert systems (broadly interpreted) comprise a large
part of AI and have been the main focus of mathematically based tools, I have
centered the book around the expert system idea.

As a result of studying this text, you should be in a much better po-
sition to read the technical literature in AI and should be able to easily
fill in gaps in coverage by reading one of the more broadly based survey
texts.



xviii Dear Student

Reading Mathematics

Many people learn mathematics the way I learned history in high school. The
exams contained two columns and the goal was to match each date in col-
urrm A with one of the persons, places, and events in column B. Being lazy, I
learned the “whens” of history but never the “whys.” I missed a whole world
of ideas.

When mathematics is taught and learned by rote, students miss a world
of ideas. Mathematics should be learned as an aid to thinking, not as a re-
placement for it. Learning mathematics is a skill that’s seldom taught. If, like
many students, you haven’t mastered it, the following comments should be
helpful.

The key is to work on understanding—not on memorization. How can you
do this?

Let’s begin with definitions. Whenever you meet a new concept, develop
an understanding of it by relating it to ideas you already know and by look-
ing at what it means in specific cases. For instance, when learning what
a polynomial is, look at specific polynomials; when learning what continu-
ity is, see what it means for a specific function like $2. The importance of
understanding the general through the specific cannot be overemphasized—
even by using italics. The discussions and examples that immediately pre-
cede and follow definitions are often designed to foster understanding. If
a definition refers to an earlier, unclear concept, stop! If you proceed, you
may end up wandering aimlessly in a foggy landscape filled with shad-
owy concepts and mirages. Go back and improve your understanding of
the earlier concepts so that they’re practically solid objects that you can
touch and manipulate. Finally, ask yourself why a definition has been in-
troduced: What is the important or useful concept behind it? You may
not be able to answer that question until you’ve read further in the text,
but you can prepare your mind to recognize the answer when you see
it.

What about theorems? The comments for definitions apply here, too:
Look at specific examples, try to relate the theorem to other things you
know, ask why it’s important. Be sure you’re clear on What the theorem
claims and on what its words mean. In addition, attempt to see why the re-
sult seems reasonable before you read the proof. Reading and understand-
ing the proof is the last step. If the proof is long, it may be helpful to
make an outline of it. But don’t mistake the ability to reproduce a proof
for understanding. That’s like expecting a photograph to understand a scene.
There are better tests of understanding: Do you see where all of the as-
sumptions are used? Can you think of a stronger conclusion than that in
the theorem? If so, can you see why the stronger conclusion is not true,
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or at least why the proof is insufficient to establish the stronger conclu-
sion?

Examples play a key role in mathematics. In practically every mathemat-
ics text, they fall into three categories.

0 The type that aren’t in the text: They’re the ones you create by following
the preceding advice.

0 The obvious ones that are labeled “example” in the text. They’re usu-
ally illustrations of definitions, algorithms, or theorems. Sometimes they
develop related ideas.

0 The type that comes from homework problems: These examples are
the solutions to the problems you do yourself, not the problems them-
selves.

If you neglect any of these three types of examples, your mathematical text
will be most useful to you as a doorstop.

Navigation Aids

Here’s some information to help you navigate this text.

0 A chapter introduction usually tells what’s in the chapter, why it’s there,
and how the chapter is laid out. The overview it provides will help you
organize the chapter in your mind.

0 Numerous quotations highlight ideas and controversies, offer insight, pro-
voke thought, and perhaps provide comic relief.

0 Starred material either is more difficult than the text in which it is em—
bedded or is peripheral.

o A remark that’s somewhat off the track may appear as an Aside set in
smaller type. Asides can be skipped without losing the thread of the discus—
sion.

0 There are four types of exercises. Here they are in order of difficulty.
— Some exercises are lettered and some numbered; for example, 2.4.A

versus 2.4.1. The purpose of lettered exercises is to make sure you
absorbed the basic ideas. Their solutions can be found by rereading
the preceding material. You should do all lettered exercises. It’s of-
ten necessary to know the answers to these exercises before reading
further.

— A few numbered exercises are there to be sure you’ve picked up basic
ideas that are needed soon. The answer to such an exercise is given
immediately after the exercise section. You should do all these e1:-
ercises, then read the solutions. If you’ve made an error, study the
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section further or ask for help. It’s important to understand how to
do these exercises before reading further.

— The solutions to most exercises are neither very simple nor very dif-
ficult. Many you’ll be able to do. Ask for help on those that baffle
you.

— Starred exercises are ones that I consider difficult or that refer to
starred material.

A few exercises don’t have just one right answer. They may ask for
your opinion or they may ask for you to construct an example of
something. If an exercise asks for a proof, use full sentences. Read
your proof aloud—it’ll help you catch mistakes and incoherent think-
mg.

Enjoy your exploration of AI and its mathematical foundations.

Sincerely,
Ed Bender



First Things

Anyone teaching a course [on A1] . .. will have to decide what
artificial intelligence is, even if only because inquiring minds

want to know.
—Stuart Russell and Eric Wefald (1991)

“Can machines think?” [is] as ill-posed and uninteresting as
“Can submarines swim?”

—Edsger W. Dijkstra (ca 1970)

Our minds contain processes
that enable us to solve problems we consider difi'icult.

“Intelligence” is our name
for whichever of those processes we don’t get understand

—Marvin Minsky ( 1985)

Introduction

From golems to androids, manmade intelligences have been a dream and night-
mare of mankind for centuries. In the 19505, electronic brains led to the birth
of the science of artificial intelligence. Will AI, as the field is commonly called,
fulfill its promise to convert mankind’s fantasies into reality?

We’ll begin exploring the nature of AI by examining its goals, tools, and
accomplishments, and some of the debates it has engendered. Such an exami-
nation should give us a revealing picture of the current state of this promising
discipline.

Next, we’ll discuss the why’s and wherefore’s of this text. Why the em-
phasis on mathematics? What do future chapters hold in store?

The final sections introduce two important topics: the computation prob-
lem and expert systems. The computation problem permeates AI, but is not

1



2 Chapter 1 First Things

always evident. Meeting it face to face now is important because overlooking
its presence is a ticket to disaster. Expert systems provide a unified way of
viewing most of AI.

1.1 Delimiting Al

We’ll examine AI from three different viewpoints, or “coordinates”:

goals,
methods or tools and (1.1)
achievements and failures.

For example, your goal may be to understand what AI is all about; your
method, talking to AI researchers; and your achievement, a new overview of
AI. Some parts of AI (such as machine learning) are primarily defined by
goals, others (such as neural networks) primarily by methods. Achievements
and failures give information on how a field has progressed.

Some Goals of AI

When you read the following list, interpret words like “reasoning” and “under-
standing” as referring to the results, not the methods. In other words, focus on
a program’s output rather than its algorithm. (Mimicking human algorithms
is a concern of cognitive science, not AI.)

0 Reasoning: Given some general knowledge together with some specific
facts, deduce certain consequences. For example, given knowledge about
diseases and symptoms, diagnose a particular case on the basis of infor-
mation about the symptoms. The most difficult type of reasoning is based
on what people call “common sense.”
Planning: Given (a) some knowledge, (b) the present situation, and (c) a
desired goal, decide how to reach the goal; that is, use goal-directed rea-
soning. How do planning and reasoning differ? They overlap, but, roughly,
reasoning seeks the answer to What?; planning seeks the answer to How?
For example, “What sort of student am I?” versus “How can I be an A
student?”
Learning: Acquiring knowledge (learning) is a central issue since knowl-
edge must be acquired before it can be used. In some situations, it is
feasible to build knowledge into a system. In others, it is infeasible or un-
desirable. Then we want a system that can repeatedly extend its knowl—
edge base in a coherent fashion by acquiring new facts and integrating



1.1 Delimiting AI 3

them with previous knowledge, often by some process of abstraction. For
example, if a system is exposed to various examples of chairs, how can it
abstract the concept “chair”?

The previous goals are rather general in nature and are relevant to many parts
of AI. We now look at goals that may be viewed as more specific. Although
they draw on results in the previous areas, they are very much separate parts
of AI with their own tools and problems.

0 Language Understanding and Use: Obviously, this relies heavily on reason-
ing and learning, but it deserves a separate category. “Common sense”
plays an important role in language. Unfortunately, common sense is an
extremely elusive topic that appears to require a considerable knowledge
base. Attempts to understand spoken language must face additional com-
plications.

0 Processing Visual Input: Vision is only one type of sensory input that
must be processed, but it is by far the most complex. Abstracting useful
information from visual input is proving very difficult.

o Robotics: Robotics must marry AI with engineering. In all but the sim-
plest industrial settings, reality is dauntingly complex. The AI techniques
used in robotics must produce results in real time and, for an autonomous
robot, must not require excessive computer power.

Some Tools of AI

Knowledge about knowledge is the focus of AI. Knowledge is given either
declaratively—in declarative statements—or proceduralIy—by procedural rules.
Specific knowledge tends to be represented declaratively and general knowl-
edge procedurally. (The situation is not this cut-and—dried, but the distinction
is still useful.) Declarative knowledge is stored in what is called a knowl-
edge base. Knowledge about knowledge provides tools for interacting with the
knowledge base:

0 Knowledge Organization Tools: Data structures and algorithms facilitating
the organization of the knowledge base.

0 Knowledge Manipulation Tools: Methods for extracting new knowledge
from the knowledge base; for example, reasoning and planning.

a Knowledge Acquisition Tools: Methods for incorporating new knowledge
into the knowledge base or modifying the tools (“learning”). The border
between acquisition and manipulation is fuzzy.

In many areas of computer science, algorithms are primary and data struc-
tures are secondary. In contrast, knowledge representation is a central problem
in A1. The form of declarative knowledge (the data structures) limits what
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we can state and the ease with which we can manipulate it. AI’s declarative
knowledge is seldom considered “just data.” Thus, the tools of AI could be
thought of in terms of what can be incorporated in the data structures. Here
are some data structures and where to find them and their tools.

0 Limited Structure: Relatively unstructured search spaces are attractive
because they impose few restrictions. Sadly, the lack of structure makes
computations overwhelming for all but the simplest problems (Chapters 2
and 13).

0 Mathematical Logic: Mathematical logic allows us to represent facts about
the world in a form that can be manipulated (Chapters 3-6).

0 Logic-like Representations: Representational awkwardness and other hand—
icaps motivated some researchers to seek alternatives. Some approaches,
such as rule-based systems and semantic nets, can be recast in the frame-
work of logic (Chapter 6). Other approaches, such as reasoning by anal-
ogy as in case-based reasoning, use other methods and are lightly touched
upon in Chapter 14.

0 Numerical Information: Numerical information can play a central role in
describing uncertainty about the world, as in “a 40% chance of rain”
(Chapters 8 and 9).

o Nonsymbolic Structures: The previous structures are designed to repre-
sent and manipulate information symbolically. A growing number of re-
searchers have questioned this approach (Chapters 10, 11, and 13).

On another level, we could say that the tools of AI are those things that
provide the basis for creating the knowledge tools. They tend to fall into four
areas:

0 Hardware: AI makes heavy use of computers for developing and testing
ideas. Some parts can benefit from special-purpose devices.

0 Software: AI’s large software systems make it an important developer and
consumer of programming tools.

0 Mathematics: Some parts of mathematics have proven useful in AI. (Every
formal manipulation of concepts is a part of mathematics.)

0 Heuristics: Sometimes called “rules of thumb,” heuristics are empirical
principles. Heuristics may use mathematics, but often do not.
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What Has Al Given the World?

Many of AI’s contributions contain no AI: They are simply tools that were
developed to aid AI research. We’ll begin with these spinoffs and move on to
results that do contain some AI. There is no consensus on where to draw a
line between contributions containing little or no AI and those with signif-
icant amounts. Many draw the line just before or just after “game-playing
programs.”

Timesharing: Much early work on timesharing was done by MIT’s project
MAC—a dual acronym meaning either “machine-aided cognition” or
“multiple-access computing.” (Some wags called it “man against com-
puter.”)
Windows and Graphical User Interfaces: These were developed at Xerox’s
Palo Alto Research Center to provide easier computer access for AI re-
searchers.
Programming Paradigms: These include
. constraint propagation (now used in spreadsheet programs),
0 object-oriented programming,
0 functional programming (the basis of Lisp), and
o logic, or declarative, programming (the basis of Prolog).

Fuzzy Controllers: “Fuzzy logic” leads to more stable and flexible means
of regulating machines.
Game-Playing Programs: Game playing was a favorite topic in the early
years of AI research. By 1995, the best artificial chess player could beat
all but the best human players. Backgammon programs achieved a sim-
ilar level: One beat the world champion because lucky rolls of the dice
compensated for somewhat inferior play.
Expert Systems: Commercial expert systems have been proliferating in
recent years and many businesses are using special-purpose software to
write expert systems for in-house use.
Natural Language Interfaces: A limited ability to understand natural lan-
guage is providing friendlier user interfaces for some programs.
Dictation Systems: Systems able to transcribe speech have begun to ap-
pear on the market. So far, vocabulary and speed are rather limited.

The flip side of achievement is failure—the skeleton in the closet. Here
are three of them.

Wild Optimism: The seeds of a variety of failures were planted in the
195OS—the early, heady years of AI when almost everything was “just
around the corner.” In the 19803, a minor relapse into unbridled optimism
was caused by the rebirth of neural networks—a methodology inspired
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by the highly interconnected, self-modifying nature of biological neural
systems.

0 Game-Playing Programs: Many hoped that studying games would lead to
significant progress in AI. The rate of return has been low, however—
perhaps because competitions tend to focus on immediate improvement
rather than new ideas.

0 Ad Hoc Developments: Much research has been based on ad hoc methods
rather than solid foundations. People argue about whether seat—of—the—
pants design is inherent in the subject matter of Al or just a passing
stage. Advocates of ad hoc methods are called scrvfiies; advocates of
theoretical methods are called neats.

Results versus Methods: Cognitive Science

Artificial intelligence is an invention.
In contrast, a theory of human intellect is a discovery.

—Morton Wagman (1991)

For some, a major goal of AI is the construction of an artificial intelligence
having human-level abilities. Progress has certainly been made, but the goal
is still far away, if not impossible. Other people are concerned with the meth-
ods hv‘mans use to achieve their abilities. As noted earlier, these people are
cognitive scientists.

Like AI, cognitive science is an umbrella field related to “intelligence.”
Cognitive science, which includes topics like cognition and consciousness,
seems to be striving to achieve many of the goals listed for AI. Unlike AI,
cognitive science focuses on learning how human minds achieve such goals
rather than on creating artificial methods for achieving them. There are a
variety of introductions to cognitive science; for example [14] and [49].

Allen Newell [32] was a major advocate for developing unified theories of
cognition that can be tested and expressed through programs. He argues co-
gently that both cognitive science and AI will profit from such attempts in
the short term, but will go their separate ways in the long term [32, p.57]. To
see why this might be so, consider a crude parallel—a slightly fictional his—
tory of flight. Cognitive science corresponds to understanding bird flight, and
Al to creating artificial flight. Understanding and adapting some aspects of
bird flight informed the early development of artificial flight. Conversely, at-
tempts at artificial flight provided tests for the understanding of bird flight.
Major progress required an understanding of the principles of aerodynamics,
at which point the methods employed by birds were no longer relevant. (Ac-
tually, studying flying fish may have been more productive for early attempts
at flying.)
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Exercises

1.1.A. What are some goals of AI?

1.1.B. What are some general tools of AI?

1.1.C. What are some contributions of AI?

1.1.D. What is the difference between AI and cognitive science?

1.2 Debates

There is nothing which is not the subject of debate, and in which
men of learning are not of contrary opinions. The most trivial

question escapes not our controversy, and in the most
momentous we are not able to give any certain decision.

—David Hume (1740)

Consciousness is a subject about which there is little consensus,
even as to what the problem is. Without a few initial prejudices

one cannot get anywhere.
—Francis Crick (1994)

One of the ongoing debats in AI is the definition of the AI field itself. Actually,
the variety in the field probably makes it impossible to give a concise definition
that is neither too broad nor too narrow. To see why this is so, try the much
simpler problem of defining what is meant by a sport. Your definition should
include bowling and recreational cycling, but not chess or dancing.

Here are three debates that provide some insights about Al.

Consciousness and Intelligence

A better understanding of cognitive science topics like intelligence and con-
sciousness could benefit AI research. Thus we’ll look briefly at these debates,
even though they do not belong in AI.

A question like “Can machines think?” is difficult. We often start from the
premise that we understand what this question means when, in fact, ongoing
debates show that we have not yet figured out what we’re talking about.
Even the first step—agreeing on the definition of “intelligence”—has not been
taken. Some people believe that the most famous proposed test for machine
intelligence, the ’Ihring test, should be regarded as a definition of intelligence.
Other people disagree. (See Exercise 1.2.1.)
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Perhaps thought and intelligence are the wrong issues to address. Instead,
consciousness may be a more fundamental issue. We seem to know less about
this subject than some experts would like to believe. The study of conscious-
ness belongs to philosophy, psychology, and cognitive science. If this line of
study appeals to you, you may find the books by Churchland [8], Dennett [12],
and Moody [31] of interest.

The range of beliefs (or hopes) regarding intelligence and consciousness
is quite broad.

0 At one extreme, strong AI supporters maintain that it is possible to cre-
ate an intelligent, conscious machine and that something like the Turing
test (Exercise 1.2.1) is adequate to determine if the machine is intelligent
and conscious. One expression of this is the physical symbol hypothesis of
Newell and Simon [33]. They define a physical symbol system to be some-
thing that is capable of manipulating physical patterns (such as data in
a computer or strengths of connections among neurons) and hypothesize
that such a system is necessary and sufficient for implementing general
intelligent behavior.

0 At the other extreme are those who maintain either (a) that intelligent,
conscious behavior has a nonphysical component (as in Cartesian dual-
ism) or (b) that it involves something inherently biological. These people
conclude machines will never achieve such behavior.

Given the current state of AI, researchers need not worry about such issues
any more than the Wright brothers needed to worry about the sound barrier.

Symbols versus Connections

The symbols versus connections debate might also be described as “intelli-
gence by design” versus “intelligence as an emergent property.”

The traditional approach to AI has been symbolic; that is, knowledge
is represented at a symbolic level comprehensible to us. The strict symbolic
viewpoint is that the way to make real progress in AI is through the develop-
ment of powerful data structures and algorithms for the representation and
manipulation of knowledge on a symbolic level. Most defenders of this view
believe the symbolic approach mimics conscious human reasoning. The choice
of a symbolic framework has been debated. Some want to base the symbolic
approach on mathematical logic; others insist that numerical methods should
play a central role.

There has recently been a revival of the connectionist approach. Like
much of AI, this approach was born amidst the rosy predictions of the 1950s.
It nearly disappeared in 1969 after Minsky and Papert [30] emphasized the
limitations of the methods then available. Interest blossomed anew in the
1980s. Since then, considerable research has been done using simulations of
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networks of simple interconnected processors, that is, neural networks. Strict
connectionists believe that one should design complex networks of simple pro-
cessors and then train these networks. Intelligence, they maintain, will emerge
as a consequence, but won’t be found in the parts of the network separately.
This is the sort of internal representation and manipulation of knowledge that
the human brain apparently uses on the physiological level, with neurons as
processors.

Which approach is better? The answer may depend on the application.
It may be best to combine the approaches—people are experimenting with
hybrid systems. At any rate, it’s too soon to tell.

The Role of Theory

The word “theory” encompasses mathematics as well as such things as the
theory of general relativity. It does not include simple facts and rules of thumb
based on them. For example, the commonsense advices “get a good night’s
sleep before an exam” is not a theory. It’s a heuristic rule based on personal
observation. What, then, is the practical relevance of theory for AI?

“The theory is the program” view of some nontheorists is at one extreme.
This attitude should not be confused with the idea that computer programs
in AI (should) play the role of experiments—no one claims that a theory is
an experiment. In contrast, “The theory is the program” means you may ask
how well the program works but you can’t ask for a foundation on which the
program is based.

At the other extreme is the ultra-logicist claim that, ultimately, AI will
succeed by employing a theoretically justified system of symbolic reasoning.

Naturally, most researchers’ beliefs lie between these two extremes. The
issue then is “What is the best blend between heuristics and theory?” The
answer to this question depends on the researcher, on the subject, and on its
state of development: On the researcher, because abilities vary from person
to person; on the subject, because simpler areas are more easily fit into a
theoretical framework; and on the state of development because mathematics
is gradually making greater inroads into various areas of AI.

* Exercises

To the student: These exercises are likely to be time-consuming. Most instructors
(myself included) won’t assign any because of time pressure. Read them anyway—
they provide food for thought.

To the instructor: See above.
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1.2.1.

1.2.3.
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The Turing test [51]: An evaluator E is allowed access to two subjects W (a
woman) and X (not a woman) only through a remote terminal. The experi-
menter tells E that exactly one of W and X is a woman and instructs E to
determine which it is by whatever method E wishes using the remote ter-
minal. Each of W and X attempts to react like a woman when responding
to E’s questions. If E decides that X is a woman, then B has been deceived.
By averaging over many E’s, W’s, and X’s, we can obtain a success rate for
deception. In particular, we can compute the deception rate when X is a
man—the deception rate for men. We can also compute the deception rate
for a computer program. In the Turing test, the program is declared to pos-
sess intelligence if its deception rate is at least as great as the deception rate
for men.

(a) Consider the following statement: “The Turing test is based on the idea
that the ability to misrepresent oneself is a measure of intelligence.” Do
you agree? Why? If you agree with it, do you think that ability is a
measure of intelligence? Why?

(b) In some statements of the Turing test, the deception rate for a computer
program is simply required to exceed some value. Which version do you
think is better? Why?

(c) Suppose a species as intelligent as humans were found. (Intelligence in
this sentence does not refer to the Turing test, but to a “commonsense”
assessment.) Do you think such aliens could pass the Turing test? Why?

(d) Given the existence of an intelligent alien species, suggest and defend a
less species-biased test for computer intelligence.

(e) As stated, passing the Turing test depends on the computer’s possess-
ing extensive knowledge of the nature of human beings, both physical
and psychological, as well as their culture, history, literature, and so
forth. Suggest and defend modifications of the Turing test that would
reduce the need for such knowledge. To what extent can such a need be
eliminated without affecting the validity of the test?

(f) More generally, can you formulate a better test?

. Suppose we are considering cognitive skills, learning abilities, or some other
human skill that is relevant to AI. Imagine a three-sided debate:

1. The (nearly) best way to achieve this skill has been found by evolution.
2. By reason and experiment, we’ll be able to improve considerably on

human skills.

3. Neither of the two previous views is correct.

Come to class prepared to carry out such a debate. (You may be assigned a
particular viewpoint to defend.)

For each of the three sides of the debate in the previous exercise, describe
the implications for AI work on a particular skill if the side is correct.
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1.2.4. Newell [34, p. 19] lists a variety of things a mind is able to do, many of which
are reproduced below. Which of these abilities do you think a computer
program should have in order to deserve being considered a major AI project?
Explain your choices.
Hint. There is a wide latitude for acceptable answers, but you may have to
decide what you mean by AI in order to answer.

(a) Behave flexibly as a function of the environment
(b) Exhibit adaptive (rational, goal—oriented) behavior
(c) Operate in real time
(d) Operate in a rich, complex, detailed environment

0 Perceive an immense amount of changing detail
0 Use vast amounts of knowledge
0 Control a motor system of many degrees of freedom

(e) Use symbols and abstractions
(f) Use language, both natural and artificial
(g) Learn from the environment and from experience
(h) Acquire capabilities through development
(i) Operate autonomously, but within a social community

(j) Be self-aware and have a sense of self

1.3 About This Text

The paradox is now fully established that the utmost
abstractions are the true weapons with which to control our

thought of concrete fact.
—Alfred North Whitehead (1925)

Understanding in mathematics cannot be transmitted by
painless entertainment any more than education in music can
be brought by the most brilliant journalism to those who have
never listened intensively. Actual contact with the content of

living mathematics is necessary.
—Richard Courant (1941)

Teach nothing that pupils can teach themselves.

—Amos Bronson Alcott (1799—1888)

Mathematics is the term we use to describe the process of symbolically deduc-
ing conclusions from conceptual assumptions, whether these be the axioms of
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geometry, the laws of physics, or the assumptions in economics’ utility the-
ory. Mathematics with bad assumptions is useless; with good assumptions, it
is a wonderful tool.

Heuristics is the term we use to describe empirical principles and tech-
niques, such as “Avoid the use of GOTO,” “The best offense is a good de-
fense,” and “graphical user interfaces.” Good heuristics whose limits are well
understood are very useful.

Programming is a means of testing ideas, creating tools, and generating
information that may spark new research. Because of AI’s complexity, we often
use special languages (most notably Lisp and Prolog) or simulator packages
(especially for neural nets).

Programming, heuristics, and mathematics are all important in AI.
Because AI is a large field, textbook authors must make choices. Most

authors emphasize heuristics and relatively simple programming exercises.
Since writing large programs and studying mathematics are time-consuming,
this approach allows the broadest coverage of topics. After learning some Lisp
or Prolog and taking a course that involves a large programming project, you
should be able to study AI prograrmning methods and write such programs.
On the other hand, it’s much harder to study mathematics on your own.

My goal is to provide an introductory AI course based on the most im-
portant mathematics and its applications. To keep the length manageable,
material must be cut. My algorithm is simple: Focus on important AI topics
that involve the most broadly applicable mathematics and cut back on oth-
ers. What does that leave? The main mathematical tools for representing and
manipulating knowledge symbolically are (a) various forms of logic for qual-
itative knowledge and (b) probability and related concepts for quantitative
knowledge. The main tools for manipulating knowledge nonsymbolically, as
in neural nets, are optimization methods and statistics. I’ve organized that
material as follows.

0 Trees and Search: Since search plays a central role in AI, elementary
aspects of search trees are discussed in Chapter 2. Some additional aspects
of search are briefly discussed in Chapter 13 after the necessary probability
theory has been introduced in Chapter 12.

0 Classical Mathematical Logic: First-order predicate logic, the starting
point for the use of logic in AI, is presented in Chapters 3 and 4. Prolog
is introduced to show how the concepts and results can be implemented
in a programming language. The reasoning engine in Prolog combines a
search strategy with a deductive method from logic. (You won’t, however,
learn how to program in Prolog from this brief introduction.)

0 Uncertainty in Reasoning: AI systems based on classical mathematical
logic have various shortcomings. Among these are the following:

e We can’t easily allow for general rules that have exceptions (for exam-
ple, “mammals have legs” and “whales are mammals without legs”).
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0 We can’t allow for uncertain statements (for example, “When the
barometer is falling, it often rains by the following day.”)

Qualitative approaches based primarily on extending logic are discussed
in Chapter 6. Quantitative approaches are discussed in Chapters 8 and 9
after the necessary probability theory has been introduced in Chapter 7.

0 Automatic Classification: An alternative to incorporating knowledge—based
rules into expert systems is to design programs that develop their own
“rules” from examples. These are called pattern classifiers and are dis-
cussed in Chapters 10, 11, and 13. After discussing neural nets and opti-
mization in Chapter 11, I digress to introduce some probability, statistics,
and information theory in Chapter 12. This is applied to neural nets and
decision trees in Chapter 13.

o Other Things: The previous material omits important areas of AI. One is
robotics, in which sensory-input processing (especially vision) and motion
planning involve considerable mathematics. Another is language, where
linguistics and speech processing use mathematics. The final chapter con—
tains brief introductions to these omissions and to some less mathematical
topics so that you’ll have a bit of background and some references for fur-
ther study.

1.4 The Computation Problem in Al

Any program that will successfully model even a small part of
intelligence will be inherently massive and complex. Consequently

artificial intelligence continually confronts the limits of modern
computer-science technology.

—J. Michael Brady, Daniel G. Bobrow, and Randall Davis (1993)

Designing algorithms is a central problem in almost any computer oriented
field, and AI is no exception. Unfortunately, algorithms are particularly trou-
blesome in AI. Three reasons for this are as follows.

0 Complexity: Problem complexity makes designing and implementing al-
gorithms difficult.

0 Time: Algorithms frequently explore potential solutions in the course of
searching for an acceptable one. For problems of realistic size, a simple
search process may take too long because of combinatorial erplosion—
a rapid growth in the number of possible solutions. Unfortunately for
algorithm design in AI,

Very rapid growth is typical in AI problems.
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0 Impossibility: It may be impossible to design an algorithm for the given
problem. Here’s a specific example. We would like to design an algorithm
that takes as input (a) a computer program in some suitable language
and (b) some data for the program. The algorithm must determine if
the program will stop or run endlessly—the halting problem. In designing
the algorithm, we imagine an abstract computer having infinite storage.
(Of course, compromises will have to be made when we get around to
implementing the algorithm.) In a classic paper in 1935, ’Ihring proved
that no such algorithm can exist. Thus, the problem is impossible.

Here are some ways of dealing with these problems.

0 Find a much better algorithm: This is the ideal solution. Unfortunately,
we often cannot find a much better algorithm.

0 Settle for an algorithm that sometimes fails: These are algorithms that
sometimes fail either by stopping with no solution or, worse, by giving
an incorrect solution. It’s possible to create such an algorithm by impos-
ing a time limit on another algorithm. For example, the famous simplex
algorithm in linear programming has a very bad worst-case time and a
very good average-case time [6]. Thus, an intelligently designed time limit
would lead to a solution in most cases. For this approach to be useful, we
must know from theory or experience that failure is relatively rare.

0 Settle for an approximate solution: Such a solution is often good enough.
Simon coined the term satisficing for finding a good enough solution.
Sometimes, obtaining good approximate solutions may be as difficult as
the original problem.

0 Replace the problem with an easier one: Solving the easier problem may
produce useful results. Also, exploring the easier problem may lead to
ideas for the original problem.

0 Give up: No comment.

All of these approaches are used in AI, often in combination. Inventing com—
promise algorithms is a tricky, creative business. Mathematics may help in
inventing and assessing compromises, but is seldom sufficient. The final weigh-
ing of gains and losses in a compromise is a value judgment based on your
goals.

How much time should an algorithm be allowed to take? More time often
means a better result. On the other hand, speed of response is important;
for example, a user is less likely to use a sluggish expert system than a quick
one. Figure 1.1 illustrates this idea. Unfortunately, the information needed to
construct the curves in the figure is seldom available. In this case, an anytime
algorithm can be quite useful. This is an algorithm that can be interrupted at
any time to obtain 'an approximate answer. Here’s a simple example of such
an algorithm. Suppose we know that f is continuous on the interval [a,b],
that f(a) < 0, and that f(b) > 0. We want to obtain an estimate for an
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value
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Figure 1.1 The typical effect of response time. The vertical scale measures value
in some unspecified manner. The upper dashed curve shows how the value of a result
varies with computation time. It ignores the costs of time delay. The lower dashed
curve shows the cost of delay in response time. The middle curve, which combines
the two, shows the net value of the response. Computation should end at the middle
curve’s maximum: Even though more calculation would give a better result, the cost
of delay outweighs the gain.

a: 6 (a,b) such that f(:r) = 0. Simply repeat the following two steps: Let
c = (a + b)/2. If f(c) g 0, let a = c; otherwise, let b = c. Whenever the
algorithm is interrupted, it returns the estimate c for 1:.

NP-Hard Problems

Theoretical computer scientists consider an algorithm to be fast if its running
time can be bounded by a polynomial in the number of bits needed to express
the input and the output. This means that, even in the worst case, the algo-
rithm is reasonably fast on very large problems. It says nothing about average
running time. Indeed, it may be very difficult to define an average running
time since it may be unclear what to average over.

In the theory of algorithms, a certain class of problems is called NP-
complcte. Hundreds of problems of interest to computer scientists have been
shown to be NP-complete. It has been proved that either a fast algorithm
exists for all NP-complete problems, or no fast algorithm exists for any N P-
complete problem. Since no fast algorithm has been found after many years
of research, it seems unlikely that any exists.

An NP-hard problem is one that is at least as difficult as an NP-complete
problem. Even when a problem is NP-hard, there may well be an algorithm
that works well on the situations that arise in actual usage—that is, the worst
cases simply don’t arise in practice. (Of course, as soon as you decide this-and
release your program to the world, Murphy’s law dictates that someone will
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come up with a use where the worst cases occur.) In other words, the relevant
time is the average running time over inputs that will actually occur. Unfor-
tunately, this time is usually difficult or impossible to determine theoretically.

Polynomial time algorithms and NP-complete algorithms are the bottom
levels of a whole series of increasingly more difficult problems that are studied
in complexity theory. Some AI problems are NP-complete. Many more are
even more difficult. As a result, compromises of some sort are often needed.

Aside. Here’s a technical note for those who want to know a bit more about N P-
complete. Let |y| denote the number of bits needed to describe y. We say that an
algorithm is (at most) “9 time” if the running time of the algorithm with input a: is
bounded by g(|:l:|).

Suppose we want to determine whether certain things in a set 8 have some
property F. This is called a recognition problem. A recognition problem is in the
class P if there exists a polynomial time algorithm that can determine if F(:1:) is
true or false. For example, 8 could be the positive integers and F could be “com-
posite” (not a prime). In this case, F(:z:) is true if and only if a: is not a prime. No
polynomial time algorithm is known for this example.

It may be much easier to verify that F(2:) is true for a given a: if we’re given
some additional information. This added information is called a certificate. Thus, a
certificate could change a hard problem into an easy one. (Of course, it might be
very hard to create such a certificate.) Note that this makes no provision for veri-
fying that F(a:) is false. For the composite number example, a certificate C(12) for a:
could be a factor of 2;. To verify that F(:c) is true, all we need to do is check that
a:/c(a:) is an integer between 1 and 1:.

A certificate-checking algorithm is NP if it is polynomial time and |c(:c)| is
bounded by a polynomial in Irv]. “NP” stands for “nondeterministic polynomial.”
It should be clear how polynomial applies to the definition, but where does non-
deterministic come in? An algorithm that makes lucky guesses could do the hard
part—that is, create C(12) in polynomial time by guessing. Guessing is a nonde-
terministic process. Combining this with the certificate-checking algorithm gives a
nondeterministic polynomial time algorithm for F(1:) A recognition problem is in
the class NP if there exists an NP algorithm for it.

Suprisingly, there exists a class of “hardest” recognition problems in NP. These
are the NP—complete problems. In what sense are they hardest? Suppose we have a
9 time algorithm for a problem. We say another problem is no harder than this if it
has a g(p) time algorithm for some polynomial p. This says that, to within a polyno-
mial adjustment, all NP-complete problems have the same running time bound and
no NP recognition problem has a larger bound. Let’s put this another way. Suppose
that ’P is a recognition problem that has a polynomial time certificate checking al-
gorithm and let 9 be the running time for the best possible noncertificate algorithm
for some NP-complete problem. Then the best noncertificate algorithm for ’P is at
most g(p) time for some polynomial p.

Since a polynomial time algorithm can check if F (2:) is true in polynomial time
even without a certificate, any problem in the the class P is contained in the class
NP. It’s not known if the two classes are equal; however, this seems very unlikely.
Why? NP-complete problems have been studied extensively and no polynomial time
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algorithm has been found. (On the other hand, it hasn’t been proven that a poly-
nomial time algorithm cannot exist.)

A problem is NP-hard if it is at least as hard as an NP-complete problem. An
NP-hard problem need not be a recognition problem.

Goals, Difficulties, and Compromises

Computation problems often force compromises—we saw some possible ones
earlier. In fact, compromise is a pervasive aspect of AI. Being aware of this
will help your understanding and creativity, so develop the habit of asking the
following questions:

What are the goals?
What are the difficulties?
What are the compromises?

Try going back to the previous section and picking out the goal(s), problem(s),
and compromise(s) involved in my writing of this text.

Exercises

1.4.A. Why are algorithms particularly troublesome in Al?

1.4.B. What are some ways of dealing with the problems to which algorithms in Al
often lead?

1.4.C. Roughly speaking, what are N P-complete and NP-hard problems?

1.4.D. Why may it not be too important that a problem is NP—hard?

1.4.1. Prove that the anytime algorithm for finding a solution to f(:c) = 0 has
the following three properties. Assume that there is no roundoff error in the
computations.

(i) There is always such an a: E [a, b].

(ii) After 11. iterations, the length of the interval [a, b] is 2-” times its original
length.

(iii) No matter how close to a solution of f (1:) = 0 we want to be, we can get
that close if we allow the algorithm to run long enough.
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1.5 Expert Systems

“You really are an automaton—a calculating machine,” I cried.
“There is something positively inhuman in you at times.”

—Arthur Conan Doyle (Watson to Holmes) (1889)

Expert system research has, by general consensus, not been as
successful as its most vehement proponents still claim and it is
open to us to wonder just why. My view is that it is due to the

divergence between formalised rule and the social nature of being
an expert.

—Philip Leith (1990)

Definition 1.1 Expert System

As a rough working definition, an expert system for some special field is
an artificial system that

o exhibits abilities in that field,

0 accepts input regarding a specific problem,

0 delivers advice, actions, or something similar as its output, not just
organized data, and

0 uses domain—specific knowledge.

The traditional AI definition was more restrictive. It required that the ex-
pert system obtain its results by a process akin to abstract reasoning, that
it be able to explain how it reached its conclusions, and that it exhibit abil-
ities at least comparable to those of a human being. The abstract reasoning
requirement probably arose from a combination of the desire for explanations
and an intellectual prejudice concerning how AI should be done. The desire
for explanations was based on the observation that people often insisted on
checking the computer’s “reasoning” before accepting its conclusions. Finally,
if the system was not at least as good as a human in its area of expertise, no
one would use it.

The broader definition given here allows for expert systems that are
not based on a symbolic manipulation of data, for example, neural nets.
It also allows for systems in areas where humans exhibit little if any con-
scious reasoning, for example, in processing visual input. Finally, it allows
for useful systems that are less capable than humans but are still valuable
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Expert System Shells

Reasoning Hybrid Pattern Classification

Qualitative Quantitative Rule Decision Neural Networks
0 Logic 0 Bayesian Extraction Trees 0 Hopfield-like
0 Production Rules 0 Fuzzy Logic 0 Feed Forward
0 Semantic Nets o Other 0 Other
0 Other

Figure 1.2 Possible engines for expert system shells. “Other” signifies the most
blatant omissions. “Rule Extraction” develops input for “Reasoning” systems. “Hy-
brid” refers to systems that use more than one method, a practice that is becoming
more common.

in research or applications, for example, natural language processing sys-
tems.

Closely related to the notion of an expert system is that of an expert
system shell, which is important in the development of commercial systems.
Roughly speaking,

An expert system shell is to an expert system

as

a compiler or interpreter is to a program.

In this analogy, program statements correspond to domain-specific knowledge,
which is often expressed declaratively either in rules or in examples. Just like
interpreters and compilers, expert system shells tend to fall into two cate-
gories:

o Rule—based knowledge is normally used at run time in a symbolic reason-
ing process.

0 Example-based knowledge is normally used at compile time in a pattern
classification process.

Figure 1.2 illustrates some of the possibilities for expert system shells.
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Constructing an Expert System

There are various steps to constructing an expert system. One possible break—
down is

. selection of a tractable problem,
0 selection of an appropriate shell,
0 acquisition and preparation of knowledge, and
0 testing.

Actually blending and feedback take place among the steps. For example,
we might defer the shell choice until we have acquired some knowledge, or,
in the process of testing, we might decide that the knowledge base is inade-
quate.

Step 1. The Problem: To begin with, you must have a “good” problem, that
is, one for which an expert system is likely to be useful. How can you tell if
this is the case?

Best performance is usually obtained by choosing a narrow subject; that
is, one in which the knowledge base is well delimited. In particular, we should
avoid problems that involve “common sense.” Some AI problems, like natural
language understanding, are plagued by the need for common sense.

Performance has generally been disappointing in areas where evolution
has apparently led to some “hard wiring” in human brains. The foremost
example is expert systems related to vision. Successful expert systems in such
areas have generally been limited to very specific problems such as identifying
handwritten Zip codes.

Step 2. Shell Selection: Once you’ve clearly stated the problem and gained
some understanding of the field, you should choose a method of implementa-
tion. You can program a system from scratch, but using an approriate shell
is usually much more efficient.

Step 3. Knowledge Acquisition: It is generally difficult to obtain accurate in-
formation from experts—they misstate the rules they use, forget important
factors, contradict themselves (and each other), and estimate numerical val-
ues poorly. Furthermore, their knowledge is probably poorly organized for use
in an expert system shell. Although the art of obtaining information from
experts is important in building an expert system, we won’t study it.

In some areas, such as vision processing, experts do not use conscious
methods. In this case, you must either attempt to discover rules yourself or
you must abandon rules and create the expert system from a collection of
“typical” examples.

Step 4. Testing: Testing is often referred to as validation. You can expect
problems that will send you back to Step 3 repeatedly. It is hard to decide
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when a system has finally passed the testing phase and is ready for use. In the
first place, users typically come up with situations that software designers did
not anticipate. Second, we often do not expect 100% success, so it is hard to
judge the failures we observe. In this case, systems that provide explanations
are quite helpful—the reasons given for a wrong answer can help us decide if
we want to attribute it to a design error or to a limitation that we cannot (or
do not want to) overcome.

Examples of Expert Systems

To give you a more concrete appreciation, I’ll briefly discuss a few of the many
expert systems that have been written. My choices were motivated by a desire
for breadth not by the commercial success, if any, of the system. Inevitably,
the brevity of the descriptions has led to some distortion.

LOGIC TH EORIST (1956)
In the early years of the twentieth century considerable effort was devoted to
providing a solid foundation for mathematics. The most massive attempt was
Whitehead and Russell’s Principz'a Mathematica (1910).

Aside. This search for a solid foundation is one of the modern impossibility problems.
Its impossibility was proved by Godel in 1931. He showed that any system based on
the usual methods of logical reasoning and arithmetic must contain true theorems
that could not be proved within the system (“incompleteness”). In another paper,
he showed that the real numbers could not be completely specified in such a system
(“independence of the continuum hypothesis”). The classical impossible problems
are the trisection of the angle, the doubling of the cube, and the squaring of the
circle. The Renaissance impossible problem is the solving of the general fifth-degree
equation by radicals. The proof that 7r is transcendental established the impossibility
of squaring the circle. Galois theory was used to establish the impossibility of the
other three problems.

Since the framework provided by Whitehead and Russell allows theorems
to be proved with no “understanding” of the concepts, it’s a reasonable candi-
date for symbolic manipulation by computer. Newell, Simon, and Shaw took
up this task and produced LOGIC THEORIST.

As you’ve undoubtedly discovered, it’s not always clear what steps must
be taken to prove a theorem. Because of this, LOGIC THEORIST used an
ad hoc trial-and-error method. An essential part of a trial-and-error method
is deciding what to try. The program used two approaches:

0 Suppose the goal is to prove Z and we have an axiom or theorem that
says, “If A is true, then Z is true.” We can attempt to prove A.
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0 Suppose the goal is to prove that “If A is true, then Z is true.” We can
try to find M such that one of the two statements

“If A is true, then M is true.” and “If M is true, then Z is true.”

is either an axiom or a theorem. Then we try to prove the other of the
two statements.

This method is related to the reasoning engine used in the Prolog language.
Unlike LOGIC THEORIST, Prolog has a theoretical foundation that pro-
vides power and clarifies its limits. On the other hand, the construction and
arrangement of Prolog statements are more critical to its success.

Few, if any, researchers claim that the formal methods of LOGIC THE-
ORIST and Prolog are used in day-to-day human reasoning. Nevertheless, a
large number of researchers believe that extensions of these ideas will prove
adequate for much of the reasoning needed in Al.

Mathematical logic and Prolog are discussed in Chapters 3, 4, and 6.

MYCIN (1972)
Beginning in 1972 at Stanford, Shortliffe and others developed MYCIN, which
is one of the best known expert systems. In its area of competence, MYCIN
was able to diagnose illnesses as well as or better than most physicians. It
was also able to explain how it reached its conclusions. Nevertheless, it never
received more than token acceptance from the medical community.

MYCIN is a rule-based system with uncertainty. In real life, many rules
are not certain. An example of such a rule is “If you do not study, then you
will get a bad grade.” However, you might happen to be lucky, so the rule
may be valid only 95% of the time. A typical MYCIN rule has the form

If the result of test A is RA and and the result of test Z is 132,
then there is evidence that the disease organism is D.

Included with the rule is a numerical value in the interval [—1,+1], called a
certainty factor (CF). This value is intended as a measure of the strength of
the rule’s conclusion, given that its hypotheses are satisfied. In particular

—1, given the evidence, D is certainly wrong;
+1, given the evidence, D is certainly correct;

CF 2 {
0, the evidence gives no information about D.

The meaning of intermediate values is not so clear.
The MYCIN reasoning engine proceeds from diagnostic evidence toward

causes, eventually producing certainty factors for various diagnoses. In the
process, certainty factors are combined using an ad hoc rule. More recently,
certainty factors have been given a probabilistic interpretation, and Bayesian
nets have provided less ad hoc (but more complex) methods for combining
certainty factors.

Although numerical methods like that used in MYCIN provide ways of
incorporating uncertainty into reasoning, it is unlikely that human reasoning
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is based on such processes—people are notoriously poor at assigning numerical
values to evidence. On the other hand, the use of numerical methods might
lead to AI systems that reason more accurately than humans do.

Bayesian nets and certainty factors are discussed in Chapter 8.

NETtalk (1986)
DECtalk is a complicated rule-based system for converting written English
to spoken English. Sejnowski and Rosenberg developed the neural network
NETtalk to do the same thing. In contrast to DECtalk, NETtalk contains no
rules. Instead, it contains about 100 interconnected units (neurons). The net-
work was given paired samples of written and spoken English from which it
trained itself, using a process that adjusts the strengths of the connections be—
tween the neurons. NETtalk uses the seven most recent text symbols (letters,
punctuation, and spaces) to drive a digital speech synthesizer.

Networks have trained themselves for a variety of tasks. In contrast to
the more cognitive approaches used in the other examples, networks have no
cognitive information built in. Researchers believe that neural networks mimic
somewhat the low-level behavior of biological networks of neurons. As a result,
they believe that this approach may hold the key to designing AI systems that
have some of the capabilities of biological systems.

Neural nets are discussed in Chapters 11 and 13.

DEEP THOUGHT (1990)
Game-playing programs were a favorite research area in the early years of AI.
For various reasons, research interests have since moved in other directions,
but the area has not been completely abandoned.

Chess is the most actively researched game. Programs are available that
will easily beat average players. Thanks to faster processors, special-purpose
devices, and improvements in programs, the top silicon-based players are now
nearly as good as the top human players.

DEEP THOUGHT, by Hsu, Anantharaman, Browne, Campbell, and
Nowatzyk uses special-purpose hardware to search the possibilities for several
moves into the future. The quality of each possible position is evaluated and,
sometimes, further search is carried out. DEEP THOUGHT’s strength lies in
the depth to which it can search. In contrast, Nitsche’s MEPHISTO searches
less and spends more time assessing the positional aspects of the situation.
DEEP THOUGHT plays at or near the grandmaster level and MEPHISTO
plays at a slightly lower level.

Search plays a major role in Al, but brute-force search has very limited
application owing to combinatorial explosion. Some researchers believe that
combining search techniques with “heuristic evaluations” and “methods of
abstraction” will prove important in some parts of AI.

Search is discussed in Chapter 2 and briefly in Chapter 13.
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CHATKB (1992)
Hekmatpour and Elkan developed CHATKB is an expert system to aid users
of certain VLSI design tools. The rapid acceptance of this system is in marked
contrast to that of others such as MYCIN. The difference may be due to the
fact that CHATKB users are already using computers on a regular basis for
other high-level activities such as CAD.

When faced with a user problem, CHATKB determines the category to
which it belongs. This is done by an iterative questioning process similar
to the game of Twenty Questions. Such processes are called decision trees.
Nonautomated decision trees have been used for many years in natural history
field guides for classifying plants and animals.

Each category contains a data base of previously analyzed problems.
CHATKB finds the closest matching problem in the data base for the current
problem’s category. It then presents that problem and its solution to the user.
If the user rejects this solution, CHATKB presents the second best match,
and so on. Matching in this manner is a form of case-based reasoning.

Some researchers believe that this type of dichotomous approach—classify
then look for similar cases—is typical of higher level day-to-day human rea—
soning. Consequently, they expect some such method to play an important
role in the design of intelligent systems.

Decision trees are discussed in Chapter 13. Case-based reasoning is men-
tioned very briefly in Chapter 14.

Exercises

1.5.A. What is an expert system?

1.5.B. What are the steps in building an expert system?

Notes

Crevier [10] has written an informative, lively, nontechnical book on the his-
tory of AI based on his own background and on extensive interviews with
major researchers. He brings the participants to life and accurately explains
important concepts and achievements in layman’s terms. You would probably
enjoy it.

If my brief treatment in Section 1.1 left you dissatisfied, you may wish
to look at other AI texts such as those by Charniak and McDermott [7],
Firebaugh [15], Ginsberg [18], Rich and Knight [39], Russell and Norvig [41],
and Winston [53].
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For a discussion of topics that I’ve slighted, or for a less mathematical
discussion of those I’ve covered, consult some of the available textbooks and
surveys. The texts by Dean, Allen, and Aloimonds [11], Charniak and Mc-
Dermott [7], Firebaugh [15], Ginsberg [18], Rich and Knight [39], Russell and
Norvig [41], and Winston [53] are all broad-based introductions to AI, but
the discussions of neural networks may be limited. Of these, I particularly
recommend Ginsberg’s and Russell and Norvig’s texts. More mathematical,
but less broad, are those by Dougherty and Giardina [13], Lauriere [27], and
Shinghal [45].

Survey and expository articles can sometimes be found in journals and
in conference proceedings. Some journals, such as Artificial Intelligence: An
International Journal, publish special issues containing several such articles.
In addition, handbooks and surveys such as [3] and [46] and books such as
[38] appear from time to time. For briefer discussions, there is the encyclope-
dia [44].

Reading original sources in any field is often a good idea, but it can be
daunting because the authors usually assume readers are researchers with the
necessary background. A solution is provided by annotated collections, for
example, Morgan Kaufmann Publishers’ Readings in .. . books, such as [9]. A
source in neurocomputing is [2].

I mentioned functional programming and logic programming as two of the
paradigms that AI brought to computer science at large. Logic programming
as implemented in Prolog will be discussed in Chapters 3 and 4 to help your
understanding of logic. Functional programming ideas were implemented by
McCarthy in Lisp. The theoretical foundation is provided by the lambda
calculus, developed primarily by the logicians Church and Kleene. I won’t
be discussing these topics, but some AI texts have a Lisp-based introduction
to the subject, which is good if your focus is understanding Lisp. On the
other hand, MacLennan [28] discusses the general methodology of functional
programming from both a concrete and an abstract viewpoint without relying
on Lisp. For texts on Lisp and Prolog, see the notes at the end of Chapter 3.

The discussion about what constitutes AI continues. Almost any textbook
will begin with a discussion of what AI is about and articles appear from time
to time in journals and magazines; see, for example, [43]. The nature of AI and
other topics of debate appear in the essays edited by Graubard [19]. These
were written for a general audience. The essays in Partridge and Wilks [36]
and in volume 47 of Artificial Intelligence (nos. 1—3, Jan. 1991) are more
technical. Material on the connectionist versus symbolic debate can be found
in [37] and in [40].

AI frequently employs complex nonlinear feedback systems. Their behav-
ior is often counterintuitive—at least until extensive experimentation leads
to the development of a new intuition. For the simplest such systems, mathe-
matical control theory has produced some theoretical results. Forrester has ex-
plored complex systems by simulating corporations, cities [16], and the entire
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world. Many other people have simulated complex systems and attempted to
obtain heuristic principles and theoretical results. Progress has been painfully
slow. It is quite possible that this area will remain intractable, but giving up
now would be extremely premature.

Turing’s proof of the impossibility of the halting problem depends on the
concept of finite automata. You can find a proof in Bender and Williamson’s
text [4, pp. 178—179], any book on automata theory, or some texts on discrete
mathematics. The ideas relating to Figure 1.1 are discussed more thoroughly
by Russell and Wefald [42, Ch. 1]. For further discussion of NP-completeness,
see the texts by Papadimitriou and Stei‘glitz [35] and Wilf [52] or see the
article [20]. Garey and Johnson’s [17] classic book on the subject lists many
NP-complete problems, but the list is now much longer.

A discussion of expert systems can be found in many AI texts. There are
also books devoted to expert systems. These include Stefik’s [48] extensive
introduction; the text by Jackson [24], which covers a large part of the material
found in a standard AI course; the text by Lucas and van der Gaag [26],
which treats fewer topics but in greater depth; and the collection [50], which
discusses a variety of applications, devoting a few pages to each. The chapter
discussion passed quickly over the difficult problem of knowledge acquisition.
Many techniques, problems, and specific examples are discussed in [25].

Biographical Sketches

John McCarthy (1927—)
Born in Boston, he received a bachelor’s degree from Caltech and a doctorate
from Princeton, both in mathematics. He received the 1971 Turing Award.

McCarthy named the field; he invented the name “artificial intelligence”
when writing the proposal for the first AI conference. In 1957, he and Minsky
founded the Artificial Intelligence Group at MIT. While there, McCarthy
invented timesharing and Lisp. In 1963, McCarthy moved permanently to
Stanford, where he founded and directed SAIL (Stanford Artificial Intelligence
Laboratory). The MIT and Stanford groups have had a profound influence on
AI for many years.

His major concern has been understanding “commonsense” reasoning so
that it can be used in AI. As a result, he’s focused on achieving a funda-
mental understanding of knowledge and has advocated a publicly accessible
knowledge base for common sense.

Many interesting stories about McCarthy can be found in the biography
by Hilts [21, pp. 197—287]. The sketch by Israel [23] provides more technical
information.
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Marvin Minsky (1927—)
Born in New York City, he studied at Harvard and Princeton, receiving a
doctorate in mathematics. As a postdoc at Harvard, he designed the first con—
focal microscope, a device which is now quite important in optical microscopy.
Minsky received the 1969 Turing Award.

In 1957, McCarthy and Minsky founded MIT’s Artificial Intelligence
Group, where he has continued to inspire excellent thesis research in a va-
riety of areas including

o MACSYMA (the forerunner of Maple and Mathematica),
analogical reasonn (A is to B as C is to which of the following?),

0 language comprehension, and
o robot vision.

Minsky introduced the idea of “frames,” which are used in AI and, more
recently, in object-oriented programming languages. In 1969, Minsky and Pa-
pert dealt a blow to perceptrons—a type of neural network—by proving that
they were quite limited [30].

Recalling his student days, Minsky remarked that “The problem of intelli-
gence seemed hopelessly profound. I can’t remember considering anything else
worth doing.” [5, p.77]. His career has focused on learning what computers
are capable of doing on nonarithmetic problems.

Bernstein’s [5, pp. 9—128] biographical account contains extensive quota-
tions from Minsky.

Allen Newell (1927-1992)
Born in San Francisco, he received a bachelor’s degree in physics at Stan-
ford and began a doctorate in (pure) mathematics at Princeton. Concerned
about a lack of breadth, he left Princeton for RAND where he met Herbert
Simon. Newell received a doctorate in industrial administration under Simon
at Carnegie Tech (now Carnegie-Mellon University), where he became a pro-
fessor. Newell and Simon received the 1975 Turing Award.

He and Simon began a long and fruitful cooperation in 1955 when, with
J. C. Shaw, they designed the list-processing language IPL and used it to write
the LOGIC THEORIST, a program that was able to prove results found in
Russell and Whitehead’s Principz'a Maihematica. As a result, Newell, Shaw,
and Simon are often called the parents of AI. The realization that computers
are more than just rapid arithmetic calculators—that they can be used to
manipulate symbols—was an important observation at the time and is now
taken for granted.

In 1956, Newell, Simon, Chomsky, McCarthy, Minsky, and others launched
cognitive science at a conference at MIT.

The focus of Newell’s career has been the formalization of problem solving
and complex task performance by human beings. The scope of this undertak-
ing has grown over the years, moving from attempts to model the performance
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in specific cognitive areas to a drive to model the entire cognitive process. This
has culminated in SOAR, a blend of AI and cognitive psychology. Theories of
how humans solve problems provide the motivation for this ongoing program-
ming project whose aim is to simulate significant aspects of human cognition.

More information about Newell and SOAR can be found in [29] and about
his interaction with Simon in [47].

Herbert A. Simon (1916-)
Born in Milwaukee, he studied at the University of Chicago, where he received
a doctorate in political science. In his autobiography [47, p.85], he relates that
by this time he “had made a modest beginning in mathematics, a basis for
subsequent self-instruction.” Most of his career has been spent at Carnegie-
Mellon University (CMU). Newell and Simon received the 1975 Turing Award.
Simon received the 1978 Nobel Prize in Economics.

After being involved in the establishment of the CMU Graduate School of
Industrial Administration, he began his shift to AI and cognitive psychology in
1955. He contributed to the establishment of CMU’s fruitful interdepartmental
computer science program.

As the preceding biographic sketch mentioned, Simon and Newell worked
jointed for many years. But, unlike Newell, Simon has continued to focus on
more limited problem-solving simulations rather than on the entire cognitive
process.

Much of Simon’s career has focused on the implications of “bounded ratio-
nality” in economics and cognitive science. Traditional economics postulates
a very knowing and rational man; he has complete knowledge of all relevant
factors, including the details of his own preferences, and is able to carry out
any amount of reasoning (and computation). In the early 19505, Simon broke
with this tradition and postulated bounded rationality—incomplete knowledge
of factors and preferences and limited reasoning abilities.

Simon’s autobiography [47] is part of the Alfred P. Sloan Foundation
Series—a growing collection of generally excellent autobiographies by promi-
nent contemporary scientists.

Alan M. Turing (1912—1954)
Born in London, he took his degrees in mathematics at Cambridge, where he
remained until joining the British war effort in 1938 as their first cryptanalyst.
There he played a major part in setting up the system for routinely decoding
the German Enigma code. After World War II, Turing spent time at the
National Physical Laboratory and at Manchester.

The ACM’s Turing Award is named after him, as are Turing machines and
the Turing test of Exercise 1.2.1 (p. 10). (The Turing Award lectures through
1985 are collected in [1].) Turing machines illustrate Turing’s focus on logic
and computation. A Turing machine is an elegantly simple abstract computer.
Using these simple computers, he showed that the halting problem for com-
puter programs has no computable solution. This was done in 1935, before
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the birth of the electronic computer. Using the lambda calculus, Church also
showed the existence of well defined noncomputable functions. This nonex-
istence result has implications for first-order logic, which is the subject of
Chapters 3 and 4.

Hodges [22] has published a thorough nontechnical biography of Turing.
For more information on Turing machines, consult a text on automata theory.
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Trees and Search

For ’tis a truth well known to most
That, whatsoever thing is lost,

We seek it, ere it comes to light,
In every cranny but the right.

—William COWper (1731—1800)

Introduction

In AI’s youth, researchers hoped that much could be achieved by using very
general methods—so—called weak methods, as opposed to methods that make
significant use of particular knowledge in the problem area. General search
procedures are the most important weak methods in AI. Although knowledge-
intensive approaches are usually favored now, basic search ideas continue to
play a major role.

Some Examples

Search is something everyone does. Consider some examples from everyday
life.

0 Simple Search: Also called brute-force search and British Museum search,
this simple method blindly looks everywhere until it finds a solution. This
is the method I might use if I’ve misplaced my keys somewhere at home,
but have no idea where. It’s impractical for many AI problems because
there are too many places to look. To avoid simple search, I need some
sort of additional information about the space being searched.

o Heuristic Search: I can improve on the brute-force key-finding algorithm by
using additional information called a heuristic. For example, it’s unlikely,
but possible, that I put my keys in a drawer. Thus, I’ll give a higher
priority to searching on surfaces than to searching in drawers. Of course,
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if I don’t find them on a surface, I may end up looking in drawers after
all. A heuristic just helps me organize my search—it’s not a sure thing.

a Pruning: This is a method that allows me to eliminate possibilities. As
I walk into the den, I see my briefcase in plain sight—just where I left
it before going to the university this morning. Thinking for a second, I
realize that because I misplaced my keys after coming home and because
this is the first time since coming home that I’ve seen my briefcase, my
keys can’t possibly be in the den. Thus I “prune” the den; that is, I don’t
search it.

0 Chess and Other Games: Sometimes it’s impossible to conduct a full search.
This is typical in games like chess, where the set of all possible ways
the game can proceed from its present position to its final end is too
large to examine. Players select moves because they “look good.” Thus
they must have some method of looking at board positions and deciding
which ones appear better. In other words, a player has a heuristic for
evaluating positions. To write a chess-playing program, we also need a
similar heuristic. An evaluation heuristic alone is not enough: It tells us
which lines of play to explore further, but it doesn’t tell us how far ahead
to look or how many lines of play to explore.

0 Doing Homework: Solving homework problems often involves search. The
method a student uses depends on the nature of the homework and on
the student. It may range from simple search—look for a formula in the
chapter that fits—to sophisticated applications of heuristics and pruning
to even more sophisticated planning methods. In fact, the mastery of
more sophisticated methods often distinguishes those who understand a
course from those who just barely make it through. Researchers have a
poor understanding of these methods. Consequently we don’t know how
to teach them well or how to do a good job of building them into AI
programs.

0 Evolution: Living organisms are quite complicated. Large random changes
in an organism are almost certain to be fatal—so much so that such
changes would not be able to form the basis for evolution. One key to
evolution ’3 ability to work is the fact that nearby states (such as mutations
and crossovers) often involve relatively small changes in the structure and
function of the organism. Another key is the recombination of genetic
material through mating or chromosome interchange. This allows useful
changes to be combined.

All these ideas except evolution are important in classical AI search. Evolu-
tion has appeared as a tool for AI under the name genetic algorithms. Let’s
postpone our discussion of genetic algorithms, planning, and those aspects of
search that require probability theory. The other aspects of search are dis-
cussed in this chapter.
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Chapter Overview

We begin by introducing some notions from combinatorics, namely directed
graphs and ordered trees. Next, induction and recursion are reviewed. This
provides the concepts for converting a search space into a search graph and
a search (or decision) tree. The remainder of the chapter is devoted to search
trees. Naturally, it begins with the three basic methods of simple search:
breadth-first, depth-first, and iterative-deepening.

The blindness of simple search limits its usefulness. In order to guide our
search, we need some sort of crystal ball to estimate the quality of a state
(vertex in the search tree). The crystal ball is called a heuristic and forms
the basis of heuristic search. The efficiency and success of the search depend
heavily on the nature of the heuristic. Designing a heuristic for a specific
problem is often a knowledge-intensive art and thus will not be discussed
here.

All other sections of the chapter deal with searching until a goal state is
found. In AI, this is often impossible or undesirable. The last section takes up
the important topic of partial search. Ideas in this area are based on heuristic
and iterative-deepening search.

Games are more fruitfully viewed in terms of a somewhat different search
tree structure called an AND/OR tree. Alpha-beta pruning is the classic method
for reducing the amount of work in searching AND/OR trees. Since this algo-
rithm is often misunderstood, we’ll develop it in stages.

Much of the material on search can be viewed from a recursive viewpoint.
In this chapter, recursion will appear in the definition of trees, in search algo-
rithms, and in proofs. Recursion and induction are reviewed in Section 2.2. If
you find recursive methods natural, you can skim or even skip this material.
If you find recursive methods difficult, don’t skim. You’ll only find yourself
in trouble later because the definitions and methods in logic rely heavily on
recursion and because many proofs in later chapters rely on recursion and
induction. In fact

Recursive methods permeate much of AIJ

Prerequisites: Since this is the first mathematical chapter, no earlier mate-
rial is needed.

Used in: The terminology on graphs in the first section is referred to in
various other chapters. Recursion, which is discussed in Section 2, plays a
central role in Al. Thus, you should read at least the first two sections of this
chapter. The material on Prolog in Chapters 3 and 4 requires the material on
depth-first force search in Section 4. Parts of Chapter 13 use material from
this chapter.
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2.1 Graphs and Trees

The term graph is used to describe two completely different concepts. The
concept we do not want is the one associated with the graph of a function.
Instead, we want the combinatorial concept, which is frequently used in com-
puter science. The graphs of greatest interest to us are directed graphs and
ordered trees. You’ve probably seen trees, at least informally, in other courses.
Figures 2.2 (p. 38) and 2.4 (p. 50) contain some examples. In this section, we’ll
develop a precise, recursive definition. After defining these concepts, we’ll use
them to discuss recursion and to provide a framework for search.

Unfortunately, there’s a lot of terminology to define, so let’s use this
section to define some important terms. If we define them as they’re needed,
we’d break up the discussion—and they’d be harder to locate later. You may
not remember it all at first, but you can always refer to this section while
reading the rest of the chapter.

Remember that, for two sets A and B, the Cartesian product A x B
consists of all ordered pairs of the form (a, b), where a E A and b E B.

Definition 2.1 Directed Graphs (Digraphs)
Let V be a set. A directed graph, or digraph, is V together with a subset
E of V x V. We refer to V as the vertices of the digraph and to E as
the edges of the digraph. We denote the digraph by (V, E). If (v, w) is an
edge, we call it an edge from v to w, call '0 its tail, and call 11) its head.

A digraph is represented pictorially as follows. The vertices v E V are indi—
cated by their names, possibly circled. An edge (u, v) E E is represented by a
line or a curve connecting the representations of u and u, with an arrowhead
indicating the direction from u to u. I’ll usually abuse terminology and refer
to such a representation as if it were the digraph. Since nothing matters for
a digraph except V and E, the shapes and positions of the representations
of the vertices as well as the shapes and crossings of the curves representing
the edges are irrelevant. Figure 2.1 contains pictorial representations of two
digraphs.

Definition 2.2 Paths and Cycles
Let D = (V, E) be a digraph. If v1,u2, . . . ,2)", are distinct vertices of D
and (myth-+1) E E for 1 _<_ i < n, we call 1)], ...,u,,, a directed path in D.
If we require only that either (vi,uz-+1) or (v,-+1,u,-) be an edge, we have
an undirected path. If '01,. . . ,2)", is a directed path and (umvl) E E, we
call 01,...,vn,v1 a directed cycle in D. (An undirected cycle is defined
similarly, but we must rule out repeated edges to avoid the triviality of a
two-vertex undirected cycle.)
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0,1

)

Figure 2.1 Pictorial representations of two directed acyclic graphs (DAGs). The
left-hand side shows two representations of a DAG that has V = {1, 2,3,4} and
(um) E E whenever it < 2). In the right-hand digraph, imagine a sequence of
d1, d2, . .. of zeros and ones. Each vertex u corresponds to two adjacent digits, say
di_1, di. By choosing the correct edge (21,0) leading out of u, we can move to di, di+1.
For example, given the sequence 0,1,1,1,0,0, we would start at 0,1, go to 1,1, then
to 1,1 again, then to 1,0, and finally to 0,0.

It’s quite simple to define the notion of a rooted tree in terms of a directed
graph: It’s a directed graph (a) having no undirected cycles and (b) having
a special vertex 1' (called the root) such that there is a directed path from 1°
to every other vertex of the graph. One often needs an ordering for the edges
coming out of each vertex. Such a tree is called an ordered tree.

Here’s a geometric visualization of ordered trees: The topsy-turvy conven-
tion used by mathematicians and computer scientists usually places the root
at the top of the picture. For any vertex v, we draw the edges (22,131), (1),:132), . ..
in a downward direction from v and in a left-to-right order according to their
ordering. This is the reason why rooted trees with the edges from each vertex
ordered are also called rooted plane trees—drawing a rooted tree in the plane
automatically gives a left-to—right ordering. Some ordered trees are shown in
Figure 2.2(a).

In many cases, it’s helpful to have a recursive definition of ordered trees.
Definition 2.3 gives us one. Although it’s long, it’s not really complicated if
you keep the geometric picture in mind. Part (b) corresponds to the following
picture. Draw the trees T1, . . . ,Tk so that their roots 7‘1,...,7’k lie in a line
from left to right. Place a new vertex 7’ above the r,- ’s and draw lines connecting
T to each of the ri’s. See Figure 2.2(b).
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0 2f A />\ /<\ T1 T3
(at) (b)

Figure 2.2 Pictorial representations of (a) five ordered trees and (b) the recursive
construction step. The topmost vertex of each tree is its root. All are distinct ordered
trees, but the two five-vertex trees represent the same rooted tree. To avoid clutter,
the direction of the edges, which is always downwards, is not indicated. The new
edges in the recursive construction are dotted.

Definition 2.3 Ordered Tree

An ordered tree consists of four things: a set V of vertices, a root r E V, a
set E of directed edges, and an ordering of the edges out of each vertex.
It is defined recursively as follows:

(a) If V = {r} and E = (I), calling r the root gives an ordered tree.
(b) Suppose that, for 1 g 2' 3 Is, T,- is an ordered tree with root r; E V,-

and edges E,- which have been partially ordered. Suppose that the
Vg’s are disjoint; that is, V,- 0 Vj = (0 whenever 2' # j. Suppose further
that r ¢ V1 U - - - U V1,. The following defines an ordered tree.

V={r}u(iL:J1v,-),
root = r, (2.1)

k

E = U ({(T’, 75)} U E5)

i=1

and the orderings of the edges consist of the orderings of the edges
of the {11’s together with

(r,r1) < < (r,rk).

If v is a vertex in an ordered tree and there are no edges of the form
(22, at), we call 1) a leaf or terminal vertex. If we ignore the ordering
of the edges, we obtain simply a rooted tree. The ri’s are called the
sons or children of r.
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Aside. There’s one problem with this definition for ordered trees: It doesn’t allow
us to construct infinite trees. I want to allow trees that may have infinitely long
paths; but rather than give a definition, I’ll assume that the concept is clear enough
without one. Of course, I don’t really want infinite trees; but they do occur and can
cause problems for programs.

Decision trees are a particular manifestation of ordered trees. They pro-
vide a useful way of thinking about search trees and are important in design-
ing expert systems that automatically classify data. The study of automatic
classification starts in Chapter 10.

Definition 2.4 Decision Tree

An ordered tree is viewed as a decision tree as follows. If v is a nonleaf
vertex and (v,131),.. .,(v,a:n) are the edges from v, we call :31, . . . , :rn the
possible decisions at i). We refer to 1:,- as the ith choice at v and call $54.1
the next choice after (13,-.

Abstractly, decisions at a vertex need not be ordered; however, in prac-
tice, they are ordered because a program studying a decision tree must
go through the decisions at a vertex in some order.

Aside. The meaning of “tree” without a modifying adjective varies from one discipline
to another and even within a discipline. In computer science, “tree” often means
“rooted tree” and sometimes means “ordered tree.” In mathematics, “tree” often
means “free tree,” which is essentially a tree without a root. This confusion won’t
affect us because the only trees we’ll need will be ordered trees and decision trees.

Exercises

At the beginning of many exercise sections, you’ll find exercises that are lettered
rather than numbered. Their purpose is to make sure you understand the basic
ideas in the text. Their solutions can be found by rereading the preceding material.

2.1.A. Define and give an example of a digraph. An ordered tree. A decision tree.

2.1.1. (Answer follows) Every workday I’m faced with some decisions. First, I must
decide if I think the weather may be bad. If so, I must decide whether to
take an umbrella or other rain gear. If not, I must decide whether to cycle in
or drive in. (In bad weather, I’ll certainly drive.) If I decide to drive, I must
decide whether to leave home early or late. Draw a decision tree and label
the vertices according to the states they represent.
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Answers

2.1.1. To avoid your inadvertently seeing the answer, I’ll list the edges instead of
drawing the tree. Let b and g refer to weather, u and o to rain gear, c and
d to transportation and e and I to timing. The edges are (r, b), (r, g), (b, u),
(b,o), (u,e), (u,l), (o,e’), (0,1'), (g,c), (g,d), (d, e”), and (d,l”), where I’ve
used primes to distinguish different vertices with the same labels.

2.2 A Review of Recursion and Induction

When [recursion] is first presented, students often react as if they
had just been exposed to some conjurer’s trick rather than a new

programming methodology. Given that reaction, many students
never learn to apply recursive techniques and proceed to more

advanced courses unable to write programs which depend on the
use of recursive strategies.
—Eric S. Roberts (1986)

The notion of recursion appears in definitions, algorithms and proofs. A re-
cursive definition normally consists of two parts:

0 a description of the simplest items and

o a description of how to build up more items from other items.

This approach appears in the recursive definition of ordered trees (Defini-
tion 2.3). A recursive algorithm usually has a similar pattern:

0 an algorithm for treating the simplest cases and

e an algorithm for treating the present case based on the results for simpler
cases.

Example 2.1 Two Recursive Ordered-Tree Algorithms

Suppose we want to list the vertices in an ordered tree. Given an ordered tree
T, let r(T) be the root of T, let k = k(T) be the number of ordered trees that
were joined to r in the recursive step to form T, and let T1, . . . ,Tk be those
ordered trees. Here’s an algorithm:
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List(T)
Output r(T).
If r(T) is not a leaf, then

For i=1,...,k, Lislt(Tz').
End if.

End.

Now suppose that we want to “parse” an arithmetic expression that is
built using the binary operations of +, —, X, and /. Given an expression, we
want the function last_op that returns the last operation needed to perform
the calculation. For example, the last operation in (a + 1) x (a — b) is the mul-
tiplication. We also want functions left and right to return the expression
to the left and right of an operation.

Parse(exp)
If exp contains no operation, then

Return an ordered tree with one vertex, labeled exp.
Else

op = last_op(exp) .
T1:=Parse(left(exp,op)).
Tb::Parse(right(exp,op)).
Return the ordered tree built from 71 and 75

with root labeled op.
End else.

End. I

Inductive, or recursive, proofs follow the same format as definitions and
algorithms.

Example 2.2 A Recursive Ordered-Tree Proof

Let’s prove that every ordered tree contains one more vertex than edge. Let
v(T) and e(T) be the number of vertices and edges, respectively, of the ordered
tree T. It’s now simply a matter of using Definition 2.3. In part (a), v(T) = 1
and e(T) = 0, so the result is true. In part (b), it’s simply a matter of applying
the counting functions 2) and e to (2.1):

k k

v(T)=1+Zv(T,-) and e(T)Z—(1+e(T-)).
i=1

Since the construction is recursive, we may assume that v(T,) : 1+e(T,), and
so it follows from the equations above that v(T) = 1 + e(T). This completes
the proof. I
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It may almost seem that we got something for nothing: Why can we
assume that v(T,;) = 1 + e(Tz-)? Don’t we need to find some n to induct on?
The answer is yes and no. Let’s look at proof by induction and recursive
definitions more closely.

In the simplest form of proof by induction, we have some statement that
depends on a positive integer n, call it .A(n). Proof by induction then consists
of two parts: First, show that A(1) is true. Second for n > 1, show that,
whenever A(n — 1) is true, so is A(n). In a slight generalization of this, the
second step is replaced by another step: For n > 1, show that, whenever A(m)
is true for m < n, so is A(n).

You should’ve seen all this in previous mathematics courses. However, you
may not have seen a proof that induction is a valid method of proof. Here’s
one possible argument. Suppose that A(n) is false for some value of n. Then
there is a smallest value of n for which it is false, say n = no. We cannot have
no : 1 because the induction proof showed that A(1) was true. On the other
hand, we cannot have no > 1 because (i) A(m) is true for m < no by the
definition of no and (ii) the induction proof showed that then A(no) must be
true.

The key point in this argument is that, if A(n) is not always true, then
there must be an no where it is false, but for every case smaller than no it
is true. Now, don’t limit your thinking of “smaller than” to the integers. In
particular, look at the recursive definition of ordered trees. We can think of
the trees T1, . . . ,Tk that are used to construct T as all being smaller than T.
The smallest case (corresponding to n = 1) is the ordered tree consisting of a
single vertex. In this sense of smaller, we can have two trees, neither of which
is smaller than the other, for example, A and A. This does not cause
any difficulty for the proof that induction works. We can even have several
“smallest” cases—although we had only one here.

Admittedly, the previous discussion is rather sketchy. The important point
is that a recursive definition (or algorithm) automatically provides the frame-
work for proofs by induction. This is important, so here it is again.

Principle: Suppose a concept is defined recursively and suppose that
you want to prove something about the concept. Almost certainly,

(2 2)an inductive proof will be required. The simplest inductive proof will °

probably be based on upward recursion paralleling the definition.

Following this principle will lead to clearer inductive proofs and will help you
find them more rapidly. Of course, there are situations in which no recursive
algorithm or definition is at hand. In that case, the principle is useless in
creating an inductive proof.

Here’s a more complicated proof for ordered trees to illustrate proof by
induction again. The result is almost intuitively obvious, but it’s not clear
how to prove it.
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Example 2.3 Another Recursive Ordered-Tree Proof

Claim: In an ordered tree, there is exactly one undirected path be-
tween any two distinct vertices.

To prove this, note that it is trivially true for the single-vertex case—there
aren’t two distinct vertices. However, it will be convenient to think of a single
vertex r as a path from r to itself containing no edges. Then the condition
that the vertices be distinct can be removed.

Now let u and v be the vertices and suppose that T is constructed from
r and the ordered trees T1, . . . ,Tk. How can we possibly use induction here?
We must somehow reduce the study of paths to the study of paths in the
individual Ti’s. The key to doing this is the observation that the only edge
between T,- and the rest of the tree is (r, ri). Another useful remark is that no
path can contain r twice or r,- twice.

To prove the inductive step, there are three separate types of paths to
consider.

0 u, v 6 Vi: By the previous paragraph, any path between u and 1) not lying
wholly in T,- would contain r,- twice, a contradiction. Therefore, the only
possible paths are wholly in T,- and, by induction, there is exactly one
such path.

0 u = r, v 6 Vi: Any such path cannot enter another tree Tj because it
must leave it, thereby using the edge (7313-) twice. Thus any such path
consists of (7’, n) and a path between 7’,- and v wholly in T5. Again, there
is exactly one such by induction.

0 u E Vi, v E Vj, i 75 j: Any such path must consist of a path wholly in
T, from u to m, the edge (7', ri), the edge (1373), and a path wholly in T]-
from rj to 1). Again, uniqueness follows by induction.

This completes the proof. I

The principle (2.2) can be adapted to help develop recursive algorithms:
Notice how the recursive form of the algorithms in Example 2.1 follows that
of the definition for ordered trees.

Exercises

Ihear and Iforget. I see and I remember. I do and I understand.
—Chinese Proverb

2.2.A. What is the structure of a recursive definition? A recursive algorithm?

2.2.B. What is the usual relationship between recursive concepts and proofs that
involve them?
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2.2.1. A binary rooted (or ordered) tree is a rooted (or ordered) tree in which, for
every 2) E V, the number of edges with tail 2) is either 0 or 2.

(a) Prove that all binary ordered trees are obtained by changing the defini-
tion of ordered trees so that k = 2.

(b) Prove that the number of vertices in a binary ordered tree is one less
than twice the number of leaves.

2.2.2. A decision tree in which all decisions are yes/no is a binary rooted tree. (See
previous exercise.) Let d(v) be the number of decisions needed to reach the
leaf 1). Prove that the sum of 2‘0“”) over all leaves 2) equals 1.

2.2.3. A directed graph is called acyclic if it has no directed cycles. (In this exercise
you’re asked to prove a property of such graphs which is useful in Chapter 8.)
Let V be a finite set, let (V, E) be an acyclic directed graph, and let it = |V|.

(a) Prove that there is some vertex on such that there is no edge of the
form (umw); that is, for some on E V, we have (umw) ¢ E for all
to E V.

(b) Prove, by induction on n using part (a), that the vertices V can be
ordered '01, . . . , on, so that there is no edge (22,-, 'vj) with i > j.

2.3 Problem Spaces and Search Trees

Rational search within a problem space is not possible until the
space itself has been created, and is useful only to the extent that

the formal structure corresponds efiectiuely to the situation.
It should be no surprise, then, that the area in which artificial

intelligence has had the greatest difi'iculty is in the programming
of common sense.

—Terry Winograd and Fernando Flores (1986)

The concept of a problem space provides the starting point for defining a
search tree. A problem space is where the search is carried out by moving
from one state to another using operators in the problem space. We asso-
ciate a directed graph with the search space. Then we convert the graph into
a decision tree—the search tree. This tree provides the framework for our
investigations in this chapter.
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Definition 2.5 Problem Spaces and Goals

A problem space consists of a set S of states and a set .7: of operators. An
operator is a function whose domain is a subset of S and whose range is
S. If s E S, f E f, and f(s)-is defined, then f(s) is a state that can be
reached directly from 3. Goals are a set 9 C S. A search procedure is a
method of looking for one or more goals by moving around in the problem
space using 7-".

Let 73(3) be the set of all t E S such that f(s) = t for some f E f. In
other words, f(s) are the vertices that can be reached directly from 3.
By expanding s, we mean generating .7-‘(s) somehow.

Don’t be put off by the term operator, it just tells us one way to get from
some states to other states.

From now on, we assume that 73(3) is finite for all s.

Definition 2.6 Search Graph

A directed graph D = (S, E) can be associated with a problem space.
The vertices are the states 8. We have (3,75) 6 E if and only ift E .7-"(s)
(that is, f(s) = t for some f E f). This graph is called a search graph.
In search, we are given a vertex r E S. Search techniques start at r and
traverse the edges of ’D in an attempt to reach a vertex that is a goal
state.

Imagine that we are standing at a vertex on a picture of the search graph.
To carry out a search, we must select one of the edges leading out from our
present vertex. In other words, we must make a decision. This leads to the
idea of associating a decision tree with the problem space.

Definition 2.7 Search Tree

A search tree is associated with a problem space as follows. Let (S, f) be
a problem space with goals g <_: S and a starting state r E S. Order the
elements of each f(s) somehow. The search tree will be a decision tree
whose vertices will be labeled using the elements in S. Vertices can have
the same labels; that is, an element in 8 might be used to label many
vertices of the ordered tree. The root is labeled with r. Suppose that we
have constructed a vertex v in the search tree with label 3 and that s is
not a goal. Order the elements 17(3) and let [6 = |.7-"(s)|. Construct k new
vertices cc,- and k edges (12,1:5). Label 1:,- with the ith element of 73(3).
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Figure 2.3 (a) The search graph and (b) a search tree corresponding to the prob-
lem space S = {13 a, b, c, d}. The operators in .7 might have been defined in many
ways. One possibility is IF = { f1, f2} as given'in the tables-shown in (c). The decision
tree has a branching factor equal to 2.

We could also have derived the search tree from the search graph. (You should
see how to do this.) Figure 2.3 shows a simple search graph and a correspond-
ing search tree.

Because a vertex label may appear many times in a search tree, the tree
may be much larger than the search graph. It may even be infinite. For exam-
ple, if the search graph contains the edges (s,t) and (t, s), then the sequence
of decisions 3 to t to s to t to s to produces an infinite path. Yes, it is a
path: Although s and t appear many times in the path, each appearance cor-
responds to a new vertex in the search tree. The names .9 and t are simply
labels associated with vertices—they are not actually the vertices of the search
tree. Nevertheless, people often abuse terminology and refer to the vertex 3.

Since a search tree associated with a search graph can be much bigger than
the graph, why should we use a decision tree instead of a graph? Paradoxically,
using a decision tree usually requires much less storage.

The entire search tree or search graph is not stored. Instead, we gen-
erate information as needed and store only what may be needed for
future use.

In using a decision tree, we might retain only the path from the starting state
1’ to the current vertex. In a search graph, we need to remember which vertices
the search has visited. If we did not, we would allow vertices to be revisited
and this essentially amounts to converting (part of) the search graph to a
decision tree.

Definition 2.8 Depth and Branching Factor
Let a decision tree be given. The number of decisions needed to reach
a particular vertex in the decision tree is its depth. In particular, the
depth of the root r is 0. Alternatively, the depth of a nonroot vertex is
the number of edges in the path from the root to the vertex.

If each nongoal vertex of the decision tree has b possible decisions, we
call b the branching factor of the tree.
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The branching factor plays a crucial role in analyzing search algorithms. It’s
possible to formulate a notion of (average) branching factor for more general
decision trees, but it’s tricky to define and use. Although results that refer to
a branching factor will be rather useless as exact statements—such branching
regularity is seldom seen—they are suggestive of what happens in general.

Exercises

2.3.A.

2.3.B.

2.3.1.

2.3.2.

2.3.3.

What is a search tree? Explain the idea informally without invoking the
concept of a problem space or a search graph.

Define depth, branching factor, and expanding a vertex.

Suppose that a search graph is finite. Find a necessary and sufficient con-
dition on the search graph for the corresponding search tree to be finite,
too; that is, a condition which is true on the graph if and only if the tree is
finite.

Suppose we have a search tree with branching factor b and suppose that
every goal has depth exceeding 71..

(a) Show that there are at most b]c vertices of depth k and that this is
exactly the number when k g n.

(b) Show that there are at most (bk'l'1 — 1)/(b — 1) vertices of depth at most
k and that this is exactly the number when k S n.

The game of fox and hounds is played on a checkerboard. There are four
hounds, which are placed along the bottom row on the black squares. There
is one fox, which is placed on any black square in the top row. Placing the fox
is the first move of the player called FOX. Thereafter, players alternate moves.
FOX must move the fox one square diagonally in any direction. The player
called HOUNDS must move whatever hound he desires one square diagonally
upward. If the fox reaches one of the squares along the bottom row, FOX
wins; otherwise HOUNDS wins. A state is a board position together with an
indication of who is to move. An operator produces a single move.

This game has too many states to conveniently list by hand. Therefore,
we will look at the case of only two hounds on a 4 x 4 board.

(a) Draw that portion of the search graph up through the time when FOX
has responded to HOUNDS’s first move. (This is three moves: FOX places
piece, HOUNDS moves, and FOX moves.)

(b) What is the portion of the decision tree associated with the portion of
the search graph in the preceding part? How many vertices are there at
depths 0, 1, 2, and 3?

(c) If the previous portion is extended by one more move, how many vertices
will be in the search graph? the search tree?
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2.3.4. In the previous exercise, order choices of the form F —> 2' according to z' and
choices of the form H z' —* j according to z' and then according to j; that is,
as the two-digit numbers z'j are ordered. Order a vertex based on the move
that leads to it. Thus, the ordering of .7:(s) if s has depth 1 is based on the
move ordering H7 —> 5, [-18 —> 5, H8 —+ 6. Give the ordering of 17(3) for all
vertices of depth 2 in the tree. Do the same for all vertices of depth 3.

2.4 Three Simple Search Methods

Seek not out the things that are too hard for thee,
neither search the things that are above thy strength.

—The Apocrypha

We want to examine the search tree until a goal is found. One approach is
to examine all vertices at depth 1 by expanding the root, then all at depth
2 by expanding those at depth 1, and so on until a goal is found. This is
breadth-first search. A big drawback of this method is the amount of storage
required. Depth-first search avoids excessive storage by going to the opposite
extreme. It follows paths downward in the search tree until it finds a goal
or until it must go back because a dead end is reached. A big drawback of
depth-first search is that it may go much deeper than needed, perhaps even
running forever down a path that never ends. Iterative-deepening search is
a hybrid of the two methods. It saves storage by doing a depth-first search,
but it goes to a limited depth D1. If it fails, the depth limit is increased to
D2 > D1 and the search is repeated. If it still fails, the search is repeated
with a depth limit of D3 > D2 and so on until a goal is found. It’s similar to
a breadth-first search because it first examines all vertices at depth at most
D1, then all at depth at most D2, and so on until a goal is found.

Breadth-First Search

Suppose we want to find the goal of least depth in the search tree—in other
words, that goal which can be reached by the fewest decisions starting at the
root. We can do this in a fairly simple manner.
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Algorithm 2.1 Breadth-First Search

If r is a goal state, publish r and stop. Otherwise

1. Create a list A containing the entry r.

2. Remove the first entry 3 E A from A. (If there is no entry to remove,
the search has failed.)

3. For all t E .7-"(s), if t is a goal state, publish t and stop. Otherwise,
add t to the end of the list.

4. Go to 2.

When the algorithm is executed, it first replaces the root by all vertices of
depth 1. Next, the vertices of depth 1 are replaced one at a time by the vertices
of depth 2. The algorithm proceeds in this manner through the decision tree.
It expands all vertices at a given depth before moving deeper. Pictorially, it
moves across the breadth of the tree whenever possible. The need to store all
of A is a serious limitation of breadth-first search. (See Exercise 2.4.3 (p. 51).)

Of course, in using the algorithm, we would probably put more than just
the vertex on the list. For example, we’d probably want to know the sequence
of decisions that lead from the root to the vertex.

Aside. For those readers familiar with the terminology, our list is called a FIFO
(first-in/first-out) list or a queue.

There’s an inefficiency in Algorithm 2.1. Suppose that state t was placed
on the list at some time. Since states can appear more than once in the search
tree, we may be instructed to place t on the list at some later time. If we do
so, we’ll cause duplicate work. By never placing t on the list twice, we can
avoid such duplication. In effect, this converts the algorithm from one that
traverses the search tree to one that traverses the search graph. Here’s the
modified algorithm

Algorithm 2.2 More Efficient Breadth-First Search

If r is a goal state, publish r and stop. Otherwise

1. Create a list A containing the entry 1’. Mark all vertices except 1’ as
unvisited.

2. Remove the first entry 3 E A from A. (If there is no entry to remove,
the search has failed.)

3. For all t 6 73(3), ift is a goal state, publish t and stop. Otherwise, if
t is unvisited, add t to the end of the list and mark it as visited.

4. Go to 2.
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Figure 2.4 A trivial maze: (a) Its search graph and (b) part of its search tree.
Asterisks indicate vertices not added to A by Algorithm 2.2.

Keeping a list of all vertices to mark as visited/unvisited may be impracti-
cal. Instead, one could keep track of them by dividing A into two parts—
removed/unremoved—-and checking A before adding t.

Example 2.4 A Trivial Maze

Figure 2.4 shows a trivial maze. It has six junctions (vertices) labeled 7', s,
t, u, v, and 2. We start at r and attempt to reach the goal z. Although this
example is absurdly simple, it allows us to see several of the ideas in this
chapter in action. The figure also includes the search graph. Those vertices in
the search tree having depth at most 5 are also shown. The goal closest to the
root has depth 5.

Simple breadth-first search (Algorithm 2.1) generates all thirteen vertices
of depth less than 5. How many of the ten vertices at depth 5 must be gener-
ated depends on the order in which vertices at depth 4 are expanded. If it’s
done alphabetically, the total number generated is 23.

The more efficient Algorithm 2.2 generates nine or ten vertices: Those
vertices marked with an asterisk have been encountered previously and so are
not be added to A. Whether nine or ten are generated depends on whether 2
or u is generated first in 13(2)). I

Exercises

2.4.A. Give an algorithm for breadth-first search.
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2.4.1. In this exercise you prove that Algorithm 2.1 and Algorithm 2.2 are correct;
that is, prove that each always finds the way to reach the goal which requires
the fewest decisions. (It’s easy to convince yourself that the algorithm works,
but it’s a bit tricky to prove that it works.)

(a) Show that if Algorithm 2.2 is correct then so is Algorithm 2.1, and that
they find the same path to a goal.

(b) Change Algorithm 2.2 so that it doesn’t stop at a goal state. Show that
every vertex eventually appears on the A of the modified algorithm.

(c) For the modified algorithm, prove that A contains some initial list of
vertices at some depth d and a (possibly empty) final list of vertices at
depth d + l.

(d) For the modified algorithm, conclude that depth is nondecreasing as
vertices are removed from A.

(e) Prove that the original algorithm works.

2.4.2. In this exercise, you are asked to consider the amount of storage required by
breadth-first algorithms when the decision tree has branching factor b.

(a) Assuming no dead ends, show that the length of the list A is always
increasing.

(b) Assuming no dead ends, show that when all the vertices of depth 1: — 1
have been expanded, the list A in Algorithm 2.2 contains bk entries.

(c) Assuming no dead ends or repeated vertices in the search tree, show
that when all vertices of depth In — 1 have been expanded, Algorithm 2.2
will need to retain information concerning

bk+1_
1+b+b2+---+bk=—b—_—1— vertices.

2.4.3. Amdahl’s Law states that a computer that can do about N instructions per
second has roughly N bytes of memory. This law holds for many computers
from original personal computers to supercomputers. Suppose we are given
an Amdahl Law computer and that expanding a vertex does not require much
computation. What can you say about the running time of Algorithm 2.1,
given that it reaches a goal without running out of memory?

You should at least read and think about the following exercise since it is referred
to in Section 2.5.
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Sometimes the number of decisions is not the appropriate measure to use in
looking for a goal. For example, suppose we have a map of highways with
mileages between highway intersections. The goal is to find the shortest route
between intersections A and B.

(a) Explain how a search graph can be constructed where the vertices are in-
tersections and each edge has a “cost” equal to the number of miles.

(b) Show how this leads to a search tree with (a) the root labeled A, (b) all
goals labeled B, (c) a cost for each edge equal to mileage, and (d) the
aim of finding that path from the root to a B for which the sum of the
edge weights is a minimum. We can associate with each vertex v a cost
C(v) that equals the sum of the edge weights on the path from the root
to v. (The path is unique since we are in a tree.)

(c) We can generalize the previous part to a search tree in which each vertex
v has an associated cost 0(1)) and costs increase as we move downward.
Modify the breadth-first algorithm to produce a “best-first” algorithm
that finds the least—cost goal.
Hint. Always remove the vertex with the least cost from A and do not
check whether a vertex is a goal until you remove it from A.

(d) Prove that the algorithm you have given does in fact find the least cost
goaL

The remaining exercises deal with a variant of breadth-first search called meet-in-
the-middle or bidirectional search. They may be omitted. Suppose that we have both
the starting state 1' and the desired goal state 2. The problem is to find a path in
the search graph from r to 2. Since 2 is known, we could branch backward from z
instead of forward from r—or we could do both and “meet in the middle.” To begin
with, assume that there is a branching factor. Actually, there are two, a forward
branching factor b and a backward branching factor fl.

2.4.5.

2.4.6.

2.4.7.

Show that if we start with either 7‘ or z and branch, it is best to begin with
rifb<flandwithzifb>fl.

Suppose that b = fl and the depth of z in the search tree is d = 26 where 6
is an integer. We can branch forward from r to depth 6 and backward from
z the same distance. Suppose V(r) and V(z) are the sets of vertices reached
by the two branchings—each vertex with information on how it was reached.

(a) Explain how a path from r to z can be found by looking at V(r) fl
V(z).

(b) Show that the number of vertices generated is roughly twice the square
root of the number generated if we simply do a breadth-first search
starting at 7'.

Design a bidirectional algorithm that does not require that the depth of 2 be
known. As in the previous exercise, you may assume that b = ,6.
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*2.4.8. In this exercise, we look at how the previous results can be modified for the
case in which 6 7’: 3. Actually, the final algorithm does not even assume a
branching factor.

(a) Suppose that the depth of z is d and that we branch forward from r to
a depth a: and backward from 2 to that depth. Show that the number
of vertices generated is

b—1 + fl—l

(b) Show that the number of vertices generated is near its minimum when
a: is chosen so that b‘" x fldfl’.

(c) Using the previous result as a hint, design an algorithm for bidirectional
search given 1‘ and z, but no depth or branching factor.

Depth-First Search

Depth-first search avoids the storage bottleneck that plagues breadth-first
search. Unfortunately, simple depth-first search can fail to terminate or to find
a “good” solution. To overcome these defects, we look at an important modi-
fication called iterative-deepening. As its name suggests, depth-first search is
a search procedure which moves downward in the search tree whenever pos-
sible. To implement the search, we must keep track of the path from the root
to the current vertex. We need not retain any more vertices than that.

Algorithm 2.3 Depth-First Search
Let a potential search tree be given; that is, we know how to expand any
given vertex, but the expansion may not have been carried out ahead of
time. The following algorithm starts at the root 1’ and attempts to produce
a goal. To use the algorithm, execute Depth_First(7°).

Depth_First(v)
If v is a goal, publish v and stop all execution.
Expand 1).
Set i = 1.

While there is an 2th decision 23,- at 1)
Call Depth_First(a:,-).
Set 2' = i + 1.

End While.
Return.

End.



54 Chapter 2 Trees and Search

Figure 2.5 An arbitrary search tree with edges shown in heavy lines. The route
of an ant doing a depth-first traversal is shown by a thin line. Arrows indicate the
direction of the ant’s movement.

Example 2.5 Applying Depth-First Search

Let’s see how the algorithm works on Figure 2.3 (p.46). Assume that the
ordering of .7-"(s) is alphabetic and that d is the goal. We begin by calling
Depth_First(r). Since 7' is not a goal and the first decision at r is a, the al-
gorithm calls Depthfirstm). This calls Depthfirstw), which then calls
Depth_First(c). Now, c is not a goal, but the while loop terminates imme-
diately because there are no decisions available. Control is then returned to
the calling procedure Depthfirsfib), which now turns to the second deci-
sion at b and calls Depth_First(d). Recognizing d as a goal, the procedure
publishes it and the program dies in a blaze of glory.

If there were no goals, the procedure would continue, returning control to
Depth_First(b), which would then return control to Depth_First(a), which
would call Depthjirst (c), and so forth. We can visualize the process whereby
control is passed as follows. Imagine an ant standing just to the left of T. It
starts walking toward a and keeps going, always keeping an edge on its left
side without stopping until it either reaches a goal or returns to its starting
position. This process is shown for an arbitrary tree in Figure 2.5.

Depth-first search is not always so well behaved. Suppose it’s applied
to the maze in Figure 2.4 (p.50) and that elements in .7: are examined in
alphabetic order. In this case, depth-first search will oscillate forever between
1‘ and s. I

The following theorem shows that depth-first search always works on a
finite tree.

Theorem 2.1 Depth-First Search Sometimes Works

Suppose that the search tree is finite. If a goal exists, Algorithm 2.3 will
find a goal. If no goal exists, Algorithm 2.3 will examine all vertices in
the search tree.
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Proof: The proof follows the recursive definition of trees. The theorem is
obviously true for a single vertex. Suppose T is a search tree with root 7‘. Let
the possible decisions at 7’ lead to $1, . . . ,xk which are roots of the search
trees T1, . . . ,Tk. By the induction hypothesis, the theorem is true for the Ti.
There are three cases to consider:

0 r is a goal, in which case the theorem is true;

0 there is no goal;

0 there is a goal and r is not a goal.

If there is no goal, when the algorithm reaches m, it searches all of T,- by the
induction hypothesis; then it moves to the next decision, if any, at 7'. Since
failure at 7’ sends the algorithm to 131, it searches the entire tree.

Now suppose there is a goal in T]- but in no T,- with z' < j. A similar
argument shows that eventually T]- is reached. By the induction hypothesis,
the algorithm will find a goal in Tj. I

How much storage does depth-first search require? Except for some over-
head, the amount of storage is proportional to the depth of the vertex being
considered. This can be seen in various ways.

0 One method is to convert the algorithm into a nonrecursive one that
simply works with the list of vertices on the path from the root to the
current vertex. If you haven’t had a course in data structures in which
you studied depth-first search, you may find this conversion an instructive
exercise.

0 Another method involves Figure 2.5. By inspecting it, you can probably
convince yourself that there is one layer of Depth_First for each vertex
on the path from the root to the current vertex.

0 One can include depth as a parameter in the algorithm. Change the
procedure to Depth_First(v,d), change the call within the procedure
to Depth_First(m,-, d + 1), and begin by calling DepthIirstU', 0). It is
then easy to see that the second argument will be the depth of the first
and that there will be one unfinished call for each d value from 0 through
the depth of the current vertex.

Obviously, depth-first search overcomes the storage problem associated with
breadth-first search—the amount of storage grows linearly rather than expo-
nentially with depth.
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Iterative-Deepening Search

Unfortunately, depth-first search introduces two new problems. First, there is
no guarantee that the algorithm will find an existing solution—it may progress
downward forever on an infinite branch of the search tree. Second, there is no
reason for the goal state found by depth-first search to be the one involving
the least number of decisions. Iterative-deepening search provides solutions
to these problems. There is a price to pay—iterative-deepening search exam-
ines more states than breadth-first search. Before tackling iterative-deepening
search, let’s list the goals, difficulties, and compromises as suggested on
page 17.

0 Goals: We want to find a general search procedure that is (a) as fast and as
reliable as breadth-first search and (b) as sparing in storage requirements
as depth-first search. Also, it would be nice if the algorithm found a
way to reach the goal that requires (nearly) the least possible number of
decisions.

0 Difficulties: We’ve really already seen these—we have two algorithms that
don’t achieve the goals. (You should explain why breadth-first search and
depth-first search don’t achieve the goals.)

0 Compromises: Except that the algorithm examines more vertices than
in breadth-first search, iterative-deepening search achieves the goals. One
compromise and difficulty that has been hidden is the fact that we use
the search tree rather than the search graph. As a result, some vertices
may be examined many times. There appears to be no way to eliminate
this repetition without seriously compromising the goals.

The basic idea of iterative-deepening search is simple. Let’s modify depth-
first search so that it will not go below some given depth D. If no solution is
found, we simply increase D and try again. This seems very wasteful—looking
at vertices over and over again. We’ll see that it’s not as bad as it looks, but
first we need an explicit statement of the algorithm.

Algorithm 2.4 Iterative-Deepening Search
Let a potential search tree and an increasing sequence of positive integers
D1,D2,... be given. The following algorithm starts at the root 7‘ and
attempts to find a goal. To use the algorithm, execute the first line of
code.

For k = 1,2,... call Iterative(r,0,Dk).

Iterative(v, d, D)
If v is a goal, publish v and stop all execution.
If d = D, return.
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Expand 1).
Set i: 1.
While there is an z'th decision .12.; at '0

Call Iterative(:ci,d+1,D).
Set i = i + 1.

End While.
Return.

End.

Note that, except for testing d = D, Iterative is the same as Algorithm 2.3.
Thus it is just depth-first search on a tree from which all vertices of depth
greater than D have been removed. Before analyzing the algorithm, let’s look
at it in action.

Example 2.6 Our Trivial Maze Revisited

We observed earlier that depth-first search never terminates when run on
the maze in Figure 2.4 (p. 50), provided the elements in .7: are examined in
alphabetic order. If we use iterative-deepening search, we’ll eventually reach a
solution: As soon as D,- Z 5, the circled goal in Figure 2.4 will be in the search
tree of vertices with depth at most Di. Since the tree is finite, Theorem 2.1
tells us that depth-first search will find a goal. I

The result in the example is typical. If a solution is possible, iterative—
deepening search will always find it; furthermore, the solution will have a
nearly minimal depth.

Theorem 2.2 Iterative-Deepening Search Works

Let dmin be the minimum depth. of all goal states in the search tree rooted
at 7*. Suppose that Dn_1 < dmin g D,, (where Do is taken to be —1).
Algorithm 2.4 will find a goal state whose depth is at most DR.

Proof: Consider Iterative(D). Since .7-"(s) is assumed finite for all s and
since the tree examined by Iterative(D) has no vertices below depth D, the
tree is finite. According to Theorem 2.1, depth-first search will find a goal if
one exists.

By the definition of dmim the tree searched by Iterative(D) contains
a goal if and only if D 2 dmin. Thus, no goal is found until the search with
D : DR, at which time a goal will be found. Since the goal is in the tree, its
depth is at most D”. I
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Theorem 2.2 shows that iterative-deepening search overcomes two of the
problems of depth-first search—it always finds a solution if any exist and the
solution it finds is close to best possible. Like depth-first search, iterative-
deepening search overcomes the storage problems of best—first search. It ap-
pears, however, that there’s a severe running time penalty because some ver-
tices will be expanded many times if h: is large. In fact, some vertices will be
expanded K3 times! Actually, the running time penalty for iterative-deepening
search is not at all severe: If |f(s)| > 1 for all nongoal s and the Dk’s are
chosen in a reasonable manner, the number of vertices examined (counting
multiplicity) is no greater than a constant times the number examined by
breadth-first search. Even when the condition on f(s) is violated, iterative-
deepening search is usually fairly efficient.

Theorem 2.3 Iterative-Deepening Search Is Fast

Suppose that D), = k and that |f(s)| > 1 for all nongoal vertices 3. Let
I be the number of calls of Iterative until a solution is found. Let L
be the number of vertices placed on the list A by Algorithm 2.1 (p.49).
Then I < 3(L +1).

This result may seem counterintuitive at first since iterative-deepening ex-
amines some vertices many times. The key is that as long as a tree keeps
branching, the number of vertices at any given depth exceeds the number of
vertices above them. Here is a mathematical formulation of the claim.

Claim: Suppose that |f(s)| > 1 for any nongoal vertex 3. Let It be
the least depth of any goal. Let d: (k) be the number of vertices in the
search tree at depth 19 and let d< (k) be the number at depth less than
Is. For k g n, it follows that d<(k) < d=(k) and d<(lc — 1) < %d<(k).

(2.3)

The proof of this is left as an exercise. Let’s use it to prove the theorem.

Proof: Note that, as a consequence of (2.3),

d<(k) < §d<(k +1) < 9)2 d<(k + 2) < -.- < 9)” d<(n:) (2.4)
for k < rs.

Suppose that the first goal encountered by breadth-first search is the nth
vertex at depth h). Then L = d< (K3) + n — 1 because the goal is not placed on
the list. The number of calls of Iterative for D1,, = k < K: is d< (k) + d=(k).
Thus, the total number of calls of Iterative is

Bl p—s

I (d<(k) + d=(k)) + d<(n) + n
a

P." H

D"

O

d<(k +1)+ d<("3) + ”
k=0
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= Zd<(k)+d<(fi) +n
k=1

3 Z s)” cw) + cw) + n by (24)
16:1

= dare): e)" +d<(n) +n
< 2d<(n) + d<(h:) + n S 3(L +1).

This completes the proof. I

Exercises

2.4.B. Give an algorithm for depth-first search and describe the order in which it
examines vertices.

2.4.C. Give an algorithm for iterative-deepening search.

2.4.D. What are the major good and bad points of breadth-first search and of
depth-first search? How does iterative-deepening search compare with these
good and bad points?

2.4.9. The purpose of this exercise is to prove Claim (2.3).

(a) For k+1§ It, show that d< (k+1) = d=(k)+d<(k) and that d=(k+1) Z
2d=(k).

(b) Using (a) and induction, or otherwise, prove that d< (k) < d=(k).

(c) Using (a) and (b), or otherwise, prove that d< (k + 1) > 2d<(k).

2.4.10. In Exercise 2.4.4 (p. 52), we considered generalizing breadth-first search to
allow a cost other than depth.

(a) Explain why it doesn’t make sense to try doing this for depth-first
search.

(b) Describe how to modify Algorithm 2.4 to make use of a more general
cost.
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2.5 Heuristic Search

It is a mark of insincerity ofpurpose to spend one’s time in
looking for the sacred Emperor in the low-class tea-shops.

—Ernest Bramah (1900)

This is a well-known AI lesson: knowledge reduces the need to search.
—Kenneth D. Forbus and Johan de Kleer (1993)

In the previous section, the best goals in the search tree were those of least
depth—cost was identified with depth. The possibility of a more general cost
was briefly discussed in Exercises 2.4.4 (p.52) and 2.4.10. In this section, we
assume that there’s a general cost. In addition, we’ll look at the possibility of
improving algorithms by including a guess about the future in our costs. This
idea leads to a cost function that combines some knowledge of the past with
a heuristic approximation to the future:

Definition 2.9 (Heuristic) Cost Functions

o 9,, (v) is the cost of going from u to u by moving down in the decision
tree.

We assume that 9,, (12) increases as 1) moves downward in the tree.

0 C“ (v) = min gr(z), where the minimum is taken over all goals 2 that
are reached by a path through 1). This is the cost to reach a goal
through 12. If there are no such goals, C'*(v) z oo.

o h* (u) = C'*(v) — g,.(v) is the additional cost to reach a goal through
12 after paying the cost to reach u.

o he(u) is any estimate of h* (u); this is called a heuristic cost function.

0 06(1)) : g,.(v) + he(v) is the heuristic cost of reaching a goal through
i).
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Here’s the motivation behind these definitions. The search methods in the
previous section use only information about the path from the root to the
current vertex u; that is, they use gr (1)). If we knew C* (v), we could use it in-
stead of g, (u) and search would be trivial: We’d simply start at the root and,
whenever u is the current vertex,-move to a v E flu) for which C*(v) is as
small as possible. Unfortunately, we usually know only gr(v) when we’re at 12.
You should convince yourself that the claims made so far are true.

* * * Stop and think about this! * * *

The function h*(v) = C” (v)—g,. (u) can be thought ofas the additional cost to
reach a goal through 12. Although it’s unlikely that we’d know h*, we might be
able to produce he—an estimate of h*. For example, a good chess player might
not know how good a position in a game is, but he would be able to make a
fairly accurate guess. Since using C“ : gr + h* would make search trivial, it
seems reasonable that using the estimate Ce 2 gr+he would improve upon the
simple search strategies in the previous section. This is so for some estimates.

Before proceeding, let’s take a minute to look at the goals, difficulties,
and compromises.

0 Goals: We want to search a problem space to locate a goal. To do this,
we are representing the situation by a search tree.

0 Difficulties: We cannot examine a sufficient portion of the search tree be-
cause of limitations in data, computational resources, or our cleverness in
designing an algorithm.

0 Compromises: We plan to limit our search to what appear to be the most
promising portions of the tree. To locate these regions, we will make use
of a heuristic cost function h‘3 as a sort of crystal ball. This function is
some sort of approximation to the true cost.

It’s quite clear from this that the heuristic function he plays a major role in
how well our approach will work. Therefore, we need to know more about it,
as the following questions indicate.

0 How should we use a heuristic function? If we are searching until a goal is
found, we should probably treat the heuristic as if it were the true cost.
In “partial search,” other issues may be important.

0 What makes a heuristic function good? It should reduce our work by indi-
cating promising directions in which to search. Unfortunately, that answer
doesn’t help us very much.

0 How can we create good heuristic functions? Solutions are often specific
to the problem at hand and knowledge-intensive. Consequently we can’t
discuss such solutions here.
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Aside. Often the cost g is additive in the sense that gu(u)+gv (w) = gu(w) when the
path from u to 21) contains u. Examples of this are the number of edges on a path
or the mileage on roads between points. When 9 is additive, h* (v) = min 90(2). In
this case, there is a subtle but important difference in the domains of g and h. We
must define ya (u) on the vertices of the search tree because it contains information
about how we reached 2) from the root. On the other hand, h*(u) and he(u) can be
defined on the vertices of the search graph.

Admissible Heuristics

From a table of irregular verbs:
I heurist. You try and err. He/she flounders.

—Stan Kelly-Bootle (1981)

We can adapt the simple algorithms of the previous section to use the func-
tion 08(1)) : gr (1)) + he(u) instead of the depth of i). What properties must
C"(v) have to make breadth-first search and iterative-deepening search reach
low-cost goal states? The answer is provided by the following theorem whose
proof is left as an exercise.

Theorem 2.4 Guaranteed Heuristic Search
Suppose that 08(1)) 2 gr(u) + he(u) is such that

(i) for every M only finitely many vertices have Ce(u) < M, and
(ii) if z is a goal that can be reached through 1), then (36(2)) 5 08(2).

It follows that heuristic search using Ce works; that is,

(a) the modified breadth-first search of Exercise 2.4.4 (p. 52) will find the
least-cost goal, and

(b) the modified iterative-deepening search of Exercise 2.4.10 will find a
nearly least-cost goal as in Theorem 2.2.

Condition (i) simply ensures that the search is finite. Why is a condition like
(ii) needed? Suppose that z and z’ are goal vertices in the search tree, that z
is reached through i), that 03(1)) > 06(2’) > 08(2), and that z' is reached by
a path such that Ce(w) g Ce(z’) for all w on the path. You should be able
to see that if we terminate our search at a cost between Ce(z’) and 03(2)), we
will reach 2’ , but we won’t reach 2) and hence won’t reach 2.

While condition (i) is usually easy to verify, condition (ii) may be more
troublesome. The next theorem provides one means of verification.

Definition 2.10 Admissible Heuristic
If he(u) g h* (v) for all u, then he is called an admissible heuristic.
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Figure 2.6 (a) The usual goal state for the 8 and 15 puzzles; (b) nongoal states.
In the three nongoal states shown here, h‘3 = 4. In the first case, h’" = 4, too. In
the second case, * = 16. In the last case, it’s impossible to reach the goal from the
given state and so h* = 00.

Theorem 2.5 Admissible Heuristics Are Guaranteed
If he is an admissible heuristic, then (ii) in Theorem 2.4 holds.

Proof: Suppose he(v) g h*(v) for all 2). Then

08(0) = gr(v) + he(v) S gr(v) + h"‘(v),
and, by the definition of h*(v), this is the cost of the least-cost goal reached
through 22. I

Example 2.7 Admissible Heuristics Based on Geometric Distance

Suppose we have a road map and are trying to find the shortest route from
city R to city Z. We can construct a search space where the states are highway
intersections and the cost of going from one state to another is the highway
distance between them. We start at the state R and try to reach the goal
Z. A simple choice for he(v) is the straight line distance from v to Z. Since
he 3 h*, the theorem applies. Depending on how the roads are laid out, he
may be fairly close to h*.

Another geometric measure is the manhattan distance:

distance from (13,31) to (32’, y’) equals Ix — az’l + ly — 3/].
It receives its name from the way traffic must move in a city like Manhattan.
Only east-west and north-south travel is allowed. The manhattan distance is
also called the taxicab distance. Here’s an application

A common puzzle is the n2 — 1 puzzle played on an n x 71. board using
77.2 — 1 tiles numbered 1 through it2 — 1 arranged in a square pattern with one
empty square as shown in Figure 2.6. A tile adjacent to the empty square ei-
ther horizontally or vertically can be slid so as to exchange positions with the
empty square. This is a move in the puzzle. The goal is to reach some de-
sired arrangement through a sequence of moves. The cost is the number of
moves required. If each tile is one unit on a side, then moving a tile changes
the manhattan distance between the tile and any point by one unit. Thus, we
must move a tile at least as many times as the manhattan distance between
its present location and its desired location. Summing these distances over all
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Figure 2.7 The search tree for the maze of Figure 2.4 (p. 50). The goal is z. Num-
bers at the vertices are taxicab heuristics in the form he( ),C'e( ). Only those vertices
a: with 08(3) 3 06(2) = 5 have been expanded.

n2 — 1 tiles, we obtain a lower bound he on the number of moves needed to
solve the puzzle. Thus, he 3 h* and so is an admissible heuristic. In many
positions, he seriously underestimates h*.

The 15 puzzle has been sold as a toy. The 8 puzzle and, to a lesser extent,
the 15 and 24 puzzles have all been studied by search theorists. I

The next example shows how C'e can be improved during iterative-
deepening search. After the example, the method is formalized into an al-
gorithm. You may wish to read the algorithm and example together.

Example 2.8 Our Trivial Maze Yet Again
We can use the taxicab metric for our maze in Figure 2.4 (p. 50). If each edge
has unit length, then 9,-(17) is simply the depth of :12,

118(7) = he(v) = 1, he(s) = he(u) = 2, and he(t) = 3.
Figure 2.7 is the search tree for the maze with those vertices q with Ce(q) S
Ce(z) = 5 expanded. The values of he and Ce 2 gr + he are given for each
vertex. Since two occurrences of t haven’t been expanded, the taxicab met-
ric heuristic eliminates some vertices from consideration. We can do better if
we’re willing to change he based on information gained in each iteration of
the algorithm. Let’s perform iterative-deepening with D], = Is.

On the first iteration, we expand r, obtaining 730’) = {3}. Since he(s) : 2,
we have Ce(s) = 3, as shown on the left side of Figure 2.8. This tells us that
it must cost at least 3 to reach the goal from 7'. Thus, we can change Ce(r) to
3 and so he(r) = Ce(r) — g, (r) = 3 — 0 = 3. This completes the expansion for
Ce(a:) g 1. Since we now have Ce(r) = 3, no expansion occurs for Ce(:z:) g 2.

The expansion for Ce(:c) g 3 is shown in the middle of Figure 2.8.
This tells us that the cost of a solution is at least 5. As a result, we up-
date values: C'e(r) = Ce(s) = 5, he(r) : Ce(r) —g,.(r) = 5—0 = 4, and
he(s) = C'e(s) — 9,.(3) = 5 — 1 :: 4. No expansion occurs for Ce(:c) g 4.
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expand expand expand
03(3) 3 1 03(3) 3 3 03(3) 3 5

121,1
r:3,3

12?,5
3:2,3 3:2 3 3:4,5

7:3,5 t:3,5 r:5,7 t:3,5

3:4,7 u:2,5
/ \

t:3,7 v:1,5
/ \

u:2,7 2:0,5

Figure 2.8 The search tree for the maze of Figure 2.4. Information gained in each
iteration of iterative-deepening search is used to improve he for the next iteration.
Above each tree is the description of those vertices that are expanded. Numbers at
the vertices are the heuristics at the start of that expansion in the form he( ),Ce( ).

The tree for Cece) S 5 is shown on the right side of Figure 2.8. Notice
how much smaller it is than the tree in Figure 2.7. I

Now let’s capture the idea behind Example 2.8 in an algorithm.

Algorithm 2.5 Iterative-Deepening Search with Improving Heuristics

Suppose that we are given the situation in Algorithm 2.4 (p. 56), except
that now we also have cost function Ce given by 08(2)) : g,.(v) + he(v),
where he is an admissible heuristic whose value depends only on the
search graph vertex corresponding to the search tree vertex 7). Here is
an iterative-deepening algorithm that improves he.

For k: 1,2,... call Iterative(r,Dk)

Iterative(v,Dk)
If v is a goal, publish v and stop all execution
If 08(1)) 2 Dk return 06(1)).
Set 2'21 and Ce=+oo.
While there is an ith decision :12.- at 12

Set C6 = min(Ce,Iterative(:cz-,Dk)).
Set i = i + 1.

End While.
Set he(v) = max(h“’(v),C"3 — gr(v)).
Return gr (2)) + he(v).

End.
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Unfortunately this algorithm may require considerable storage: The values of
he must be saved for all vertices in the search graph that we have examined.
We could modify the algorithm so that the values of he are saved only for
certain vertices, but then we must decide which vertices these should be.

Theorem 2.6
If Algorithm 2.5 starts with a heuristic he that is admissible, it remains
admissible through all its redefinitions.

The proof is left as an exercise.

Other Heuristics

Our motivation is based on the view that heuristics are central to
AI, and that we cannot claim to understand them until we have

mathematical models which explain experimental results obtained
by using them.

——Stephen V. Chenoweth and Henry W. Davis (1991)

In order to guarantee that the search methods will find (nearly) least-cost
solutions, we’ve required that our heuristic he be admissible; that is, he(u) g
h*(u) for all u. But such a guarantee is of little use if the amount of search
required is beyond our computational capabilities. Thus, we may want to
abandon admissibility and attempt to construct a better heuristic function.

What makes one choice for he better than another? Presumably, less
search is better. What if a nonadmissible he leads to a goal that is not the
least costsolution? How can we analyze a situation when the search method
is not guaranteed to find the least-cost solution? Since search time is often
much more important than the cost of the solution, perhaps we should ignore
the cost and look at just search time.

In general, we can’t guarantee a search time. Hence, we should probably
look at average behavior. This implies some underlying probabilistic model.
Do we really need one? What should it be?

Let’s look at why we need a probabilistic model. Suppose we have in
hand a search tree, h"‘ and he. We could then determine the number of ver-
tices searched by A“ search (i.e., iterative-deepening heuristic search) and see
how the solution found compares with the least-cost solution. By simply rear-
ranging the order in which the vertices in flu) are examined, we can change
the number of vertices searched and the cost of the solution found. Thus,
search times can be expected to vary considerably, depending on the order
in which each f(u) is expanded. Since there will be a wide spread between
best and worst times, some sort of average time is more informative. When we
speak of averages, there is, at least implicitly, a probabilistic model present.
By making the model explicit and viewing the average as the expectation of
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a random variable, we gain two things. First, the tools of probability the-
ory make it more likely that we can analyze the situation instead of simply
collecting data or giving “reasonable” arguments. Second, by stating our as-
sumptions clearly, we make it easier to criticize and improve them. Since we
haven’t explored the necessary probabilistic tools yet, we’ll postpone this line
of discussion until Section 13.3.

Exercises

2.5.A. What is a heuristic and how does it help in search?

2.5.B.

2.5.1.

2.5.2.

2.5.3.

2.5.4.

What is an admissible heuristic and what does it guarantee about search
methods based on breadth-first and iterative-deepening approaches?

In chess, a knight either moves one square horizontally and two vertically
or moves two squares horizontally and one vertically. A position can be de-
scribed by two integers (z', j) indicating horizontal and vertical coordinates
on the board. The goal is to reach (0,0). Design a good heuristic function
for which h g h* and prove that it satisfies h S h’“. Your heuristic function
should be something that can be computed quickly in your head from 2' and
j—not some sort of table lookup. Also, it should work for arbitrarily large 2'
and j.

Prove Theorem 2.4.

Apply Algorithm 2.5 to the trivial maze in Figure 2.4 using the trivial ad-
missible heuristic he(3) = 0 for all 3.

Apply Algorithm 2.5 to the mazes shown here and produce pictures like
those in Figure 2.8. Use the manhattan distance for the starting heuristic.
The starting vertices are labeled 7* and the goals are labeled 2.(a) .7 7 (b) ”H <6) “3-?

w it Z—‘UJ ’lL Z It

| l | |
—’U '1) 10—2)

(d) T — 3 _ t _ u — v —w— 2 Yes, there are two goals:

z*— q 2* is unreachable from r.
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2.5.5. The purpose of this exercise is to prove Theorem 2.6. Let 0* (2:) denote the

2.5.6.

2.5.7.

true cost 9(2) + h*(:c) and suppose that so is some particular tree vertex
that is not a goal.

(a) Prove that 0* (so) is the minimum of 0*(t) over all t E f(so).

(b) Prove that if he is admissible, then redefining he(so) by

128(30): (330)0600 — gram)
leaves he admissible.

*(c) Prove Theorem 2.6.
Hint. Look at the first time Iterative('v, Dk) produces an inadmissi-
ble value.

We are given a search graph in which it is possible to reach a goal from the
starting vertex. Suppose that the cost of reaching a goal is the number of
decisions made. Thus g(t) is the depth oft in the search tree. Suppose that
he 2 0 is a heuristic. We do not assume that he is admissible.

(a) Suppose we do iterative-deepening search using Ce(v) instead of the
depth of v in Algorithm 2.4. Show that such a search will always find a
solution.

(b) Construct a simple example to show that the algorithm may not find
the least-cost solution.

(c) Prove that iterative-deepening search with improving heuristics (Algo-
rithm 2.5) will find a solution.

Why not search on the search graph instead of the search tree? Suppose that
the search space is the simple one described near the end of this section: a
graph G = (V, E) in which each nongoal vertex lies on exactly b edges. We
will search by always moving from a vertex to the vertex adjacent to it which
has the least heuristic cost Ce.

(a) Describe 7(1)) for all 2) E V and describe the search graph. Remember,
the search graph is a directed graph, so it is not quite the same as
G.

(b) Suppose that we are at a vertex '0 such that C'e(v) < C'e(w) for all
vertices w whose distance from v is 1 or 2. (This is not unreasonable in
some situations.) Show that if we reach ’0 in our search, we will never
move more than one vertex away.

(c) Explain how tree search avoids the problem in (b).
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2.6 Partial Search

I am going in search of a great perhaps.
—Frangois Rabelais (1553)

So far we’ve discussed search problems as if it were feasible to search until
a goal vertex is found. This is often impossible, as the following situations
illustrate.

o The search tree may be too large to search within the allotted time. For
example, a computer cannot search the entire move tree for chess in order
to find the best move.

0 Even if we could search the entire tree, it may be best to take some
action so as to gain additional information that may significantly reduce
the search. For example, by carefully recalling how my program has acted
and by consulting manuals, I may be able to determine what is wrong
with it. Rather than spend all my time exploring a large search space,
I may decide to add some print statements that significantly reduce the
search tree.

0 There may not be enough information to describe the search space. For
example, in “dungeons and dragons” computer games, many aspects of
the game are uncovered only through exploration.

All of these examples relate to tradeoffs between time, information, and action.
This suggests an important idea for search in AI

To design a good strategy, we must come to grips with the tradeoffs
(2 5)between time, action, and information. '

Many claim that this is the core issue in intelligent behavior. Herbert Simon,
for example, made it the focus of his research in both economics and AI.

In view of the breadth of (2.5), we can’t attack it head on. In the following
discussion, we’ll focus on the first example. That is, we’ll assume that some
sort of time limit has been imposed on making a decision and ignore the
influence of potential information gain on choosing an action.

There are some general principles we can use in adapting previous meth-
ods to the present situation.

0 Use a limited depth search.
0 Make a decision and start again.
0 Accept the heuristic as reasonably accurate.

We’ll elaborate on each of these.
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Use a Limited-Depth Search

Whatever search method we choose, it’s essential to use a heurisitic function.
Otherwise, we’d simply base our decision on g which measures only how far
a vertex is from the root, not how close it is to a goal.

We expect that time constraints will cause our search to terminate before
reaching a goal. Therefore, a method like depth—first is inappropriate—it’s
likely to spend its time exploring a few alternatives in depth. Heuristic best—
first search and heuristic iterative-deepening search are more appropriate.

There is a problem about how deep to' run the search. With best-first, we
can simply use the vertex that is being expanded at the time the search is
terminated. With iterative-deepening, we can use the best result found with
the last I: for that an iteration was completed. This leads to algorithms which
can be interrupted at any time.

Definition 2.11 Interruptible or Anytime Algorithm
An interruptible or anytime algorithm is an algorithm that will provide
an answer whenever a user stops it, provided some minimum time has
elapsed.

From the previous discussion, we see that anytime algorithms must have some
ability to assess future prospects, for example, by using a heuristic function he.
We saw that heuristic depth-first search does not lead to an anytime algorithm,
but that heuristic best-first search and heuristic iterative-deepening search do.

The following generalization of iterative-deepening search constructs an
anytime algorithm from a large class of algorithms. The basic idea is that
we have some algorithm E(m) that provides no useful information unless it is
allowed to finish. The parameter :8 determines running time but not in a way
that we can easily control. All we may know is that increasing :1: increases
running time.

Algorithm 2.6 Constructing an Anytime Algorithm
Let E(a:) be an algorithm with a parameter :3 that influences running time
in such a way that running time is an increasing function of 1:, say t(a:).
We do not assume that t(a:) is known. If £1 < 122 < is any sequence
increasing without bound, then the following is the interruptible algorithm
3* ((5').

1. Initialize: Set k = 1 and out = Q).
2. Execute: Begin execution of E(a:k). If interrupted, return out; other-

wise, go to Step 3 upon completion.
3. lterate: Set out to the output of 3(3),), replace 1: by k + 1 and go to

Step 2.
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The following theorem lists some properties of the algorithm. Its proof is left
as an exercise.

Theorem 2.7
We use the notation of Algorithm 2.6.

(a) If 3*(53') is interrupted at time T Z t(:c1), it produces the same output
as 3(3):) where

t(171)+'°'+t(931c)é T < t(i171) + ‘ " +t($k)+t($k+1)-
(b) Suppose that the quality of the output of E increases with the length

of time it runs. Then there exists an a? with the following property. If
'5“ (:E’) is interrupted at time T, then 3(a)) must run for time greater
than T/4 to produce better output.

It may not be possible to determine the vector 53' whose existence is asserted
in (b) because it depends on knowing the function t(a:). As a result, one may
wish to build an anytime algorithm that chooses the value of :3], based on how
long E(:c,;) ran for z' < k. Exercise 2.6.3 shows that it is often best to try to
choose 33;, so that the running time of 3(3),) is double the time for 30313-1).

Make a Decision and Start Again

After searching for some time, we may stop searching without having found
the goal. The time limit may be imposed externally—our time has expired and
we must do the best we can. This is like a quiz show in which you’re given
a time in which to decide upon an answer. Alternatively, the time limit may
be self-imposed because making a decision is expected to produce benefits;
for example, we learn more about our environment, our opponent makes a
move, or we gain more time for later search. This happens in a chess match:
Although you’re given a time limit for the entire game, you must decide how
much time to spend on each move.

Consider the following situation. After partially exploring a search space
using a heuristic function as an aid, we stop and make a single decision. This
process is carried out repeatedly, each new search working with the modified
search space and/or heuristic that was obtained as a result of our decision.

0 Stopping: When should we stop searching and make a decision? To make
this determination, we would need a way to measure the cost of search
time against the expected gain from further searching. In other words, we
would need the value-versus-time graph in Figure 1.1 (p. 15).

0 Choosing: Determining which decision is best can also be a difficult prob-
lem. This is particularly true when we expect to gain new data by acting.
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For example, suppose I am lost in the wilds. Should I spend time climbing
a nearby peak in hopes of obtaining a good view that will help me decide
which way to go? Or should I simply follow the stream down because, as
streams get larger, they tend to have campgrounds, cabins, villages, and
so forth nearby? Or should I do something else? In the first case, I spend
a lot of time merely hoping to gain information. In the second case, I start
moving in a reasonable direction. To deal with such problems, we would
have to incorporate the expected value of information into the problem
space.

We won’t tackle either of these difficult problems.

There’s another, simpler problem that we need to avoid. By making a
single decision and then starting anew, we open the door to the possibility of
getting stuck in an infinite loop. This is because we’re looking, in effect, at
the search graph rather than the search tree. Here’s an example.

Suppose that the root 7‘ and the vertex 3 E .7-"(r) have smaller values of
he than any vertices that can reached from either of them in d decisions. Also
suppose that r 6 73(3) and the cost is simply the number of decisions. If we
start at r and search to a depth at most d, we will decide to move to 3. Now,
starting at s and searching to a depth at most (1, we will decide to move back
to 7‘.

One way to avoid this is by increasing he(v) every time we decide to move
to the vertex v. This can be done by keeping a table of previous decisions.
Adjusting he in this way is the basis of the RTA’“ algorithm developed by
Korf [6]. See also Exercise 2.5.7 (p.68).

Accept the Heuristic as Reasonably Accurate

If h = h*, we could simply compute he(s) for all s E .7-"(r) and select that s for
which the cost is a minimum. Of course, we expect that h at h“; nevertheless,
we must expect it to provide some information since we’re using it. How much
should we trust the information?

Generally, it’s reasonable to rely on the heuristic as a guide for searching,
but it’s unreasonable to expect it to be very accurate when we’re making a
decision. For instance, if one decision looks almost as good as another, it may
be worthwhile to explore those two possibilities further. Deciding when to do
so requires probability, so let’s discuss it in Chapter 14.
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Exercises

2.6.A. What is partial search and why might it be done?

2.6.B. What is an anytime algorithm?

2.6.C. Suppose that 5(12) is an algorithm with a time parameter 1:. How can an

2.6.1.

2.6.2.

2.6.3.

anytime algorithm be constructed from 5(12)?

Suppose that 5(3) does depth-first search up to depth at most a; in a tree
having branching factor b. Assume that running time, in some units, equals
the number of vertices that are looked at. We may as well choose 53' to consist
of distinct integers since depths are integral and there is no reason to repeat
a calculation.

(a) Using Exercise 2.3.2, show that the running time of E(n) is approx-
imately % for large n and conclude that the ratio of the running
times of E(m) and E(n) is about bm—n.

(b) Suppose that wk = n and xk+1 = m. Further suppose that T is such that
3* (53') is stopped just short of finishing E(m). Show that, approximately,

m+l n+1 ,_ v-T 2 b—%. Conclude that :3 can produce the same output as '.:.*
in (ml-3) the time or less.

(c) From Theorem 2.7(b) we conclude that there should be a 5* which
takes only about four times as long as E. On the other hand we have
just shown in (b) that it can take up to about b+ 1 times as long. How
can this apparent contradiction be resolved?

The purpose of this exercise is to prove Theorem 2.7.

(a) Prove Theorem 2.7(a).
(b) Suppose that t(:z:) is a strictly increasing function of :1: so that it makes

sense to talk about the inverse function :c(t). Choose some t1 and let
tk = 2k'1t1 and 23;, = $(tk). Prove Theorem 2.7(b) for this choice of 53'.
Hint. Compute the time 5 must run to produce the output that 3*
produces at time T.

(c) The function t(:c) need not be strictly increasing. For example, in depth-
first search up to depth 1:, the time only changes when :1: passes through
an integer value.

Prove Theorem 2.7(b) in general as follows. Use tk as in (b) above.
In place of the inverse of t(:c), let $(t) be such that E(a:(t)) will finish
within time t and such that E cannot produce better output within
time t.

Returning to (b) of the previous exercise, we examine how good the procedure
of doubling times actually is. Suppose that 11k = razk_1 for some 7‘ > 1. Show
that, instead of T/4, we obtain (r—1)T/r2. Also show that this is a maximum
at 'r = 2. Thus, 7‘ = 2 is best in some sense.
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2.6.4. In contrast to the previous exercise, 1‘ = 2 may not be best when the function
t(:c) is not strictly increasing. In fact, it may lead to E(:ck) and E(zk+1)
carrying out exactly the same search. By looking at this set of exercises, you
can find an example that illustrates this fact. Do so.

*Chess Programs and Search

It is quite certain that. the operations of the [chess playing]
Automaton are regulated by mind and by nothing else. Indeed this

matter is susceptible of a mathematical demonstration a priori.
—Edgar Allan Poe (1836)

Chess players divide the game into three somewhat ill-defined parts: opening,
midgame, and endgame. Openings and endgames have been extensively stud-
ied and many books have been written on them. Any serious player will have
memorized many openings and many endgame techniques. Similarly, openings
and endgame techniques are frequently built into chess playing programs. The
midgame, however, possesses too much variety for anyone to present such tab-
ular methods for playing it. As a result, players rely on partial heuristic search.
Here are some things we need to build such a program for the middle game.

0 An internal representation of the game: We’ll ignore this.
0 A method for generating possible moves: This is a method for expanding the

vertices in an AND/OR search tree; in other words, creating f(s) given 3.
.7:(s) may contain just “reasonable” moves—not all possible moves. We’ll
ignore move generation, too.

0 A heuristic for unexpanded positions: This is an evaluation of the “good-
ness” of a position, based on such factors as strength of material (a
weighted count of pieces) and a crude, rapid assessment of position (using
pawn formation, pieces attacked, etc.). We’ll ignore how such a heuristic
is produced, but will look at what it means and how it might be used.

0 A combining rule: This tells how to obtain he(s) given the values of he(t)
for all t E f(s). It moves heuristic information back toward the root so
that a move can be selected.

0 A method for deciding when and where to search: Which vertices should be
expanded? When is further search not warranted due to a low expected
rate of return per unit time?

Before studying he, we need to know what h* should measure. It should
measure how my position compares with my opponent’s. At first glance, this
evaluation seems to be based just on the board position. That’s not entirely
true. Since chess is played with time limits, complexity can be important. For
example, if I’m short on time, I might try to simplify the position. Another
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factor that can enter in is knowledge of my opponent’s abilities. One position
may invite an inexperienced player into a trap, whereas a stronger player might
turn the position against me. Programs have difficulty incorporating time
into he, and they don’t attempt to incorporate knowledge of the opponent’s
abilities.

Once we have he(s) for all reasonable moves from the root, we can select
the best move. To get this information, we need a “combining rule” that
allows us to move information up the tree. What should it be? Chess playing
progams use combining rules that are adaptations of the the max-min method
for AND/0R trees, which we’ll study in the next section.

All players use some sort of search procedure for choosing moves dur-
ing the midgame. Current chess playing programs rely on doing extensive
search—more than humans are capable of by many orders of magnitude. This
compensates for the fact that their heuristics are much poorer than those of
expert players. Some systems rely mainly on search, depending on a quickly
evaluated he and special hardware. Others take more time on he, operating on
the assumption that a better he will reduce the need to search. Some search
tactics used by humans have been incorporated into chess programs. Here are
two examples:

0 Suppose that, for one line of play A, the opponent has many apparently
reasonable responses, while for another line B, all her responses seem poor
except for one apparently very good response 3'. Based on this assess-
ment, A is preferable to B; however, a player may explore the response
3' further to see if it is really as good as it appears. If it is not, B may
be preferable to A. In other words, the tree will be explored to a greater
depth at B than at A. B’ is an example of a singular move—one that is
much better than the alternatives. The general heuristic is this: If a move
is dependent on knowing the value of a singular move accurately, that
move should be explored in greater depth.

0 Suppose search reveals that the opponent has a very good response R to
one line of play. In other words, R “refutes” that line of play. Now suppose
we are in another part of the tree at the same depth where R was used.
It makes sense to see if R refutes the present line before trying the many
other possible moves for the opponent. This is called the killer heuristic
because R kills the line of play.

See Section 13.3 for a discussion of some probabilistic aspects of partial
search.
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*2.7 AND/OR Trees and Related Species

Imagine a problem space in which each state is a game position as well as
an indication of Whose move it is. Suppose our opponent is a good player. To
reach our goal (a win for us), we must now find a path where the nature of the
decision alternates from vertex to vertex—best for us on our move and worst
for us on our opponent’s move. (“Worst” because we assume our opponent
will choose her best move.) This situation can be handled by modifying our
search tree idea as follows.

Definition 2.12 AND/OR Trees
An AND/OR tree looks like a decision tree. Each vertex is labeled either
AND or OR so that the labels alternate on each path from the root to each
vertex. Every vertex 3 for which .7(s) = (0 is assigned a value p(s) in some
manner. The value of every other vertex is defined inductively:

_ mintefls) p(t), if s is labeled AND,
19(5) _ {maxtegr(,)p(t), if s is labeled OR. (2'6)

This definition allows us to propagate values of p from the leaves upward
to the root. An AND/OR tree is also called a max-min tree.

If p(s) = 1 indicates true and [2(3) 2 0 indicates false, min and max compute
logical “and” and “or,” respectively—hence the name AND/OR. More generally,
if 0 s 17(3) 5 1, the tree computes fuzzy “and” and “or.”

For game playing, the vertex tells us the position and whose move it is,
and we use the following:

f(s): moves that can be made from s,
max: computed at our turn,
min: computed at opponent’s turn,

19(3) 2 1: position is a win for us,
12(3) 2 0: position is a loss for us.

This makes sense if we imagine players choosing their best possible moves:
Our goal is to maximize and our opponent’s is to minimize.

AND/0R graphs arise in planning. Starting at an OR vertex, we choose an
initial plan for reaching our goal. If the plan .3 contains several separate goals
.7:(s), which much each be attained to fulfill the plan, the vertex for the plan
is an AND vertex. Each of the separate goal vertices now functions like our
original goal vertex—an OR. And so on.

Here are two procedures, p_max_at and p_min-at for computing the value
of the root of an AND/OR tree. If the root 1’ is an OR, we compute p_max_at(r);
otherwise, we compute p_min_at(r).
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Procedure p_max_at(s) /* Return 19(3): maxp(t), t6 F(s). */
If F(s) = (0, then return 19(3).
Set M z —00.
For t6 F(s), do

Set m = p_min_at (t) .
If m>M, then set Mzm.

End for.
Return Al.

End Procedure.

Procedure p_min_at(s) /* Return p(s) = minp(t), t6 F(s). */
If F(s) = (D, then return p(s).
Set M = 00.
For t E F(s), do

Set m : p_max_at (t) .
If m<M, then set Mzm.

End for.
Return Al.

End Procedure.

For convenience, we adopt the convention that

p_*_at stands for either p_ma.x_at or p_min_at, as appropriate.

The algorithms interact recursively. At a given nonleaf vertex 3, the value
of p(s) is computed by first computing p(t) for all t 6 7(8). This involves
recursion: The procedures move deeper into the tree until a leaf is reached.
You should convince yourself that the code does what is claimed. (See Exer-
cise 2.7.2.)

The functions max and min can be replaced by others. For example, if
we are operating in an uncertain environment, our opponent becomes “Na-
ture,” which selects a vertex in 13(3) in some apparently random manner.
Thus, “average” (“expectation”) may be a more appropriate function than
“minimum.”

In studying an AND/0R tree you can make use of a heuristic function and
apply the ideas in Section 2.5. Thus, instead of calling p_*_at to evaluate
a node, we can call a heuristic function, say p_*_heurist, to evaluate the
situation. Since we are not concerned with distance to a goal in games, what
should p_*_heurist return? A reasonable idea is to let it return a measure of
how promising the vertex appears. Thus a high value indicates that we think
a win is likely while a low value indicates that we think it unlikely. This idea
is used in partial search. See the discussion of chess in the previous section.



78 Chapter 2 Trees and Search

Exercises

2.7.A. Define an AND/OR tree.

2.7.1. Define the concept of an AND/OR graph so that it will bear the same relation
to an AND/OR tree as a search graph bears to a search tree.

2.7.2. The purpose of this exercise is to prove that p_*_at returns correct values
for finite AND/OR trees. The form of the proof is a type of induction, with (a)
playing the role of the starting value 1 for simple induction and (b) playing
the role of the inductive step. In (c), you prove that induction works in this
situation.

(a) Prove that p_*_at(3) returns the correct value when 3 is a leaf.
(b) Prove that p_*_at returns the correct value if all its calls to p_*_at

return correct values.
(c) Prove that p_*_at returns correct values.

Hint. Suppose the proposition is false and let 3 be the deepest vertex
such that p__*_a.t(3) returns an incorrect value.

The next exercise assumes some knowledge of expectation from probability theory,
which we don’t discuss until Chapter 12.

*2.7.3. Many games involve an element of chance, often using cards or dice. These
games do not fit the “complete information” framework we construct for
games like chess. Suppose we can assign a probability to each of the chance
events that might occur in such games and suppose that what happens on
one move is independent of what happens on another, as is true, for ex-
ample, when rolling fair dice. By breaking a move into pieces to separate
out the chance and the action of the player, explain how to modify (2.6) in
Definition 2.12.

Alpha-Beta Pruning

An elegant method for reducing the search in AND/OR trees is alpha-beta
pruning, also written oz-fi pruning. This somewhat subtle method is easy to
misunderstand—the term is sometimes used, incorrectly, to refer to methods
less powerful than true (it-,8 pruning. In terms of using given information, a-fl
pruning is best possible.

The key to understanding a-fl pruning is to realize that some of the
calculations done in p_*_at are unnecessary. Suppose that we want to compute

max (4,min(3, . . ..))

After seeing the 4, we know that the value of the max will be at least 4. After
seeing the 3, we know that the value of the min will be at most 3. Thus, the
values indicated by . . . have no effect on the value of the max. Of course, they
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may affect the value of the min, but that is of no interest to us—we are only
interested in the value of the max.

In terms of AND/OR trees, suppose we want to know 12(3) for an OR vertex
3. After computing p(t) for some t 6 73(3), we know that p(s) _>_ p(t). If we
encounter some other vertex 1) after this and learn that 13(1)) 3 p(t), the exact
value of p(v) is irrelevant. All that matters is that it does not exceed p(t). As
a result, we could falsely report that p(v) = p(t) without affecting the value
that would be computed for p(s).

The idea in the previous paragraph can be incorporated into p_*_at: At
all times, we keep track of a lower bound such that values below this bound
will not affect computations back toward the root. Thus, if a p_max_at call
has seen a value M, nothing is of interest among its descendents unless it
exceeds M. As a result, any value not exceeding M can be reported simply
as M. Here’s the modified code for p_*_at.

Procedure p_max_at(s,a)
/* Return p(s) if it exceeds or; else, return at most a. */

If F(s) = (0, then return 12(3).
Set M = a.
/* Al is the current lower bound on the values */
/* of p that must be reported correctly. */
For t E F(s), do

Set m = p_min_at (t, M) .
If m>M, then set Mzm.

End for.
Return Al.

End Procedure.

Procedure p_min_at(s,a)
/* Return p(s) if it exceeds 0:; else return at most a. */

If F(s) = (D, then return 19(3).
Set M = 00.
For t6 F(s), do

Set 777. = p_max_at (t, a).
If m < M, then

If m g a, then return a.
Set M = m.

End if.
End for.
Return A4.

End Procedure.
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If the root 7' is an OR, we compute p_max_at(r,—oo); otherwise, we com-
pute p_min_at(r, —oo). Before proceeding, convince yourself that the code for
p_*_at(r,a) is correct.

* * * Stop and think about this! * * *

What we have done for lower bounds and OR can also be done for upper
bounds and AND. To do this, we introduce fl. The result is the complete (1-,6
pruning algorithm:

/* Each procedure returns p(s) if it lies in (a,fi). */
/* If p(s) < 0:, the procedures return at most a. */
/* If p(s) > fl, the procedures return at least fl. */

Procedure p.1nax-at(s, (1, fl)
If F(s) = (0, then return 19(3).
Set M = a.
/* Al is the current lower bound on the values */
/* of p that must be reported correctly. */
For t E F(s), do

Set m = p_min_at(t, M,fl) .
If m > M, then

If m 2 ,6, then return ,8.
501'. M = m.

End if.
End for.
Return Al.

End Procedure.

Procedure p_min_at(s, a, fl)
/* Return p(s) if it exceeds a; else return at most a. */

If F(s) = 0, then return p(s).
Set M = ,8.
/* Al is the current upper bound on the values */
/* of p that must be reported correctly. */
For t E F(s), do

Set m : p_max_at(t, a, M) .
If m < M, then

If m S a, then return a.
Set M = m.

End if.
End for.
Return A4.

End Procedure.
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(”3. (”1%. A. 2A. {”3 (”it
/ \ / |\ / \ /3 AND 4 2 3 AND 3 3 p 4 3 fl
/ \ / \1 2 2 4

Figure 2.9 The left-hand figure is an AND/OR tree with the values of p(s) specified
at the leaves. In the right-hand figure, those vertices which were not consulted are
removed. An 0 or fl has been inserted to indicate whether it was the result of alpha
pruning or beta pruning, respectively.

Example 2.9 An Illustration of a-fl Pruning

Figure 2.9 illustrates the use of the a-fl pruning algorithm. The vertices in
13(3) are listed immediately below 3 and are examined from left to right. If
T(s) : (D, the value of 19(3) is given; otherwise, the nature of the vertex is
given. For simplicity, we speak of one vertex calling another.

We start computation with a call to the root 7’ by p_max_at(r, —oo, 00).
The root calls the leftmost AND by p_min_at(s, —oo, 00). After 3 calls its

left child, it has M = 2 and so calls t by p_max_at(t, —oo, 2). After obtaining
3 from its left child, t returns 2 to s. This amounts to (beta) pruning the right
child of t, which is indicated in the figure by fl.

After some calls, u is called from the middle AND by p_maxat(u, 2, 3). The
value 4, which exceeds 3, causes the pruning shown by the two fl’s below u.
The value 3 is returned by u and the middle AND.

The root then calls the rightmost AND. When it sees 3, alpha pruning
takes place as indicated. You should be able to fill in the details. Do so. I

If a tree has branching factor b, what is the effective branching factor for
a-fl search? That is, what would the branching factor be for a tree that ex-
amined the same number of vertices at depth d? Suppose that p(s) is assigned
randomly to the leaves. If the vertices in each .7(s) are examined in the best
possible order, which normally happens only by accident, the effective branch-
ing factor is x/h. If the vertices in each 13(3) are examined in a random order,
the effective branching factor isfi where a: E (0, 1) is a root of xb + a: — 1. It
can be shown that 1 — a: % '—°,§—b and so the effective branching factor is about
(9/ log b—not a great improvement.
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Exercises

2.7.B.

2.7.4.

2.7.5.

2.7.6.

*2.7.7.

Explain the idea behind alpha-beta pruning.

Adapt the proof in Exercise 2.7.2 to show that the a-fi pruning algorithm is
correct.
Hint. The property that needs to be proved is in the code comment preceding
the algorithm.

The 4 x 4 game of fox and hounds was described in Exercise 2.3.3 (p. 47).
Assume that you are the fox.

(a) Draw the AND/OR tree and the AND/OR. graph for the first three moves—
but don’t assign values.

(b) Determine the values p(s) for all vertices s of the search tree in (a),
using 1 to indicate a fox win and 0 to indicate a fox loss.

Let :c 6 (0,1) be a root of 1:” + :c — 1 = 0. In this exercise, you estimate 3/
when b is large.

(a) Write a: = 1 — 3;. Using log(1 — y) z —y, show that e_by z y and so
21 z | log yl/b-

(b) Write y z b-t. Use the previous part to show that 614 z tlog b. Sup-
pose that we want to choose a constant value for t so that this approx-
imation is as good as possible as b becomes very large. Show that the
best constant approximation for t is t = 1.

(c) Write y z z/b, deduce that z z 10gb — log 2, and thence conclude that
z z log b.

In this exercise you will prove that (ll-,3 pruning is best possible in the fol-
lowing sense:

Let E be an algorithm that is correct and visits leaves in the
same order that a-fl pruning does. In any AND/OR tree, A
must examine at least those leaves examined by oz-fl pruning.

Suppose there is some AND/OR tree T such that E omits some leaves that
01-,6 pruning examines. Let I be the first leaf examined by a-fl pruning and
not by E. The idea of the proof is to modify 12(1) and all leaves that could be
examined after 12(1) so that p(1‘) = 17(1). It will be convenient to use p_*_at
to denote either p_max_at or p_min_at.

(a) Suppose that t is the last vertex visited by a-fl pruning in F(s) and that
it is called via p_*_at(t, 0,,6). Show that, if a < p(t) < ,3, then p(s) =
p(t) and a’ < p(s) < fl’, where s was called via p_*_at(s, a', ,B’).

(b) Let 7* be the tree obtained by removing all vertices from T that could
be visited after 1. Suppose that l was visited by p_*_at(l,ar, fl). Prove
that, in 7*, p(1‘) = p(l) whenever a < p(l) < [3.

(c) Let 7"“, a and [3 be as above. Define a new tree T' as follows. It has the
same shape as T. For all leaves 2) ;£ I in 7"“, 12(2)) is unchanged. If v is a
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leaf not in T“, define p('v) to be 01 if the last vertex on the path from r
to 1) an on vertex and define p(v) to be fl otherwise. The value of p(l)
satisfies a < p(l) < 3. This completes the description of 7". Prove that
p(?‘) = 10(1)-

(d) Conclude that for some value of p(l), the algorithm 3 does not compute
p(r) correctly for 7".

Notes

Additional introductory material on recursion can be found in books on some
areas of computer science and in books on combinatorics. (The latter often
have “finite mathematics” in their titles.) The best reference is probably the
book by Roberts [11], which is devoted to a practical exposition of basic
recursive methods for computer science. Material on trees can also be found
in some computer science and combinatorics texts. For material on both trees
and recursion, I have an obvious bias toward [1].

Few books are devoted entirely to search. I’m aware of the text by Bolc and
Cytowski [2] and the volume edited by Kanal and Kumar [3]. Two similar,
readable surveys of search are the contributions by Korf [5] and Pearl and
Korf [10].

Russell and Wefald [12] explore questions related to partial search. In
particular, they discuss anytime algorithms extensively on pp. 178—182. (See
also [13].) For more information on chess playing programs and search in chess,
see the book [7] by Levy and Newborn or Newborn’s article [8].

For more results on a-fl pruning as well has historical information, see
the article [4] by Knuth and Moore and the search survey [10] by Pearl and
Korf.
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The Concepts
of

Predicate Logic

It is reasonable to hope that the relationship between computation
and mathematical logic will be as fruitful in the next century as

that between analysis and physics in the last. The development of
this relationship demands a concern for both applications and

mathematical elegance.
—John McCarthy (1967)

Introduction

Reasoning, which is the central problem of AI, is an everyday action for human
beings. To develop methods for computer reasoning, we might ask “How do
people do it?” Unfortunately, many aspects of everyday reasoning are, at best,
poorly understood. There is one exception: logical deduction—the method
supposedly used by Sherlock Holmes and by mathematicians. Since deductive
logic has a firm foundation and sound algorithms, it’s a reasonable place to
start the quest for reasoning tools.

Mathematical logic formalizes the structures and procedures used in the
deductive manipulation of information. Since such manipulations do not re-
quire any “understanding,” algorithms for logic are ideally suited for use in
computer programs. As a result, mathematical logic plays an important role
in the quintessential information processing discipline, computer science. Per-
haps it’s reasonable to embrace mathematical logic as the tool for AI. This

85
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approach has been taken by some AI researchers, especially in the early years
of AI. How does this fit the goals—difficulties—compromises pattern?

0 Goal: To develop a method for reasoning about the world.
0 Difficulty: A lack of tools, perhaps due to a poor understanding of how

people reason.
0 Compromise: To use the deductive reasoning tools of formal logic, which,

it turns out, offer only one possible approach to reasoning.

As we develop these tools, it will become apparent that our compromise cre-
ates severe limitations, but provides a basis for overcoming these limits by
using other systems of logic. Whether these other logics will be adequate is
debated by AI researchers. Currently, most feel that more is needed.

What Is Mathematical Logic?

Mathematical logic distinguishes syntax (structure) from semantics (mean-
ing). Syntax describes how certain formal “structures” can be built. Semantics
tells us how to interpret our structures. In the case of logic, our interpreta-
tion is in terms of “true” and “false.” You may have encountered syntax and
semantics in compiler design. The syntax tells you how to parse the code and
the semantics tells you how to translate it into machine instructions.

Given the syntax and semantics, we want methods for manipulating syn-
tactic structures so we can decide if a given structure is true, false, or neither.
Such methods of manipulation are called proof methods. This agrees with
ordinary mathematical usage where a proof of a theorem is a sequence of
manipulations that establishes the truth of the theorem.

The simplest level of logic is called propositional logic. It formalizes what
is meant when we apply the connectives “and,” “or,” “not,” “if. . .then,” and
“if and only if” to statements (which are called formulas). Is this enough for
our purposes? No. A deeper analysis of syntax and semantics is needed for
AI. This is provided by first-order predicate logic (FOPL)—0ften called simply
predicate logic or first-order logic (FOL). In addition to the connectives just
mentioned, predicate logic introduces objects, properties and quantifiers. An
object may or may not have a particular property. Quantifiers formalize the
notions of “for all” and “for some.” What does this gain us? For one thing,
predicate logic allows us to examine the internal workings of a statement such
as “Every person has a mother.” (For all P, there is some M such that M is
the mother of P.) In contrast, propositional logic treats the statement as an
undigestible lump since it contains no connectives that allow us to split it up.

These two logics are also called calculi: specifically, propositional calcu-
lus and predicate calculus. A calculus is simply a method of calculation. (The
mathematics course referred to simply as “calculus” is more properly called
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“differential and integral calculus.”) Although the term “predicate logic” em-
phasizes structural aspects while “predicate calculus” emphasizes computa-
tional aspects, they are used interchangeably.

Propositional logic and first-order predicate logic are covered in this chap-
ter and the next one. Although useful, they are too limited for many AI needs;
however, they provide the starting point for other logics, some of which we’ll
explore in Chapter 6.

Logic and Al

A proof technique is a method for establishing true statements. In AI, we
start with a knowledge base and attempt to derive true statements from it.
It’s possible to mechanize the manipulations required in the steps of a proof.
Unfortunately, being able to carry out a step mechanically does not tell us
which step to carry out. We want efficient algorithms for selecting steps that
will allow us to decide if something is true or false. Although this wish cannot
be completely fulfilled, useful algorithms have been found.

A particularly efficient algorithm for predicate logic is called resolution
of Horn clauses. Since the programming language Prolog is based on this
algorithm, we’ll use Prolog to provide direction for our study of logic. Prolog is
briefly introduced in the next section, and additional syntax is discussed with
the relevant aspects of logic. This will not make you a Prolog programmer,
but it may give you a better appreciation of predicate logic.

This chapter emphasizes the concepts of predicate logic from an AI per-
spective, culminating with a partial description of Horn clause resolution. The
next chapter provides the algorithmic details and theoretical underpinnings.
In Chapter 6, we’ll look at extensions.

Prerequisites: The material on ordered trees (Section 2.1) and that on
depth-first search (Section 2.2) are needed to understand Prolog.

Used in: This chapter is essential for Chapters 4 and 6. The propositional
logic concepts in Section 3.2 are referred to briefly in some nonessential ex-
amples in Chapter 7.
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3.1 What Is Prolog?

Prolog is a programmer’s and software engineer’s dream.
It is compact, highly readable, and arguably the

“most structured” language of them all.
-——Peter H. Schnupp (1989)

The workhorse languages of computer programming—Pascal, C, Fortran and
the like—are called procedural languages because we write code to describe
the procedures that are to be carried out. In contrast, Prolog is primarily a
declarative language. Declarative code states information instead of describing
manipulations as procedural code does. Put another way, procedural knowl-
edge (and hence code) answers “How?” while declarative knowledge answers
“What?” The collection of declarative facts and rules that encapsulate knowl-
edge about a particular subject is referred to as a knowledge base.

Prolog manipulates its code by using depth-first search to attempt Horn
clause resolution. Purely declarative Prolog code often fits the framework of
predicate logic. Procedural statements take us outside that domain. In this
book we’ll limit ourselves to the predicate logic aspects of Prolog.

Example 3.1 Family Relationships

Looking at a simple example based on family relationships, we can examine
some statements about how relationships interact:

1. If X is a parent of A
and X is a parent of B
and A and B differ, then A and B are siblings.

2. If X and Y are siblings
and X is a parent of A
and Y is a parent of B, then A and B are cousins.

And we can make some statements about specific relationships:

3. Mary is a parent of Jane. 4. Mary is a parent of John.
5. Jane is a parent of Karen. 6. Jane is a parent of Bill.
7. John is a parent of Jim.

Given the set of rules for interaction and the specific data, we can deduce
various facts. For example, “Karen and Bill are siblings.”

Prolog provides a language for writing such rules and facts and provides a
mechanism for deducing other facts. Here are some rules for translating from
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English to Prolog. Upper- and lowercase refer only to the initial letter:

English Prolog
Constant Lowercase string
Variable Uppercase string (31)Relationship Functional notation
And Comma
If a then fl. fl :— a.

Using this, we can rewrite the previous statements in Prolog:

siblings(A,B) :- parent(X,A), parent(x,B), A\=B. Z 1

cousins(A,B) :- siblings(X,Y), Z 2

parent(x,A), parent(Y,B). Z 2

parent(mary,jane). parent(mary,john). Z 3, 4

parent(jane,karen). parent(jane,bill). Z 5, 6

parent(john,jim). Z 7

Suppose we want to locate a sibling for Karen. We would give Prolog the
question :- siblings (karen,W). [For the present, don’t ask why Prolog con-
siders this to be a question.] As a result of this question, Prolog would attempt
to use the first statement with the variable A set to karen and the variable B
set to W. Remember that this statement says that the left side of :- is true
provided the right side is. The first condition is parent(x,karen), which is
true when X is jane because of the fifth statement, parent (jane ,karen). The
next part of statement 1 is now parent(jane,W). Prolog will try the state-
ments that “define” parent in order. Statements 3 and 4 are quickly discarded
because parent (mary,. . .) cannot agree with parent(jane,. . .). Statements
5 and 6 are okay; however, 5 fails because it leads to karen\=karen, which is
false. Finally, Prolog tells us that W=bill is a solution.

A Prolog question is also referred to as a query or goal clause. I

Here’s another simple toy example based on crossword puzzles.
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IIIIII IIIIIIIabandon

4-
l

.7222:2?
elegant :l
enhance ”“23”Hfl-fl I

Figure 3.1 The six words on the left are'to be placed, in the crossword grid. The
squares in the grid have been numbered for use in the Prolog program. One solution
is shown on the right.

Example 3.2 A Crossword

Suppose that we want to place the words given in Figure 3.1 into the crossword
grid shown there. Let Lij denote the entry in position (2', j) of the array,
numbering from top to bottom and left to right. The following Prolog code
solves the problem.

word(a,b,a,1,o,n,e).
word(a,b,a,n,d,o,n).
word(a,n,a,g,r,a,m).
word(c,o,n,n,e,c,t).
word(e,1,e,g,a,n,t).
word(e,n,h,a,n,c,e).
:- word(L21,L22,L23,L24,L25,L26,L27),

word(L41,L42,L43,L44,L45,L46,L47),
word(L61,L62,L63,L64,L65,L66,L67),
word(L12,L22,L32,L42,L52,L62,L72),
word<L14,L24,L34,L44,L54,L64,L74),
word(L16,L26,L36,L46,L56,L66,L76).

One solution is shown in Figure 3.1. Prolog will also find a second solution
which is the transpose of this one, that is, the result of interchanging rows
with columns. I

These examples lead naturally to a variety of questions about Prolog.
Among these are

0 In more detail, how does Prolog work?
0 Why does Prolog work?
0 Can Prolog make a mistake?
o What are the limitations of Prolog?
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To fully understand and answer these questions, we must explore logic, which
we’ll do in the next section.

In the meantime, you need to understand a bit more about Prolog to do
the exercises.

Prolog works only with the form of the statements, not the meaning. For
example, we know that if a and b are siblings, then so are b and a; however,
Prolog will not be able to deduce this unless we give it a statement like
siblings(X,Y):-siblings(Y,x).
Variables that appear in statements should be regarded as local variables;
that is, the same name may appear elsewhere. You can think of this in
terms of procedural languages. Each statement corresponds to a separate
procedure; there are no global variables, and Prolog works like call-by-
reference (not call-by-value) programming languages.
The procedural analog extends even further. In attempting to establish
the left side of a statement, Prolog tries to verify each of the clauses on the
right in the order in which they are written. While attempting to verify a
clause, Prolog may try to apply a rule. To do this, it attempts to verify,
in order, the clauses in the rule. In other words, Prolog uses depth-first
search.
If Prolog’s attempt to apply a statement fails, Prolog “forgets” the iden-
tifications it may have made. Consider, for example, our previous appli-
cation of statement 3 in answering :- siblings (karen,W). When Pro-
log encounters parent(X,B), where X=ja.ne and B=W, it would first try
B=karen because it finds the statement “parent(jane,karen) .” This
fails when Prolog attempts to verify that A and B are not equal. As a re-
sult, Prolog forgets its B=karen attempt at parent (jane ,B) and looks for
another choice. It then finds “parent (jane ,bill) . ” which works because
karen\=bi11.

Exercises

3.1.A. What is the difference between declarative and procedural code?

3.1.B. What is a proof method?

3.1.0. What is the form (syntax) of a Prolog fact? a Prolog rule? a Prolog query?

The following exercises refer to the Prolog code appearing in this section. Since we
have not fully explored how Prolog works, your answers might be somewhat vague
at some points.

3.1.]. (Answer follows) Explain how the question “2- siblings(W,karen) .” is
dealt with.
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3.1.2.

3.1.3.

3.1.4.
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(Answer follows) Assume Prolog can be told to find all possible solutions—
which it can. What does it do with the question “ : - siblings (A ,B) . ”?

(Answer follows) Explain how the question “: - cousins (karen,T) .” is
dealt with.

(Answer follows) Explain how the question “:- cousins(jane,X) .” is
dealt with.

We’ll expand our Prolog example by introducing the predicate sex(X,Y) where X
is the name of a person and Y is the person’s sex, either male or female. Thus
“z- sex(X,male) . ” will find X whose sex is male.

3.1.5. (Answer follows) Using the available predicates, define the predicate
mother(X,Y) so that Y is the mother of X.

. Using the available predicates, define the predicate brother(X,Y) so that
Y is the brother of X.

. Using the available predicates, define predicates for aunt and nephew.

Using the available predicates, define ancestor(X,Y) so that Y is an an-
cestor of X.

Answers

3.1.1. Prolog would again use the third statement. This time A=W and B=karen.
Prolog now tries to satisfy parent (X , W). All parent statements work here.
The first two give X=mary. Prolog then fails when it attempts to satisfy
parent(X,ka.ren) with X=mary. The third and fourth parent statements
give X=j ane. Prolog is then able to satisfy parent(X,ka.ren). The third
parent statement leads to failure at A\=B because A=karen and B=karen.
The fourth parent statement works because A=bill. Thus, Prolog finally
tells us that W=bill is a solution.

. Prolog would begin by simply identifying A and B with A and B in the
first statement. Then the work starts. Prolog tries all possibilities for par-
ent(X,A). Each of these gives a value for X which is then used to try the
possibilities for parent (X ,8). Finally, the test A\=B is applied. In this way,
Prolog will find the following four solutions in the order given.

A=jane, B=john; A=john, B=jane;
A=karen, B=bill; A=bill, B=karen.

. Statement 2 would be applied. Proceeding as in the previous answer, Pro-
log would first try to satisfy siblings(X,Y). All of these would fail at
the next part, parent(X,karen), except for the solution X=j a116, Y=j ohn.
With this, Prolog attempts to satisfy parent(john,T). This has only one
solution, namely T=j im. Thus, Prolog produces the answer T=j im.
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3.1.4. Prolog would fail in attempting to satisfy this. The first requirement of state-
ment 2, siblings(X,Y) has four solutions—see Exercise 3.1.2. None of
these solutions satisfies parent(X, jane), the second requirement in state-
ment 2.

3.1.5. This is somewhat confusing because the order of X and Y is reversed from
what might be expected given the order in parent (X ,Y). If you do this sort
of thing in your Prolog code, you’re likely to get confused. Where there is a
natural ordering as in ancestry, you should set up all predicates relating to
it so that they have the same ordering.

mother(X, Y) : —parent(Y, X), sex(X, female).

3.2 Propositional Logic

Two different aspects of Prolog statements appeared in the previous section:
They have connectives such as “and” and “if. . .then,” and they have properties
(called predicates) such as “parent” and “siblings.” The formalization and
study of the connectives belongs to propositional logic, while that of predicates
belongs to predicate logic.

We’ll now look at the syntax (form) and semantics (meaning) of proposi-
tional logic. In the next section, we’ll do the same for predicate logic.

Syntax

A proposition, or formula, is simply a statement such as “this book is boring”
or “if this book is boring, then I’ll fall asleep.” Lowercase Greek letters will
be used to denote formulas. Connectives produce new formulas from old, as
in

oz and ,6 and if 0: then fl.

This leads to a recursive definition of formulas. To start the recursive def-
inition of formulas, we’ll need some basic formulas, which are often called
propositional letters. Connectives such as “and” and “if. . .then” are needed to
build new formulas from old. Here’s a list of connectives and the everyday
concept to which they (nearly) correspond—their “meanings.”

connective meaning
V or
A and
fl not (3.2)
—+ implies (if. . .then)

if and only if (ifi')
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Finally, to avoid ambiguity, let’s use parentheses.

Definition 3.1 Syntax of Propositional Logic
Let S be a set whose elements will be called propositional letters. We’ll
denote the propositional letters by p, q, and so on. A propositional logic
language .6 with propositional letters S is the collection of formulas de-
termined by the following four conditions:

(a) All propositional letters are formulas.
(b) If 01 is a formula, so is (pa).
(c) Ifa and B are formulas, so are (aAfl), (aVfi), (a —> B), and (a E B).
(d) All formulas are obtained in this manner.

Some people call formulas well formed formulas, or simply WFFs.

Example 3.3 Some Formulas and Nonformulas

Suppose that 0:, fl, and 7 are formulas. Then so are

(a —* ((a —> fl) —* M) ((+10)) 5 0) (Ha V W) 5 ((W) A (nfl)))-
According to the definition, all these parentheses are necessary; however, it’s
not uncommon to be sloppy and omit pairs of parentheses when the resulting
string of symbols corresponds unambiguously to a formula. Don’t, for example,
be surprised if you see oz —> B instead of (a —+ B).

To show that the above expressions are formulas, we must show how
Definition 3.1 applies. Let’s take the second one.

By (b) of the definition, (pa) is a formula.

By (b) of the definition, (-1(-:a)) is a formula.

By (c) of the definition, ((-I(-1a)) E oz is a formula.

We can also use the definition to show that some expressions (or strings)
are not formulas. For example, (—+ a) is not a formula: (a) does not apply
since it is not a propositional letter; (b) does not apply since there is no
“4’; and (c) does not apply because it requires two formulas separated by a
connective. Looking at this in another way, we could say that the definition
does not apply because it requires a formula before the connective “—>.” I

Since formulas are defined recursively, proofs about formulas are usually
done by induction. We can induct on the length of the string of symbols or on
the number of connectives (since each application of the definition increases
both of them)—or we can induct on the number of applications of the defi-
nition itself. The following example is based on the idea enunciated in (2.2)
(p. 42).
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Example 3.4 An Inductive Proof about Formulas

As an illustration of (2.2), let’s prove the following almost trivial result.

Claim: In a formula, the number of left parentheses, the number of
right parentheses, and the number of connectives are all equal.

Proof: Let 1(a), r(a), and C(a) be the number of each in the formula 0.
We’ll induct on the number of applications of Definition 3.1. The induction
hypothesis, then, is the claim that the claim is true for all formulas obtained
by fewer applications of Definition 3.1 than are needed to produce the formula
7 being considered.

Suppose 7 was obtained by applying Definition 3.1(a). Then a is simply
a propositional letter, so 1(a) = 0, r(a) = 0, and C(a) = 0.

Suppose 7 was obtained by applying Definition 3.1(b). By the induction
hypothesis a is a formula with l, r, and c all equal. In applying (b), we increase
each of I , r, and c by 1 and so they remain equal.

Suppose 7 was obtained by applying Definition 3.1(c). By the induction
hypothesis a is a formula with l, r, and c all equal as is fl. The application of
Definition 3.1(c) gives one more left parenthesis, one more right parenthesis,
and one more connective. Thus, the numbers remain equal. We can express
this algebraically as

1(a * m = 1(a) + to) + 1,
r(oz * fl) : r(a) + rm) + 1,
do * fl) = C(a) + C(fl) + 1,

where * is any of the connectives in (c).

Instead of inducting on applications of the definition, we could have in-
ducted on some measure of the formula’s complexity, as suggested just before
the example. In this case the number of connectives would be a natural mea-
sure of complexity. I

Exercises

3.2.A. What is the difference between syntax and semantics?

3.2.B. Define the syntax of propositions (also called the formulas of propositional
logic). What are connectives?
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3.2.1. (Answer follows) Suppose that a, 3, and 7 are formulas. In each case, either
(i) explain why the expression is a formula by showing how Definition 3.1

applies or

(ii) explain why Definition 3.1 does not apply.

(a) “'0!
(b) (01 E (13))
(C) ((0 V M)
(d) (CI-'3)
(e) (a V If V 7)

3.2.2. Let ((0) be the number of propositional letters in the proposition a and let
19(0) be the. number of connectives other than '1 In both cases, repetitions
are counted. For example,

1((p —> (a A em») = 3 and 19(0) —* (q A em») = 2-
Prove that I = k + 1.

Answers

3.2.1. Only (b) is a formula. It’s obtained by using (b) then (c) in the definition.
Parentheses are missing in (a) and (e) while (c) has extra parentheses—(b)
and (c) in the definition state when parentheses are used. Negation is used
incorrectly in (d)—see (b) in the definition.

Semantics

We have to renounce a description of phenomena
based on the concept of cause and effect.

—Niels Bohr (1933)

The meaning of a formula is given in terms of the notions of truth and falsity.
We assume that the truth and falsity of propositional letters is known and
then recursively compute the truth and falsity of all formulas by paralleling
the recursive construction of formulas. For example, “(it is raining) and (the
barometer is falling)” is true if “(it is raining)” and “(the barometer is falling)”
are both true. If either of the two building blocks is false, so is the compound
statement. We can describe this idea by using a truth table:

aflllaAfl
FF F
FT F
TF F
TT T
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The first line in the table says that if formula or is false and formula fl is false,
then formula a A fl is false. Here’s the general definition.

Definition 3.2 Semantics of Propositional Logic
For each propositional letter, we are told whether it is true or false. In
view of Definition 3.1, the following truth table describes how to determine
the truth or falsity of any formula recursively. The first two columns list
all possible combinations of true and false assignments to or and ,6. The
remaining columns list the values of formulas built from a and fl. True
and false are indicated by T and F, respectively.

not or and implies iff
afl no: aVfl aAfl a—rfl aEfl
F F T F F T T (3-3)
F T T T F T F
T F F T F F F
T T F T T T T

You may be inclined to disagree with some entries in (3.3). For example, the
everyday usage of “a or ,6” is ambiguous. When we say “oz or fl” is true we
may mean either

(a) at least one of a and ,6 is true or
(b) exactly one of a and fl is true.

Logicians have adopted (a) as the meaning for “or” and refer to (b) as “ex-
clusive or.” That was simple. Implication—the phrase “if a then fi”—is more
troublesome, as the next example shows.

Example 3.5 Varieties of Implication

Implication is the most troublesome entry in table (3.3) because necessity
and causality are intertwined with our notion of implication. In the everyday
usage of “if P then Q,” we consider the statement to be true only when
there is some connection between the meaning of P and Q. In contrast, FOL
(first-order logic) is concerned only about truth values: “If P then Q” is true
provided Q is true whenever P is true. This is called material implication.

Since necessity and causality are outside the scope of FOL, how should
FOL deal with implication? FOL must base the truth and falsity of (a —> ,8)
solely on the truth and falsity of a and fl, not on any other information about
them. This leaves open the question of why (a —> fl) should be given the
interpretation in (3.3). Based on everyday usage, we insist that a —> fl means
that ,6 must be true whenever a is true. This explains why (a —> fl) is true
when oz and F are both true, and it explains why (a —> F) is false when a
is true and fl is false. In logic we must consider all possibilities. What is the
truth of (a —> fl) when a is false?
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Some people argue that we can say nothing—when a is false, it gives us
no information about fl. That argument is beside the point—we are trying
to determine the truth or falsity of (a —> fl), not the truth or falsity of E.
One way to reach a decision is to take a somewhat different approach. Ask
yourself, “How can the claim that 0: implies fl be wrong?”

* * * Stop and think about this! * * *

It will be wrong when it happens that a is true but fl is not. But this is
equivalent to saying that (a —> fl) is true otherwise—just what (3.3) states.

Let’s digress to look briefly at some other approaches to implication.
One approach hinges on the notion of necessity. “If P then Q” is considered

true when Q would necessarily follow if P were true, without regard to whether
P is true or not. Consider the two statements,

“If Newtonian mechanics is correct, it is possible to exceed light speed.”
“If Newtonian mechanics is correct, it is impossible to exceed light speed.”

Both are logically true because we know that Newtonian mechanics is incor-
rect. However, a physicist would probably tell you that the first is true and
the second is false because, if Newtonian mechanics were true, it could be
shown that arbitrarily high speeds are possible. This is an example of strict
implication, which we’ll discuss a bit more on page 228.

The slippery notion of causality suggests another approach to implication.
The nature of causality in the everyday use of implication varies:

“If it rained, then the ground is wet.” or caused fl;
“If the ground is wet, then it rained.” a was caused by ,6;

“If roads are wet, then the ground is wet.” a common cause for a and fl.
Causality issues may also arise when interpreting other connectives. Thayse
[20, p. 6] gives the following example with “and”:

“He became afraid and killed the intruder.”
versus

“He killed the intruder and became afraid.”

Do you see how implied causality leads to very two different meanings? We’ll
discuss causality further in Chapter 8.

People also use implication procedurally. For example, I might say

“If it’s hotter than 78°F, then turn on the air conditioning.”

This is far outside the domain of logic because logic deals with truth, not
action.

The fact that a —> ,6 leads to so much discussion is a warning sign:

Be cautious! Take extra care in translating between or —-> fl in math-. . u. ,, . . (3.4)ematlcal logic and if a then fl 1n everyday discourse.
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Remember that the first-order logic meaning of implication is completely de-
scribed by the a —> fl column of (3.3). I

We can think of a truth table as a tabular representation of a function.
For example, if V is the function that maps formulas to the truth values {T, F}
according to FOL rules, the table says

V(a/\fl) : {T,
if V(a) = V(fl) = T,

F, otherwise.

When working with the functional viewpoint, we can replace T and F with
1 and 0, respectively. This enables us to write the truth value of statements
built with connectives algebraically. For example,

V(-roz) = 1 — V(a),
V(a V fl) = max(V(a), V(,B)) = V(a) + V(fl) — V(a)V(fl),
V(a /\ p) = min(V(a), mm) = V(a)V(fl), (3.5)

V(oz —+ fl) = max(1— V(a), V(,3)),
ma 2 m = V(a)V(fl) + (1— V(a))(1— vw».

You should check that these formulas are correct by verifying that they com-
pute the same values given in the tabular definitions (3.3).

Using the truth table idea, we can compute the truth and falsity of more
complicated statements. The following table shows that ((-»(--u)) E a) is
always true. A statement that is always true is called a tautology. We also say
that the formula is valid.

allea) Hm» (Wanna)
TF T F

T F T T

The first column in this table gives all possible truth values for a. The sec-
ond column is obtained from the third column of (3.3). The third column is
obtained by using the second column of this table and the semantics for p in
(3.3). Finally, the last column is obtained from the first and third column and
the semantics for E. We can also carry out such calculations using the alge-
braic form of V, as is done in the proof of the next theorem. Which method
is better depends on the situation and your personal taste.

In algebra, we have the fundamental rule “Equals may be substituted
for equals.” This means that if we know A = B, then we may replace any
occurrence of A with B without changing the truth of an algebraic statement.
In logic, formulas with the same truth values play the role of equals. The
connective E plays the role that : plays in algebra: If we know that a _=_ fl,
then we may replace a by ,8 without changing the truth of a formula.
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Theorem 3.1

Let a1, . . . ,an be formulas. Let V be 1/0—valued rather than T/F-valued.

(a) Let fl be a proposition formed by connecting all of a,- in any order
using only the connective V. Then V(fl) = max(V(a1), . . . , V(an)).

(b) Let 7 be a proposition formed by connecting all of pa,- in any order
using only the connective A. Then (-Ifl) E 7 is a tautology.

(c) Let 6 be a proposition formed by connecting all of a,- in any order
using only the connective A. Then V(6) : min (V(a1), . . . ,V(an)).

((1) Let C be a proposition formed by connecting all of -Ia,~ in any order
using only the connective V. Then (-16) E C is a tautology.

Parts (a) and (c) imply the associative and commutative laws for V and A,
respectively. Recall from elementary algebra:

associativity: grouping doesn’t matter;
commutativity: order doesn’t matter.

Associativity tells us that, although there are many ways to parenthesize
a1 V a2 V - - - V on, they all have the same truth value. Commutativity tells us
that the order of the ai’s is also irrelevant. Parts (b) and (d) yield de Morgan’s
laws:

fi(a1 V - - - V an) E ((fia1)/\ - --/\(-:an))
3.6

-1(a1A---Aan)E((fia1)V---V(-Ian)). ( )

Proof: First note that V(fi¢) = 1 — V(¢) for any formula ¢- You should be
able to show that this observation together with (a) and (c) can be used to
prove (b) and (d). .

Since the proofs of (a) and (c) are similar, let’s prove only (a). The proof
involves induction on it. When n = 1, fl is simply an, and so there is nothing
to prove.

Suppose n > 1. Since fl is a formula and the only connective used was V, fl
must be ,61Vfl2 for some formulas fll and ,62. Let 5'1 = {j | ozj appears in ,61 }
and define'SZ similarly. Since lSil < n and fl,- is built using only V, the
induction hypothesis tells us that

V(,31) —"'-'
{161%}:

V(C¥.’) and V(,32) =
{16133.}:

V015).

By (3.5), V(fl1 V [32) = max(V(,31), V(fl2)). The theorem now follows. I

The following result allows us to eliminate occurrences of “implies.”
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Theorem 3.2
Let a1, ..., an and fl be formulas. Then the following is a tautology.
(Parentheses have been omitted to avoid clutter.)

((alA---Aan)—>fl) a ((fia1)V---V(-Ian)v,6).

Proof: Use a truth table to show that

(5 —> fl) 5 ((fi5) V fi)- (3-7)
is a tautology. Let 6 be a1 /\ ---/\ an and apply the second of de Morgan’s
laws. I

Example 3.6 More Complicated Connectives
The connectives discussed so far involve only one or two propositions. What
about more complicated connectives? Consider

if a then H, else 7, (3.8)
which is a popular construct in programming. In natural language, “else” is
usually replaced by “otherwise” as in

If it’s sunny, I’ll cut AI class; otherwise I’ll attend.

Logically, (3.8) is equivalent to ((a —+ fl) A ((fia) —+ 7)). Consequently we
don’t need a new connective to express this idea. We saw earlier that (a —> fl)
is equivalent to ((fioz)Vfl). Thus the connective “—>” is also unnecessary. This
suggests the general question:

What connectives do we need to be able to express everything? (3.9)
To answer this, we need to clarify “express everything.”

Since the focus of logic is truth, all that matters about a statement is its
truth table. In other words, a statement in propositional logic can be viewed as
a function f(a1, . . . , an) whose domain is {T,F}” and whose range is {T,F}.
From this viewpoint, building new formulas from old using Definition 3.1
(p. 94) is simply a matter of functional composition. For example, ((fia) V fl)
is the “or” function applied to two arguments, the first being the result of
applying the “not” function to a and the second being simply fl.

Now, rephrasing our vague question (3.9), we can ask precisely: What
functions are needed to obtain, via functional composition, all possible func-
tions from {T,F}” to {T, F}? One answer is found in the next theorem.

Theorem 3.3 NAND Suflices
Define the function NAND : {T, F}2 -—> {T,F} by

NAND(a, fl) = (—:(a /\ fl)).
It’s also written (0: T fl). For every n > 0, every function from {T, F}"' to
{T,F} can be obtained from NAND by functional composition.
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Since this theorem is particularly important in certain technologies for build-
ing logic circuits, you may have seen it in another computer science course.
(It’s important because NAND is easily built and the theorem tells us that
it’s enough.)

Proof: First, let’s see how to build up some of the common functions. You
can easily verify that

V(-vo:) = V(a T a)
and so

V(aAfl)=V((aTfl)T(aTfl))-
By de Morgan’s law, (av fl) is equivalent to (fi((-Ia)A(-1fi)), which is equiv-
alent to

((a T a) T (mm).
We’ve created n, A, and V from NAND.

Now let’s prove by induction on n, the number of variables, that any
function can be built from n, A, and V, and hence also from NAND.

When n = 1, there are only four possible functions f(a). You should be
able to list them and show how to construct them using NAND. It helps to
note that (-1(a /\ (pad) is always true.

If n > 1, you should be able to show that f(a1, . . . , an) is equivalent to

(an Af(a1,...,an_1,T)) V ((fian) Af(a1,...,an_1,F)).

This completes the proof, because f(oz1, . . .,ozn_1,T) and flag, . . .,an_1,F)
are both just functions of n — 1 variables. (They are, in general, not the same
function because the first is obtained by setting the nth variable to T and the
second by setting it to F.) l

Exercises

320. Define the semantics of formulas in propositional logic.

3.2.D. How does causality enter into interpretations of implication and why does
logic ignore it?

3.2.E. What is a truth table?

3.2.3. Suppose we have a formula that contains k propositional letters. Show that
the truth table for this formula contains 2’“ rows.

3.2.4. Verify that each of the algebraic expressions for V of connectives given in
(3.5) agrees with those (3.3).
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3.2.6.

3.2.7.

3.2.8.

3.2.9.
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Construct truth tables to determine which of the following formulas are
tautologies.

(a) (a V (10)
(b) (01 A("01))
(C) (a -* (a V fl))
((0 (01 -+ (a A fl))
(6) ((01 A 3)) -> a)
(f) ((01 V (9)) -* a)
(s) ((0! -* I?) E ((1!) V fi))
0!) ((0 -> 7) -* (01 -> ([3 —> 7)))
(i) ((01 -+ [3) -* (a -+ (fl —> 7)))

Complete the proof of Theorem 3.1.

Prove that (3.7) is a tautology.

Here are four rearrangements of implication

a —-> ,6 (original formula)
5 —* 0’ (converse)
(‘10!) —> (fifl) (inverse)
(‘13) -> (pa) (contrapositive).

(a) Show that the original formula and the contrapositive are equivalent;
that is,

(a -* I?) 5 (H3) -* (MO)
is a tautology.

(b) For the other five possible equivalences, which are equivalent and which
are not? (In particular, the original formula and its converse are not
equivalent; however, people sometimes assume that they are.)

(0) Can you recall an example from real life where someone assumed that
an implication and its converse were equivalent?

Complete the proof of Theorem 3.3:

(a) List all four functions from {T,F} to {T, F} and express them using
NAND.

(b) Fill in the details for n > 1.
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3.3 Predicate Logic

If your thesis is utterly uacuous
Use first-order predicate calculus.

With sufiicient formality
The sheerest banality

Will be hailed by the critics: “Miraculous!”
—Henry A. Kautz (1986)

Predicate logic allows us to look into the structure of phrases that proposi-
tional logic treats as “black boxes” denoted by propositional letters. Consider
the statement

“If John is human, then John has a human mother.”

In propositional logic, we could write this statement as

(p —> q) where p 2 “John is human” and
(3.10)

q 2 “John has a human mother.”

To explore the structure of p and q, we use predicate logic as follows:

p = human(john) and q : has_human_mother(john). (3.11)

Here, “human” and “has_human_mother” are predicates. When a predicate is
applied to its argument(s), the result is either true or false. The arguments
of predicates may be constants, like “john,” or variables. The arguments of
predicates are called terms. To mimic Prolog, we’ll use lowercase for predicates
and constants and uppercase for variables.

What purpose do variables serve? The statement in (3.10) and (3.11)
actually applies to all things, not just John. In other words,

(human(X) —> has_human_mother(X))

for all choices of X. We express this by saying

VX (human(X) —-> has_human_mother(X)). (3.12)

The string VX is read “for all X.” Various expressions in English are equivalent
to “for all”; for example, “for every” and “for each.” “For all” is often tacitly
assumed in an implication; for example, “if :1: > 0, then ...” means Va: ((1: >
0) —+ ....) (Note that this is not the same as (Va:(a: > 0)) —+ .)

Although (3.12) captures much more than does p —> q and even more
than (3.10) and (3.11) combined, it still lacks something. We may not think
of “has_human_mother” as a predicate with a single argument; instead,

“John has a human mother”
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may be thought of as

“There is someone who is human and who is John’s mother.”

We can capture this with predicate logic; in fact, we can state it for all people
instead of just for John:

VX (human(X) —> (HY (human(Y) A mother(Y, X)))) , (3.13)

where EIY is read “for some Y” and mother(Y, X) means “Y is the mother of
X.” Other English versions of El are “there exists” and “there is.”

We can express the idea in (3.13) by using functions as follows: When the
predicate human(X) is true, the function mother(X) will have as its value
the mother of X. We don’t care how mother(X) is defined when human(X) is
false. Using the function “mother,” we could restate the information in (3.13)
as

VX (human(X ) —-> human (mother(X))) .

In this, human() is a predicate and mother() is a function.

We use the same notation for functions and predicates. Is this because
they’re the same? No!

A function produces a value that is a term.
but

A predicate produces only “true” and “false.”

Predicates are truth-valued functions of terms and are defined when interpre-
tations are given. Connectives are truth-valued functions of formulas and are
defined in propositional logic by (3.3) (p.97). For example, we insist that fia
is true if and only if a is false.

Syntax

The previous discussion serves as the foundation for the following series of
rather lengthy definitions.
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Definition 3.3 The Elements of Predicate Logic Language

A predicate logic language £ consists of the following symbols:

0 an infinite set of variables, denoted by uppercase letters;
0 a set of constants, denoted by lowercase letters, usually a, (2, etc.;
o a set of predicates, denoted by lowercase letters, usually 1), q, etc.;
o a set of functions, denoted by lowercase letters, usually f, 9, etc.;
o the connectives -1, V, A, —>, and E;
o the quantifiers V and 3; and
o the parentheses ) and (.

Predicates and functions take “arguments” in a manner to be specified
later. (We’ll usually assume that all the sets are countable; that is, they are
either finite or can be put into one-to—one correspondence with the positive
integers. Since we’re concerned with ideas that can be implemented on a
computer, this isn’t a severe restriction.)

The notation in the definition is consistent with that for propositional
logic: The connectives play the same role in both logics and the predicates are
a generalization of propositional letters. In fact, predicate logic using only

0 connectives,
o parentheses, and
o predicates that take zero arguments

is propositional logic.

Definition 3.4 The Syntax of Predicate Logic Terms
The terms in ,C are defined recursively as follows:

(a) Every variable and every constant is a term.
(b) If t1, . . . ,tn are terms and f is a function that takes n arguments,

then f(t1, . . . ,tn) is a term.
(c) Every term is obtained in this manner.

Terms with no variables are called variable-free terms.

In the syntax of predicate logic, functions are merely symbols. In the se-
mantics (interpretation) of predicate logic, functions are functions in the or-
dinary sense and their ranges and domains are the constants of Definition 3.3.
To distinguish between the symbol and its interpretation, some authors speak
of “function symbols,” rather than functions in the preceding definitions.



3.3 Predicate Logic 107

Definition 3.5 The Syntax of Predicate Logic Formulas
The formulas in E are defined recursively as follows.

(a) If t1, . . . ,tn are terms and p is a predicate that takes n arguments,
then p(t1, . . . ,tn) is a formula, called an atomic formula.

(b) If 0: is a formula, so is (-0).
(c) Ifa and fl are formulas, so are (aVfl), (oz/\fl), (o —> fl), and (a _=_ fl).
((1) If V is a variable and a is a formula, then (VV a) and (3V a) are

formulas.
(e) Every formula is obtained in this manner.

In (VV oz) and (3V a), we say that a is the scope of the quantifier and that
all occurrences of V in 0: are bound (by the quantifier). If a formula contains
a variable that is not bound, we say that the variable has a free occurrence in
the formula.

Bound variables are sometimes called “dummy variables.” For example, t
is a dummy (or bound) variable in fox f(t) dt. In this case, the fact that t is
bound is indicated by the dt. The t could be replaced by any other variable
without changing the meaning of the formula. In fact, we could rewrite it as
fox f (:11) do. This can lead to confusion. For example,

A1(Axf(x)dm)dx and /0(/oxf(t)dt>daz
are exactly the same since in either case we first integrate f as its argument
ranges from 0 to a: to obtain a new function of a: which is then integrated from
0 to 1. In integral calculus, people normally use different names for different
bound variables to avoid confusion. They also usually use different names for
bound and unbound variables.

The same sort of confusion can arise in predicate calculus. Consider

((axp<X>) v q(X)) and (3X((VXp(X)) —+ N»)
In the first formula, the X in p(X) is bound and the X in q(X) is free. In
the second formula, both occurrences of X are bound, but they are bound by
different quantifiers. We can avoid such problems by insisting that every quan—
tifier in a formula refer to a different variable. Specifically, in Definition 3.5(c),
we could insist that any bound variable in or be different from all variables
in H and every bound variable in H be different from all variables in a. To
conform with this, we can rewrite our preceding formulas as

(ovum) v M) and (3V((vxp(X)) a w»)
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Exercises

3.3.A. What is the symbol for a universal quantifier? an existential? What do they

3.3.B.

3.3.C.

3.3.D.

3.3.1.

3.3.2.

3.3.3.

correspond to in everyday discourse?

What is the definition of formulas in predicate logic?

What are atomic formulas? free variables? bound variables?

Explain how to translate a statement such as “for all a: such that a: > 0 . . .”
into predicate logic. Do the same with “for some a: such that x > 0 . . .”

(Answer follows) For each of the following, indicate whether or not it is a
formula in predicate logic and, if not, why not. Do not be concerned about
parentheses.

(a) XVP(X)

(b) p(X)Vp(X)

(C) 3X 400

(d) VX(3XP(X))
(e) p(Q(X),Y)

(f) VXGP 1900)
(s) p(X V Y)

(Answer follows) For each of the following formulas, identify the bound
variables and rewrite the formulas so that the bound variables have unique
names. Do not change the names of any free variables.

(a) vx((aY(p<X) 2 W») a r<X. Y))
(b) q(X. Y) a ((aXp(X)) v 3X rm)
(c) VX ((VXp(X)) —» pm)

How would you translate “there is no X such that . . .” into predicate logic?
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Answers

3.3.1. It may be unclear why (c) and (d) are formulas, so let’s explain that, too.

3.3.2.

(a) This is not a formula since X V p(X) can be a formula only if both X
and p(X) are formulas; however, X is a term, not a formula.

(b) This is a formula.

(c) This is a formula; there’s no requirement that the variable being bound
actually appear in the formula.

((1) This is a formula, but is somewhat confusing because of the repeated
name for bound variables. The inner 3X bounds the X, leaving no vari-
ables for the outer VX to bind. In a formula like VX ((ElX p(X)) Vq(X)),
the X in p(X) is bound by the 3X while the X in q(X) is bound by
VX. Thus, the formula is equivalent to VY ((EIX p(X)) V q(Y)).

(e) This is not a formula; the arguments of a predicate must be terms and
q(X) is not a term.

(f) This is not a formula; we don’t have quantifiers for predicates. (That
would be second-order predicate calculus.)

(g) This is not a formula; the arguments of predicates must be terms and
X V Y is not a term.

The bound variables are underlined. Subscripts are used to provide unique
names.

(a) edema.) a q(X)» a «L 10) becomes
VX1((3Y1(p(X1) a q(Y1))) —» r(X1, Y))

(b) q(X, Y) —> ((3Xp(X)) V 3Xr(_X_)) becomes

q(X. Y) —> ((3X1p(X1)) v 3X2r(X2))

(c) trauma» —> my) becomes VX1((VX2 p(X2)) —» pom)
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Semantics

He who would distinguish the true from the false
must have an adequate idea of what is true and false.

—Benedict Spinoza (1677)

The syntactic definitions tell us how to construct everything in the language
of first-order predicate calculus. As in propositional logic, the syntax tells us
nothing about what our formulas “mean.” To associate meaning with predi-
cate logic formulas, we must know how to interpret them. Unfortunately, this
is more complicated than the simple true/false of propositional logic. The ap-
proach logicians use to define semantics involves the discussion of models.
We’ll take a more informal approach now; but we’ll have to be more careful
in the next chapter.

Definition 3.6 Informal Semantics for Predicate Logic

Our semantics will specify when a formula is true in a recursive manner
that parallels the syntactic definition of the formula. The range of a func-
tion is the set of constants. The domains of functions and predicates are
n—tuples of constants. Our definition depends on knowing the functions
and knowing when predicates are true—an “interpretation.”

(a) If p is a predicate and none of the terms t1, . . . ,tn contains variables,
then p(t1, . . . ,tn) is either true or not according to the interpretation.

(b) and (c) If the truths of a and fl are known, then the truth of connec-
tives is determined by (3.3) (p. 97).

(d) Let V be a variable and a a formula. If there is some constant c such
that replacing every free occurrence of V in a with c gives a true
formula, then (3Va) is true. (The restriction to free V is needed
because a quantifier in a might bind some occurrences of a variable
that is also called V.) El is called an existential quantifier.

(d’) Let V be a variable and a a formula. If, for every constant c, replacing
every free occurrence of V in a with c gives a true formula, then
(VV a) is true. ‘v’ is called a universal quantifier.

A formula is called valid or a tautology if and only if it is true for all
possible interpretations.
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There are a couple of important facts to note about Definition 3.6. First, it
defines the truth and falsity of formulas only when there are no free occur-
rences of variables; so don’t try to apply it to a formula where a variable
occurs freely. Second, as in propositional logic, the definition is often applied
in the reverse direction of the definition of syntax—while syntax builds up,
semantics tears down. For example, consider

((VX 1900) —> (3X P(X)))' (3-14)
To determine the truth of (3.14) we must first determine the truth of
(VX p(X)) and (3X p(X)). There are three relevant possibilities for the truth
of p( ). Here they are, along with their consequences.

0 p(c) is true for all c. In this case, both (VX p(X)) and (3X p(X)) are
true. Thus (3.14) is true.

0 p(c) is false for all e. In this case, both (VX p(X)) and (3X p(X)) are
false. Thus (3.14) is true.

0 p(c) is true for some c and false for some c. In this case, (VX p(X)) is
false and (3X p(X)) is true. Thus (3.14) is true.

Example 3.7 Positive Integers

For this example, let our constants be the positive integers {1, 2, 3, . . . , }. Our
functions are addition and multiplication, which we’ll write in infix notation.
We’ll also omit some pairs of parentheses. The following show how additional
concepts can be defined in terms of the predicate “equal”:

VX (odd(X) 5 (3y equal(2 x Y, X + 1)))
VX (odd(X) E (-EIY equal(2 x Y, X») (3.15)

vz (prime(Z) _=_ (~1(3X 3y equal((X + 1) x (Y + 1), Z)))).
These can be regarded as definitions of the concepts on the left-hand side
of the _=_. For example, the first line says that X is odd if and only if there
is an integer whose double equals X + 1. These formulas are true in one
interpretation—the positive integers in which all the functions and predicates
have their usual meanings. But they are not tautologies because there are
interpretations in which they are not true. For example, if we make no changes
in the interpretation except to interchange the meanings of the functions x
and +, the formulas will not be true in this interpretation. I
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The concluding sentences of Example 3.7 appear to suggest an insur—
mountable problem: If we look just for valid formulas (i.e., every interpreta-
tion is true), we’re unlikely to make much progress. Actually, the reverse is
true! Because every interpretation must make a formula true before we call it
valid, it turns out we need not be concerned with the real world meaning of
interpretations when carrying out computer manipulations. This is fortunate
because computers are not aware of the real world either.

The real world must enter somehow. It enters through our knowledge base.
Suppose that a1,a2, . .. are statements in our knowledge base that express
what we know to be true for our intended interpretation of the predicates,
functions and constants. Suppose that

(alAagA...)-—>fl (3.16)

is a tautology. In particular, it is true with the real world interpretation we
have in mind, so fl tells us something about the real world. On the other hand,
since (3.16) is a tautology, it is possible to establish it without appealing to
its meaning—a perfect job for a computer program. This is just the sort of
thing Prolog does.

Let’s look at another example of how things are expressed in predicate
logic terms. This one deals with the definition of a limit, which is notorious
for causing problems for calculus students. These problems often arise because
it’s not easy to understand

0 what the quantifiers imply,
0 what order they appear in, and
0 what manipulations are allowed when formulas contain quantifiers.

The next example addresses the first two issues.

Example 3.8 The Definition of Limit

We say that lim$_.a f(x) = L if
for all 6 > 0, there is a 6 > 0 such that

”(33) — LI < 6 whenever Ia: — a| < 6 and :1: ;£ a. (3.17)

We want to translate (3.17) into predicate calculus notation. Our constants
will be the real numbers 1R. Again, we’ll write functions such as absolute
value in the usual form. Note that a statement like 6 > 0 involves a predicate.
We could write it as greater(c,0), but we’ll stick with the more standard
mathematical notation.

As written, the definition contains an implicit quantifier. “For all” and
“there is” are clearly quantifiers for e and 6, respectively. After “such that”
the variable 1: begins to appear, but no quantifier is mentioned. How is it
quantified? A more accurate definition would have said “such that for all :13”
instead of merely “such that.”
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There are two main problems in carrying out this formalization of the
definition in FOL: (i) What does “whenever” mean and (ii) how do we include
the condition 6 > 0 when we introduce a quantifier for 6?

First, “a whenever fl” means “if fl then a.” This changes (3.17) to

for all 6 > 0 there is a 6 > 0 such that for all a:

((02: — a: < 6) Mm ,1 a)) —» (|f(x) — LI < 6)).
What does “for all 6 > 0 7” mean, where 7 is a predicate logic formula? If

you think about it a bit, you should be able to convince yourself that it means
Vc((€ > 0)) —> 7). What about the phrase “there exists 6 > 0 such that 7”?
Again, if you think about it, you should realize that it means 36((6 > 0) A7).
Notice the important difference in translation of universal (for all) versus
existential (there is) quantifiers with conditions. The discussion shows that

(3.18)

“for all X with P(X) we have 7” means VX (P(X) —> 7)
(3 19)“there is X with P(X) such that 7” means 3X(P(X) /\ 7)

O

If this is unclear, try to think of additional examples. Incorporating this into
(3.18) leads to the FOL translation of the definition. Here it is, with braces
used in place of some parentheses to improve readability,

Ve{(€ > 0) —) (36(6 > 0) A 45)}
where ¢ stands for (3.20)

Vm({(Ix—al < 6)A<m¢a)} -*(|f(:v)—L| < 6)). -
As we’ve seen, the process of translation can be tricky. In particular, any-

one setting up a rule-based expert system must be careful when doing trans-
lations. On the one hand, this example is more convoluted than we usually
encounter in practice. On the other hand, the imprecision of everyday English
leads to other problems. The next example and some of the exercises provide
practice in translating from English to predicate logic.

Example 3.9 A Lewis Carroll Example

The Oxford geometer Charles Dodgson is famous for writing Alice in Won-
derland and Through the Looking Glass under the pen name Lewis Carroll.
Two years before his death, he published a symbolic logic text containing de-
lightful problems. We’ll look at one of his problems in this example and at
some others in the exercises.

“(1) Coloured flowers are always scented;
(2) I dislike flowers that are not grown in the open air;
(3) No flowers grown in the open air are colourless.” [3, p. 115]

How can we recast these in terms of predicate logic?
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Our constants will be flowers and our predicates will be as follows:

C(X): indicates X is coloured,
d(X): indicates I dislike X,
g(X): indicates X is grown in the open air,
3(X): indicates X is scented.

You should be able to verify that the following are translations of the state-
ments:

1. VX (c(X) —> s(X))
2. vx (ham) a «100)
3. fi(3X(g(X) A (fic(X))))

Other translations are possible, but I believe these are the most direct and
also reflect the meaning of the English.

Later we’ll learn a proof method for predicate logic that let’s us draw
conclusions from these formulas. In this case, one possible conclusion is

VX (($00) —» d(X)); (3.21)
that is, I dislike all flowers that are not scented.

This example illustrates some of the problems of translating natural lan-
guage to predicate calculus.

1. Although the first two statements did not contain overt implications, both
were translated that way. A statement of the form, “X [that are] p are q”
usually translates as ‘v’X (p(X) —-> q(X)).

2. In a statement like the second, “that are” is the same as “whenever,” so
we have a statement of the form “p(X) whenever q(X).” This translates
as VX(q(X) —> p(X)).

3. In the third statement, the predicate “colourless” appears. This is simply
the negation of the predicate “coloured.” In fact, English employs various
devices to negate predicates; for example, “known” negates to “unknown”
and “like” roughly negates to “dislike.” When a predicate and its negation
appear as words, one should be replaced by the negative of the other.
Sometimes negation is more subtle as in “dead” and “alive.” What about
“long” and “short”? I

The next theorem is useful for moving quantifiers past the connectives n,
V, and A. In our discussion of propositional logic, we saw that these connec-
tives are more than sufficient.
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Theorem 3.4 Quantifiers

Let a be a formula in which any occurrences of X and Y are free and let
,6 be a formula with no free X. Let * be either V or A. Then the following
formulas are tautologies:

(VX(VY 01)) E (VY(VX a)) and (3X(3Y (1)) E (Ell/(EX a)), (3.22)
(-I(VX (1)) E (3X no) and (fi(3X a)) E (VX fia), (3.23)

((‘v’X a) * a) a (VX(a * m) and ((3X 0:) * a) a (3X(a * m). (3.24)

Proof: Abuse notation and write a(X) to indicate the free occurrences of X
in a. Use 4:) to stand for the phrase “if and only if.” Let’s prove (3.23) here
and leave the rest as an exercise. By the definition of the semantics,

-1(‘V'X a(X)) is true <=> (VX a(X)) is false
<=> there is some constant e such that a(c) is false
<=> (3X fia(X)) is true

The right side of (3.23) follows similarly. I

We’ll use the following corollary to convert Prolog rules to Hom clauses.

Corollary 3.4.1

Let Y1, . . . ,Yk be variables that do not appear in fl and let X1, . . . ,X,- be
distinct from the Yi’s. The following three formulas are either all true or
all false:

VXl ...VXj ((3Y1 . ..ElYk(C¥1 A -' -/\an)) —> fl)

VXI...VXjVY1...VYk((a1 /\ . . . /\ an) —> a) (3-25)
VX1...VXJ'VY1 ...VYk(fiv(fia1)V---V(—uan)).

Proof: Start with the first formula and convert the implication (7 —> fl) to
(fl V(-17)). Next, move the negation —: through the existential quantifiers BY,-
using (3.23), then use (3.24) to move the resulting universal quantifiers Vt
outside. Now, either convert the “V” back to an implication to obtain the
second formula or use de Morgan’s law to move -1 through the A’s to obtain
the third. I
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Figure 3.2 A truth table for the formulas in (3.26). The argument “(a)” has been
omitted from the predicates to save space. The rows in which all three formulas are
true are indicated by an asterisk.

Example 3.10 The Lewis Carroll Example Revisited

Let’s take the third statement in Example 3.9 and move the negation through
the existential quantifier using (3.23). We then have three universally quanti-
fied statements, namely

VX(c(X)—>s(X)), VY((—ug(Y))—>d(Y)), and VZ((-1g(Z))Vc(Z)),
where some variable names have been changed to emphasize that there is no
relationship between them.

Each of these formulas corresponds to an infinite set of formulas which are
obtained by replacing the variable by all choices of constants. For example,
we have

(«mesa»). ((-g(a))_.d(a)), and (mamas). (3.26)
Since 0(a), 3(a) and so on are either true or false, we can treat them just like
we treated propositional letters in the propositional calculus. In particular,
we could construct a truth table, as shown in Figure 3.2.

Those rows in the table for which all three formulas in (3.26) are true are
marked with an asterisk. Since ((-1.s(a)) —> d(a)) is true for all these rows, it
follows from (3.26). Since a is just an arbitrary constant, we’ve shown that
(3.21) is true. I

Example 3.10 shows that deriving results from universally quantified
statements can sometimes be done purely in propositional logic. It’s tempt-
ing to try to extend this idea; however, it doesn’t cover enough of predicate
logic for the needs of AI. In the next section, we’ll examine how Prolog rea-
sons. In Chapter 4 we’ll put this reasoning, called resolution and unification,
on a solid theoretical foundation.
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Here we’ve allowed variables to replace only constants, but we might want
variable predicates as well. For example, we might claim that the relationship be-
tween Al and Jo is the same as the relationship between Ken and Barbie. That
means, we have some predicate P such that both P(Al, Jo) and P(Ken, Jo) are true.
In other words,

3P (P(Ai, Jo) A P(Ken, Jo))
is true. We can’t say this in first-order predicate logic because variable predicates are
not allowed. Second-order predicate logic allows variable predicates. Thus second-
order logic is more powerful than first-order. Unfortunately we pay a high price—
there is no algorithmic procedure comparable to resolution.

Exercises

3.3.4. Write formulas as in Example 3.7 to define each of the following concepts:

3.3.5.

3.3.6.

3.3.7.

3.3.8.

3.3.9.

(a) One number is greater than another.
(b) One number divides another.
(c) A number has all of its prime factors distinct.
(d) A number is a power of 2.

*(e) A number is a power of 6.

What role does “only” play? Consider the statement “Only AI students do
this problem.”

(a) Using predicates AI-student and do_this_problem, write a Prolog
rule corresponding to the English one.

(b) Write an FOL formula for the statement.
(c) Describe the general method for translating statements containing “only.”

Complete the proof of Theorem 3.4.

A popular TV ad says “Nobody doesn’t like Sara Lee®.” With p(X) meaning
“X likes Sara Lee,” translate the statement to FOL and rearrange to obtain
a simpler statement.

A Texas bumper sticker reads “If you ain’t a cowboy, you ain’t ****” (ex-
pletive deleted). Introduce predicates, write in FOL and simplify. Let the
universe of constants be bumper sticker readers.

In contrast to (3.22), give an example that shows (3X(VY 0)) is not
equivalent to (VYGX 0)); however, prove that the former implies the lat-
ter.
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3.3.10. Let a and fl be formulas in which X is the only free variable. Precisely two
of the following are true for all such a and fl; that is, they are tautologies.

((VX(a v 3)) a ((VX a) v (VX 10))
((VX(a A 5)) s ((VX a) A (VX [9»)
((3X(a v (3)) a ((EIX a) v (3X [3»)
((3X(a A 13)) a ((EIX a) A (3X [3»)

(a) Identify those that are not tautologies and give an example to show that
they are not.

(b) Identify the tautologies and prove that they are, in fact, tautologies.

3.3.11. Negating quantifiers with qualifications, as in the definition of a derivative,
is nontrivial. Nevertheless, it’s an essential tool for constructing proofs by
contradiction and is a frequent source of student errors in such proofs. We’ll
look at it a bit. For this exercise, let V[X: a] mean “for all X with 01” and
let 3[X: a] mean “for some X with a,” as in (3.19).

(a) Prove the following:

(fiV[X: a] [3) a (3[X: a] (#3))
(fi3[X:a] fl) E (V[X:a](-1fl)).

In order to translate [X : or] into predicate logic, use (3.19). You may also
find some previous theorems useful.

(b) Do these agree with your usual understanding of the expressions written
out in words? Explain.

(c) Using the above and the predicate logic definition of a limit, write
out a predicate logic definition of its negation, that is, a definition of
1mm... f(a:) 9e L.

((1) Convert the previous result to ordinary calculus prose. Does this agree
with what you think it should say? If not, you should (i) correct your
solution to the previous part, (ii) correct your translation to prose, or
(iii) reexamine and correct your thoughts about what it should say.
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3.3.12. Here are some definitions. Translate them into predicate logic notation as we
did for the definition of a limit.

(a) We have two types of objects, real numbers and vectors. Use the predi-
cate lR(b) to determine if b is a real number. We say that the vectors 11',
17, and 11') are independent if, whenever at? + bi? + c113 = 6, it follows that
a = b = c = 0.

(b) Using the previous exercise, convert the definition in part (a) into a
definition for it, 13', and 125 being dependent, that is, not independent.

(c) We say that the points in 8 form a circle centered at the origin if and
only if there is some radius 'r > 0 such that 1:2 + y2 = 1‘2 for just those
points (1:,y) E S.
Hint. You can represent any set by a predicate. Since (1:, y) E S is either
true or false, we can think of it as a predicate, say 5(1), 3;).

Each of the following exercises contains a list of statements taken from Carroll’s text
on symbolic logic. Write down predicate logic equivalents for them as in Example 3.9
and then deduce the indicated conclusion as done in Example 3.10. Remember to
specify the set of constants. Indicate what your predicates stand for.

3.3.13. Translate the following statements into predicate logic:
“(1) Babies are illogical;
(2) Nobody is despised who can manage a crocodile;
(3) Illogical persons are despised.” [3, p. 112]
Show that they imply “Babies cannot manage crocodiles.”

3.3.14. Translate the following statements into predicate logic:
“(1) All my sons are slim;
(2) Nobody is healthy who takes no exercise;
(3) Gluttons are always fat;
(4) No daughter of mine takes any exercise.” [3, p.116]
Let the universe of constants be my children. Using the facts that (a) chil-
dren are either sons or daughters and (b) a person is either slim or fat, show
that the statements imply “All gluttons, who are children of mine, are un-
healthy.”

3.3.15. Translate the following statements into predicate logic:
“(1) No kitten, that loves fish, is unteachable;
(2) No kitten without a tail will play with a gorilla;
(3) Kittens with whiskers always love fish;
(4) No teachable kitten has green eyes;
(5) No kittens have tails unless they have whiskers.” [3, p. 118]
Show that they imply “No kitten with green eyes will play with a gorilla.”
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3.4 An Algorithm for Prolog

In this section we’ll describe the Prolog algorithm intuitively as well as in
terms that are amenable to the proof techniques of predicate logic. The intu-
itive approach is straightforward—as long as we ignore the details.

We’ll start by looking at the Prolog algorithm intuitively. Then we’ll trans-
late Prolog to FOL. Finally, we’ll explore the Prolog algorithm as an example
of Horn clause resolution. Some of the details and all of the proofs will be
postponed until the next chapter.

The Prolog Algorithm

In brief, Prolog uses depth-first search, Algorithm 2.3 (p. 53). To describe the
search tree, we need some terminology.

Definition 3.7 Head and Body of a Prolog Clause
Prolog statements are also called clauses, and we’ll use that term here.
The part of a Prolog clause to the left of :- is called the head of the
clause and the part to the right is called the body of the clause. We follow
the convention that a fact consists of a head with no body and a query
consists of a body with no head.

Prolog treats the body of each clause as a list, with the entries in the order
they appear in the clause. For the purposes of depth-first search, Prolog treats
the knowledge base as a list of clauses and goes through the list in order when
making a depth-first search decision.

Prolog’s decision tree (also called a search tree) for depth-first search is
constructed as follows. At each vertex there is a list, the list at the root being
the query. Essentially, the list at a vertex is what needs to be “proved” to
establish the query. Thus, if Prolog ever obtains an empty list, a positive
answer to the query has been found.

Suppose Prolog is working in propositional logic and we are at some vertex
1) that has the list p,q,. .. . If there is a clause in the knowledge base with
head p and body r,s,... , then Prolog can select that clause. Thus, there
is a vertex in the decision tree where the possible decisions correspond to
all knowledge-base clauses with head p. According to the specification of the
Prolog language, the order of these decisions is the same as the order of the
corresponding clausesin the knowledge base. Suppose Prolog selects the

clausep :- r, s ,. . .This decision leads to a vertex whose listIS I, s ,. . . ,q,. . .
other words, the body of the knowledge base clause followed by the remainder
of the list at v.
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Query: (‘1) Query: (‘1)

2:
|(t)

3:
(1|),r)

2:
|(t)

3:
(pm)

6: (s) l: (r) 6: (s) 1: (r)

4: () s: (p) 4': (p) 5': 0
solution I I solution

1: (r) 1: (r)

4= () 5= (p) 4': (p) 5’: ()
solution , . solution

Figure 3.3 Prolog search trees for the query :- q. See Example 3.11 for the
knowledge base. Each vertex is labeled with the knowledge-base statement that led
to it and the list of what remains to be proved. The parts of the trees indicated by
vertical ellipses go on forever alternating between p and r, with an empty clause after
each I. The right-hand search tree arises when statements 4 and 5 are interchanged
in the knowledge base.

Example 3.11 A Prolog Algorithm Search Tree for Propositions
Let’s use lowercase roman letters to indicate propositional letters in this ex—
ample. Suppose that our Prolog knowledge base is as follows, where the trans-
lation to propositional logic on the right is based on (3.1) (p.89) and (3.2)
(p. 93):

p -r. '/.1 r—>p
q "t- 7.2 t—rq
q - p,r. °/. 3 (pAr)—>q
r '/.4 r
r.-p. '/.5 p-—>r
t:- s. '/.6 s—rt

Let our query be :- q. It asks Prolog if q is true given the knowledge base.
The associated decision tree, which is infinite, is shown (in part) in Figure 3.3.

Of course, Prolog doesn’t actually construct this tree beforehand. It con-
structs (and destroys) the search tree as it attempts to establish :- q by
reaching the empty list. Since Prolog uses depth-first search, it will succeed
by reaching the leftmost empty list in the left-hand tree of Figure 3.3. Let’s
be more explicit. We’ll refer to the vertices by their numeric labels.

Prolog starts at the query and goes down to 2.
From 2 it goes down to 6.
At 6, no decisions are possible, so it returns to 2.
At 2, no further decisions are possible, so it returns to the query.
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0 At the query, it finds a second choice and goes to 3, then to 1, and finally
to 4.

In constrast to what we’ve just looked at, if statements 4 and 5 were
reversed in the knowledge base, we’d obtain the tree on the right-hand side of
Figure 3.3. In this case, Prolog would run until it ran out of time or storage,
never finding a solution. I

We’ve just seen that depth-first search can lead to disaster in Prolog. But
in the previous chapter, we saw that both breadth-first and iterative-deepening
search—Algorithms 2.1 and 2.4—-never fail. Why doesn’t Prolog use them?

In the first place, breadth-first search requires considerable storage. Al-
though there are other objections, this may be sufficient to dismiss it from
consideration. The reasons for not using iterative deepening are more subtle.
Three interrelated major problems are side effects, clarity, and speed.

0 Side Effects: Prolog is more than logic—it includes procedural code. For
example, it interacts with the user through the terminal and it can al-
ter the content of the knowledge base. To use procedural code correctly,
the programmer must understand when Prolog accesses knowledge-base
statements. This brings us to the next problem.

0 Clarity: It is easier to visualize the process of depth-first search than
that of iterative-deepening search, primarily because iterative deepening
traverses the same statements many times. Even so, many programmers
initially have difficulty with Prolog because they do not understand the
somewhat subtle ways in which recursion interacts with depth—first search.

0 Speed: Suppose the other objections are swept away. It is frequently possi-
ble to order the statements in a Prolog knowledge base so that depth-first
search will usually be much faster than iterative deepening: Less likely
and/or more costly branches are placed further to the right in the list of
decisions at a. vertex. Recall that Theorem 2.3 says iterative-deepening
search is fast. Don’t these comments contradict that? No. Look at Theo-
rem 2.3 (p. 58) and try to see why before continuing.

* >|< * Stop and think about this! * >l< *

In Theorem 2.3, iterative-deepening search is compared with breadth-first
search; not with depth-first search. Depth-first search can be much faster
if the clauses with a given head are listed in an order that begins with
those most likely to lead to a. quick solution.

All these objections notwithstanding, there are times when iterative-deepening
search may be preferable, particularly when procedural code is absent. If you
are a Prolog programmer, you might implement iterative-deepening search
within Prolog. This can be done with varying degrees of sophistication.
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Let’s look at how Prolog handles predicates. Suppose the first entry in
the list at some vertex involves the predicate p. The possible decisions at this
vertex in the decision tree are those knowledge-base clauses with head p whose
arguments can be made to agree with the arguments of p at the vertex. For
example, if we have p(X,a,Y) at the vertex v and p(b,U,V) in the knowlege
base, we obtain agreement by setting X equal to b, setting U equal to a, and
identifying the variables Y and U. Setting variables to constants and variables
in this manner is called unifying the arguments of the predicates. This decision
to use a particular knowledge-base clause C at the vertex 12 leads to a child
vertex whose list is the body of C followed by the list at the parent vertex
v with the first predicate removed. In this new list, all these unifications are
made. Of course, when Prolog moves back toward the root by rejecting a
decision, it must forget the unifications the decision caused. Except for these
added complications, the search is the same as for propositional logic.

Example 3.12 The Prolog Algorithm with Predicates

In the following knowledge base, sib, sis, and p stand for the predicates
sibling, sister, and person, respectively. The formula sis(X,Y) is true when Y
is a sister of X. The formula p(X,S,M,F) is true when X is a person whose sex
is S, whose mother is M, and whose father is F.

sib(X,Y) :— p(X,SX,M,FX),p(Y,SY,M,FY). % 1
sib(X,Y) :- p(X,SX,MX,F),p(Y,SY,MY,F). % 2
sis(X,Y) :- sib(x,Y), p(Y,f,M,F). % 3
p(a1,m,b1,b2). p(a2,m,b1,b3). p(a3,f,b4,b2). °/. 4, 5, 6

The definition of sibling is not quite correct since it does not include the check
X\=Y. We’ll omit this check to simplify things a bit.

Consider the query :- sis(a1 ,X) . It asks Prolog to find a constant such
that setting X equal to the constant makes x a sister of a1. Prolog begins with
the third rule, unifying the X of the rule with a1 and the Y of the rule with the
X of the query. This is shown at the top of Figure 3.4. Using the information in
the figure caption, you should be able to see why the rest of the Prolog search
tree is as shown. Remember that Prolog always replaces the first predicate in
a list by using a clause from the knowledge base whose head can be unified
with that predicate.

* * * Stop and think about this! >I< * *

Because the clauses in the knowledge base are in a poor order for this query,
Prolog must traverse the entire search tree to find a solution. I
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(sis(a1,X))
3

(sib(a1,x), p(x,1,M,F))

/ \
p(a1, sx, M1 ,FX), p(a1, sx, Mx, F1),
((x SY, M1 FY)) <(x SY, MY, F1) )

p(x,41l,

M ,F)
p(x,41|,

M ,F)

(p(X,SY4,b1,FY),)
(p(X,SY,MY,b2),)p(x,1,M,F) p(x,1,M,F)
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=a1 x=a2 x=a1 X=

(p(a1,1,M,F)) (p(a2,1,M,F)) (p(a1,1,M,F)) (p(a3,1,M,F))
stuck stuck stuck 6

()
Figure 3.4 The entire Prolog search tree for the query :- sis (a1 , X). The know-
ledge-base clause numbers appear on edges because of limited space. Whenever a
knowledge-base clause is resolved with a clause that leads to a conflict of variable
names, a subscript is added to the name of the knowledge-base clause variable.
When variables are unified, the knowledge-base clause variable names are replaced
with the new ones in the unification. When the X of the query is unified with a
constant, that is indicated in the tree. “Stuck” indicates that this branch of the
search tree terminates because there is no knowledge-base clause that can be unified
with the predicate.

Exercises

3.4.A. What is a Prolog clause? What are its head and body? Which of the following
lack a head (or body): fact, rule, query?

3.4.B. Why does Prolog use depth-first search rather than breadth-first search or
iterative-deepening search?

3.4.1. (Answer follows) Return to the left-hand tree of Figure 3.3. Give a descrip-
tion in ordinary English, free of Prolog and propositional logic terminology,
of what Prolog is trying to do at each step and what happens. For example,
you might start with “Prolog wants to see if q is true. It knows that if t is
true, then q is true, so it decides to try to prove t.”
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3.4.2. Suppose that sis(X,Y) is changed to mean that X is a sister of Y in Exam-
ple 3.12.

(a) Rewrite Statement 3 so that it is correct.

(b) Draw the search tree for the query :- sis (X,a1) . For your own in-
formation, compare it to the left-hand tree in Figure 3.4.

3.4.3. Consider the query :- q. for the following knowledge base:

pz-t. '/.1
q:-p,r. '/.2
qz-t. '/.3
tz-r. 7.4
t. '/.5

(a) Draw the search tree for this query and knowledge base.

(b) Indicate explicitly how Prolog traverses the tree.

Answers

3.4.1. There are many ways to do this; here’s one.

o Prolog wants to see if q is true. It knows that if t is true, then q is true,
so it decides to try to prove t.

o It knows that if s is true, then 1'. is true, so it decides to try to prove s.

0 Since it has no way to prove s, it looks for another way to prove t, but
finds none.

0 As a result, Prolog is back to looking for another way to verify the
original query q.

o It knows that if p and r are true, then q is true so it turns its attention
to them.

0 It knows that if r is true, then p is true, so it only needs to verify r.

o Prolog knows that r is true—it’s a fact in its knowledge base.
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*Prolog Lists and Recursion

We’ve mentioned recursion in connection with Prolog. The next example is
a classic Prolog example of recursion. To understand it, you need to know
something about how Prolog represents lists. A list is enclosed in brackets
and the entries in the list are separated by commas as in [a,b,c,d] and
E], where the first list has four items and the latter is the empty list. A
particularly useful notation allows us to separate off the first element in a list:
In the syntax [X I Y] , X is the first entry in the list and Y is the remainder of the
list—which could be the empty list. For example, [a,b,c,d] can be unified
with [XIY] by setting X equal to a and Y equal to the list [b.c,d]. In other
words, [al [b.c,d]] and [a,b,c,d] are the same list in Prolog. In still other
words, [XIY] is a list whose first element is X and whose remaining elements
are the elements in the list Y. We cannot unify [] with [XIY] because X must
be the first element of the list and there is none.

Example 3.13 A Recursive Prolog Example: append

We want to write Prolog code for a predicate append(L,M,LM) so that the
list LM will consist of the elements of the list L followed by those of the list M.
Here’s a solution.

append([].L,L). 7. 1
append([XlL],M,[XlLM]) :— append(L,M,LM). 7. 2

The first line of code obviously describes what to do when the first list is empty.
But what does the second line do? It simply asserts—makes a declarative
statement—that, if the variable Ltd is the result of appending M to L, then
[X l LM] is the result of appending M to [XIL]. Phrased that way, it’s obviously
the correct thing to say.

This explanation of the second line of code usually engenders howls of
outrage (at least subvocally) from procedural programmers. After all, there’s
no code to do anything! That’s the beauty of 'Prolog. If we can say in Prolog’s
logic what it takes for something to be correct, Prolog will usually be able to
do the rest. The above code does just that:

o The first line states the fact that the result of appending a list L to an
empty list is just L.

c When the first list is not empty, the second statement tells how to decide
if append is correct by looking at a portion of the first list.

You can think of what we have as a recursive definition.
It may be helpful to follow a simple example. It is important to remember

that the variables in the Prolog statement are bound—that is, for procedu-
ral programmers, regarded as local. To keep repeated usage straight, let’s
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employ subscripts. Consider the query :- append([1,2] , [a,b] ,X). State-
ment 1 cannot be unified with the query because [1,2] is not an empty list.
Thus Prolog tries the second statement, obtaining

appendmuzn. la. b], [mm = —append([21,[a.b1.m1).
In order to satisfy the right side, Prolog must use Statement 2 again:

append([2I[]], la: b]: l2lLM2l) : —append([], la: bl! LM2)'

(Note that the third argument on the left is also called L141, so that LM1 equals
[2|LM2] .) Now the first statement applies to the right side, giving [a,b] for
LMg. Going backward in the sequence of equalities, LMl is [2| [a,b]], which
is [2,a,b], and [1|LM1] is thus [1,2,a,b].

It’s tempting to think of the code as the core of a recursive algorithm,
but this can be misleading. We tend to think of an algorithm as running in
one direction. For example, you might set the query

: —append([1,2], [a,b],X). and get the answer X = [1, 2,a, b]

as we did above. However, you’re less likely to consider

: —append(X, Y, [a, b, c, d]).

Nevertheless, this is a perfectly acceptable query. Using the first knowledge-
base clause, Prolog finds the solution

X = H, Y = [a,b,c,d].

If asked to find another solution, Prolog will try the second statement, in
which X is a and LM is [b.c,d]. This leads Prolog to seek a solution to
append(L,M, [b,c,d]), which can be found by the first clause. This leads
to the solution

X = [a], Y = [b, c,d].

Again, Prolog can be asked to find another solution and will do so. Altogether,
it will find all five possible solutions. Details are left as an exercise. I

The Prolog list structure has no direct analog in FOL; however, we can
implement lists in FOL by using a function. Here’s a way to do it. Let the
constant e be the empty list and let l(X,Y) be the function that produces a
list whose first entry is X and whose remaining entries are the elements of
Y. Some accommodation must be made for the situation in which y is not a
list; for example, the value of I could be a special constant indicating that the
arguments are bad. We may also want functions that extract the first element
and remainder of a list.
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Exercises

3.4.C. Explain Prolog’s list notation.

3.4.4.

3.4.5.

3.4.6.

3.4.7.

Draw the entire search tree for the query :- append(x ,Y , [a,b , c ,d] ) .

Suppose you want to reverse the order of elements in a Prolog list. Explain
why this is described declaratively by

reverse([],[]).
reverse([l],Y) :- reverse(L,M), append(M,[X],Y).

Using the idea sketched after Example 3.13, express the definition of append
in FOL.

An ordered tree is defined in Definition 2.3 (p.38). The definition can be
modified to define unlabeled ordered trees, such as those shown in (a) below.
Instead, we’ll take a Prolog approach. An unlabeled ordered tree is either
the empty list (a single vertex) or a list containing one or more unlabeled
ordered trees.

(a) How are the following trees represented as Prolog lists?

“box
(b) We call an ordered tree binary if each nonleaf vertex has exactly two

children. On page 253 of Foundations of Applied Combinatorics by Ben-
der and Williamson, a function f that establishes a 1:1 correspondence
between n-vertex ordered trees an n-leaf binary ordered trees was given.
It was defined recursively to map from all ordered trees to the binary or-
dered trees. With the trees in Prolog notation, the function is given by

f([]) = [l and f([l-ukl) = [f(Tl),f([T2,-~,Tkl)]- If k = 1, the
rightmost f is f([ ]). Write Prolog code for a predicate 1 (Any ,Binary)
where Any is an arbitrary unlabeled ordered tree and Binary is the
corresponding binary one.

(c) What tree is produced when the previous algorithm is applied to the
leftmost tree in (a)? Show your work. Give the answer as a picture and
as a Prolog list.
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Translating Prolog to Logic

Here we’ll examine a translation mechanism 11‘ for converting Prolog to pred-
icate logic.

Prolog has three types of statements—facts, rules, and queries. The facts
45,- and the rules p5 constitute the knowledge base [C with which we are working:

knowledge base [C = {¢1,...,¢f,p1,...,p,.}.

All statements in the knowledge base are true, that is, the “and” of these
statements is true. Thus we have

T(K:) = T0131) A - - - A T(¢f) /\ T(p1) /\ - ' - A T(p,~).

Since a fact consists of a predicate with constant arguments, 'll‘(¢,-) is
simply g6,- read as a formula in predicate logic.

Rules are a bit more complex. A typical Prolog rule has the form

P(a) :- Q(x.z). r(zac)-

The prose version of this Prolog, namely “If q(x,Z) and r(Z,c,Y) for some
Z, then p(X,Y) ,” is ambiguous because X and Y have not been quantified. The
Prolog statement is supposed to hold for all X and Z. We can be precise by
translating to predicate logic:

T(P(X.Y) :- q(X.Z) . r(Z.C.Y))

= VX VY((3Z(q(X, Z) A r(Z, c, Y))) _. p(X,Y)).
By Corollary 3.4.1 (p. 115), we can rewrite this translation as

'fl‘(p(x,v) :— q(x,z), r(z,c,Y))

= vx VY vz(p(X, Y) v (-1q(X, 2)) v (-w(z, c, Y))).
This entire process can be extended to any Prolog rule: Let X1, . . . ,Xk be the
variables in the rule p. Let C be the “atomic formula” (Definition 3.5) on the
left of :- and let H1, . . . ,Hn be those to its right. Then

T(p) = VX1...VXk(CV(-:H1)V---V(-a)).

This translation is an example of a Horn clause.
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Definition 3.8 Horn Clause
A Horn clause is a formula of the form VX1...VXn(a1 V - - - V ah) con-
taining no free variables and such that each a,- is an atomic formula or
the negation of one. Furthermore, at most one of the atomic formulas is
not negated. The notation {011, . . . ,ak} is used for a Horn clause.

Warning: Do not confuse the comma in a Horn clause—where it
means “or” ——with a comma separating Prolog predicates—where it means
“and.”

According to the translation rules, we have the following:

o A Prolog fact translates to a Horn clause with one atomic formula, and
it is not negated.

o A Prolog rule translates to a Horn clause with all but one of the atomic
formulas negated.

o A Prolog query translates to a Horn clause in which all atomic formulas
are negated, since a query is written like a rule with no head.

The translation of a query looks strange. Since we want to know if it can
be satisfied, why in the world would we translate it into a Horn clause with
negated atomic formulas? For example, if the query is :- p(X), it means,
“Does there exist an X such that p(X) is true?” In other words, the query
means “Is the statement 'l1‘(lC) ——> (3X p(X)) true?” With a little work, you
should be able to show that

(a —» (3mm) 2 (ea) v (3mm) 2 -'(a A Mean»)
Thus, proving that 'll‘(IC) —> (3X p(X)) is true is equivalent to proving that

'J1‘(}C) A (VX(-up(X))) (3.27)
is false. In other words, we can verify that the query can be satisfied by proving
that (3.27) is false. Thus the translation scheme converts the Prolog problem
into a collection of Horn clauses that must be proved contradictory.

Is showing that something is false better than using the decision tree de-
scription of Prolog? Actually, you’ll see in the next chapter that both methods
carry out the same manipulations! In that case, why use contradiction? The
reason for using the contradiction approach is that it’s sometimes easier to
prove theorems about contradictions. As a result, logicians often think about
Prolog inference as a process of obtaining contradictions in the way we’ve just
described. Does this mean you should think about Prolog’s algorithm as a
proof by contradiction? Sometimes. From a practical viewpoint, it’s simpler
to think of Prolog as trying to find solutions to the query. However, when the-
oretical insight is needed to study the power and limitations of Prolog, the
“solution by inconsistency” viewpoint is often better.
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{fisis(a1,X)}

3|
{fisib(a1,X), fip(X,f,M,F)}

/ \
np(a1.SX.H1.FX). fip(a1,SX,MX,F1),
nP(X.SY.M1.FY). fip(X,SY,MY,F1),

np(x.f.M.F) fip(x,f,M,F)
4' 4|

{np(X.SY.b1.FY). {fip(X,SY,MY,b2),np(x.f.M.F) sp(x,r,n,r)

x=a1 X=a2 X=a1 X=a3

{fip(a1,f,M,F)} {fip(a2,f,M,F)} {fip(a1,f,H,F)} {fip(a3,f,M,F)}
stuck stuck stuck 6

{}

Figure 3.5 The Prolog search tree of Figure 3.4 (p. 124) written in Horn clause
resolution form.

Our translation of Prolog, including the query, consists of universally
quantified Horn clauses joined by “and.” In predicate logic terms, the Pro-
log search process involves resolving Horn clauses. Suppose we have two Horn
clauses with no variable names in common. Let one clause contain p(. . .) and
the other contain -1p(. . ..) Their resolution is another Horn clause that con—
tains all the atomic formulas from both clauses except the p(. . .) and -1p(. . .)
just mentioned. In addition, the variables and constants have been unified to
make these two predicates agree except for the fi. To obtain the Horn clause
resolution search tree for Prolog, simply take the search trees drawn earlier,
negate each predicate, and convert lists to clauses. Figure 3.5 illustrates this
procedure. Horn clause resolution will be taken up more fully in the next
chapter.
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Exercises

3.4.D. What are Horn clauses and how are two Horn clauses resolved?

3.4.E. Explain how a goal clause (query) is translated into logic for the purposes
of resolution and explain why this a priori counterintuitive translation is
correct.

Notes

The discussion of FOL in this chapter is far from complete: It lacks theorems
and proofs (which is remedied in the next chapter), and its definition of FOL is
not the most general. The semantics defined here do not specify interpretations
for variables, so we’re limited to interpreting formulas with no free occurrences
of variables. The most general formulation of FOL avoids these limitations;
however, the limited version is more easily explained and adequate for our
purposes.

In the United States, early experiments with high-level, logic-based lan-
guages “proved” that such languages were hopelessly inefficient. But in the
early 19708, the foundations of Prolog were developed by Robert Kowalski
and demonstrated by Maarten van Emden, both at the University of Edin-
burgh. Alain Colmerauer’s group at the University of Marseille-Aix developed
a Fortran implementation of Prolog. Then, in the mid-1970s, David Warren
of Edinburgh developed an efficient implementation that made Prolog practi-
cal. In light of their own earlier experience, Americans largely ignored these
European developments. Although Prolog gained considerable popularity in
Europe, Lisp was essentially the only AI language in the United States. When
the Japanese selected Prolog as the language for their Fifth-Generation com-
puter project in 1981, Americans first criticized the choice and then looked at
Prolog more seriously. Most current researchers regard both Prolog and Lisp
as major AI programming languages, each with its strengths and weaknesses.

In addition to the usual manuals, various texts on Prolog are available.
They usually contain examples of interest in Al and some discussion of Pro-
log’s logical foundations. Among these books are the texts by Bratko [2],
Covington et al. [4], Maier and Warren [7], Shoham [14], and Sterling and
Shapiro [19]. Some familiarity with Prolog is advisable (but not necessary)
when reading [19]. Merritt’s text [8] is devoted to expert systems and assumes
familiarity with Prolog.

Lisp is the other major programming language for AI. My neglect of it
should not be regarded as taking sides in the Lisp versus Prolog debate. I’ve in-
troduced Prolog simply because its close connection with predicate logic makes
it easy to illustrate aspects of logic without delving deeply into a language.
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Anyone doing serious symbolic programming in AI should be familiar with
both Lisp and Prolog. Among the introductory Lisp texts, Touretzky’s [21]
may be the gentlest. Winston and Horn’s text [22] discusses applications to
AI, but the introduction to Lisp is fast-paced. Revesz’s [11] and Stark’s [18]
books provide the mathematical background for Lisp. Some familiarity with
Lisp is assumed in Norvig’s extensive text on Lisp programming for AI [9].

“Logic” puzzles of various sorts have been popular for ages. The logician
Raymond Smullyan has written books, such as [15, 16], that teach some logic
through the medium of puzzles.

All general AI texts discuss logic to some extent, but usually not to the
depth I’m doing. On the other hand, texts on logic for computer scientists
usually have deeper and broader coverage than that found here. Among these
are the texts by Thayse [20], Genesereth and Nilsson [5] and Sperschneider and
Antoniou [17]. However, the text by Schoning [13] covers just propositional
and predicate calculus and Prolog—but in greater depth than here.

Example 3.5 dealt briefly with some problems concerning the meaning
(or, rather, meanings) of “If P, then Q.” Implication has been debated in phi-
losophy and logic for more than two millennia. The first part of [12] gives
the history. Reprints of some research appear in [6]. Nute [10] provides an in-
troduction which you’ll probably find easier to read after Chapter 6. I briefly
compare implication and conditional probability in Example 7.8 (p. 273). Var—
ious philosophical attempts to deal with causality are discussed in [1].
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The Theory
of

Resolution

A mathematical work that attempted to glide over all the
difficulties of the subject matter would be completely unfit for

training a reader in mathematical thinking and giving insight into
this specialfield

—Heinrich Tietze (1965)

[Niels Bohr] never trusted a purely formal or mathematical
argument. “No, no,” he would say, “You are not thinking; you

are just being logical.”
—Otto R. Frisch (1979,)

Introduction

The focus of the previous chapter was conceptual: What are the ideas of
predicate logic and how do they relate to Prolog? The focus of this chapter
is more theoretical and more limited: It concentrates on the theoretical basis
for the resolution method of proof and its specialization to Prolog.

Some practical people may dispute the need for this chapter, arguing

Many people have used Prolog. It has produced correct answers. In
the face of such evidence any theoretical work is an unneeded ivory
tower pursuit.

To this, we can come up with several objections:

135
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0 There are important issues about Prolog itself that cannot be answered
empirically: Will Prolog always find all the answers? If not, when and
why? Will it find wrong answers? If so, when?

0 There may be difficulties in the Prolog interpreter: How can we identify
and understand them? What can we use besides guessing and testing to
overcome them?

0 Predicate logic is an inadequate foundation for AI: How can it be extended
to include some kind of “default” and/or “nonmonotonic” capabilities?
There have been a variety of attempts to do this, some of which we’ll
explore in Chapter 6. These attempts provide overwhelming evidence that
theory is needed.

At the same time, we don’t need all the details of the theory, particularly in
a first text. As a result, we won’t fully explore the theoretical foundations of
predicate logic.

In the next section, we’ll expand on the previous chapter’s discussion of
the distinction between truth and proof. Next, the theories of propositional
and predicate caculi are studied, with an emphasis on resolution proofs. In
the following section, we return to Prolog for a discussion of its features in
light of the previous material. Finally, we briefly discuss FOL in general and
Prolog in particular as a tool for AI.

Prerequisites: Chapter 3.
Used in: The material in this chapter is useful in Chapter 6; however, only
Section 4.1 is required.

4.1 Truth versus Proof

What is truth?
—Pontius Pilate (ca 30 AD)

Mathematics takes us into the region of absolute necessity, to
which not only the actual world, but every possible world, must

conform.
—Bertrand Russell (1902)

Since truth is defined in the semantics of a language, there is only one notion
of truth in a given language. In contrast, there may be many methods of proof
because a method of proof is simply a method for manipulating the syntax
to obtain valid results. You’ve already seen two distinct methods of proof for
propositional calculus—truth tables and resolution. What is the connection
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between proof and truth? A proof method exists solely as a means of extracting
truth. Truth is the more fundamental notion.

Truth

The notion of truth for propositional logic is given in Definition 3.2 (p. 97)
and that for predicate logic in Definition 3.6 (p. 110). These ideas are based
on truth assignments to the propositional letters and predicates, respectively.
There are three interrelated truth notions for a formula:

0 valid: All possible interpretations make the formula true.
a satisfiable: Some possible interpretation makes the formula true.
0 unsatisfiable: No possible interpretations make the formula true.

In particular, it follows that a is valid if and only if (-105) is unsatisfiable. The
latter two notions are extended to a set S of formulas, but the terminology
differs:

0 consistent: Some interpretation makes all the formulas in 8 simultane-
ously true.

0 inconsistent: No interpretation makes all the formulas in 8 simultaneously
true.

In propositional logic, “all possible interpretations” are easy to list: Simply
consider all possible assignments of T and F to the propositional letters in
the formula. This shows that validity, satisfiability, and unsatisfiability of a
formula can all be determined in a finite amount of time.

In predicate logic, the situation is more complicated: The number of in-
terpretations is infinite. As a result, the semantics of predicate logic does
not automatically provide an algorithm for validity the way the semantics
of propositional logic does. In Definition 3.6 (p. 110), it’s unclear how many
constants, functions, and predicates our interpretation must allow. Our inter-
pretation must allow a number of constants at least equal to the total number
of constants and variables in the formula we’re looking at. As far as functions
are concerned, we should have all possible functions. Even this is not quite
enough because, when we see f(c), we may want its value to be different from
other constants we’re considering.

As you can see, the “universe” for an interpretation can be quite large.
Too large? What does that mean? Mathematicians have become quite adept at
conjuring up and manipulating very large sets, but even they are interested in
keeping infinities “small” when possible. Of course, any infinity is too large for
an algorithm. How large a universe must we allow? The answer is provided by
what are known as Herbrand universes, which are infinite, but not too large.
We won’t discuss these here, but a discussion can be found in almost any
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text on logic for computer scientists or mathematicians. Now, laying aside
the notion of semantics, let’s look at the notions of validity, satisfiability, and
unsatisfiability, which can be extended to a situation where we have a set S
of hypotheses. Here’s a formulation for validity.

Definition 4.1 Consequences
Let S be a set, possibly empty, of formulas in the syntax of some logic
and let a be another formula in that logic. We say that a is a consequence
of S if, whenever all the formulas in'S are true, a is also true. This is
written as S I: a. If S : (I), we usually write I: 0:, call a a tautology,
and say that a is valid. Note that if S is inconsistent, then S I: a for all
formulas or in the language because there is no interpretation in which 5
is true and a is not.

If S is a finite set consisting of the formulas 0'1, . . . , on, then

S I: 0: if and only if I: ((-10‘)Va), (4.1)
where o is the formula 01 A- - ~Aon. This is easily shown: By definition, 8 I: o
if and only if 0' I: a. By definition, the latter is true if and only if, whenever
a is true, a is also true. In other words, either a must be true or 0’ must be
false for every interpretation. This is simply the definition of I: (a V (:o)).

Example 4.1 Simple Examples of Consequences

In propositional logic, we have

{fl,(fi—>7)} l= 7-
You can see this by constructing a truth table:

fl 7 fl—Vr
T T T
T F F
F T T
F F T

Since ,6 is true in the first and second rows and fl —> 7 is true in the first,
third, and fourth rows, all the formulas in S are true only in the first row. In
the first row, 7 is also true.

When dealing with predicate logic, we cannot simply appeal to truth
tables. For example, consider the following

{3X VY p(X,Y)} I: VY 3X p(X,Y).

This is correct, but it’s not so evident how to establish it. I
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P roof

Our difficulty is not in the proofs, but in learning what to prove.
—Emil Artin (ca 1950)

Consider the statement

This statement cannot be proved. (4.2)

Let’s try to prove by contradiction that it is true. Suppose it is false. In
that case, what it claims is not true. Hence (4.2) can be proved; but if it
can be proved, that means it’s true. We’ve obtained a contradiction from the
assumption that (4.2) is false. Hence we have proved that (4.2) is true, which
means it cannot be proved. But we just proved it!

This discussion shows that we must have a precise definition of what is
meant by a proof if we hope to avoid paradoxes.

Definition 4.2 Proof Method, Soundness, Completeness

A proof method is a procedure for manipulating the syntax to deduce con-
clusions from assumptions. If the set of assumptions is the formulas in S
and if the formula a is a conclusion that the proof method deduces for S,
we write 8 l- a. If S = (0, we usually write I- a. Note that l- depends on
the proof method.

For a proof method to be useful, it should not prove false formulas, that
is, Whenever S I- oz, we also have 8 I: a. Such a proof method is called
sound.

It’s also helpful if all consequences are provable; that is, whenever
S I: or, we also have 8 l- a. Such a proof method is called complete.

When a method of proof is sound and complete, precisely those formulas that
are consequences of S are provable. Except for the simplest logics, such proof
methods do not exist. Yes, they do not exist—which is much stronger than
saying they are not known. More on this later.

In addition to soundness and completeness, certain aspects of proof meth-
ods are important from a practical point of view. In computer science, we want
to use such a method as the basis of an algorithm for carrying out proofs. Thus,
we want the method to lead to a reasonably efficient algorithm. Satisfying this
requirement is far from trivial.

Thus, given a method of proof, there are at least three questions we should
address:

0 Is the method sound? (If not, it is probably useless.)
o Is the method complete? (If not, it might still be useful.)
0 Can the method be used as the basis for a reasonable computer algorithm?
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We’ll take up these issues in the next couple of sections, focusing on SLD-
resolution—Prolog’s proof method. (The acronym SLD derives from the fact
that the resolution has a Selection function, is Linear, and deals with Definite
clauses. Now you can forget what SLD means.)

There is another practical aspect of proof methods. A proof method is an
algorithm for proving the truth of a given conclusion. It does not address the
issue of how to discover interesting things to prove. Discovery is an aspect of
learning and is in a more primitive state of development than proof methods.

Aside. The syntax and semantics of a logic seldom give an operational method for
establishing S I: (1, whereas proof methods give techniques for establishing S l- 0.
Thus it seems resonable to reserve the term logic for the syntax and semantics and
the term calculus for the proof methods. This is seldom done—predicate logic and
predicate calculus are used interchangeably.

Truth Tables

The manipulation of syntax via truth tables is a method of proof in proposi-
tional calculus. This method is the same as the definition of semantics. Hence
the truth table method of proof is complete and sound when the formulas
in 8 contain only a finite number of propositional letters. Unfortunately, the
amount of work required to construct a truth table is exponential in the num—
ber of propositional letters since a truth table for n propositional letters has
2" rows. As a result, the truth table method is impractical when we have
a large number of propositional letters. A more serious drawback is the fact
that the method cannot be extended to predicate logic, and we need predicate
logic for AI.

Axiomatics

You’re already familiar with one style of proof method for FOL from Euclidean
geometry. This method is used throughout mathematics. The subject being
considered is described by a series of axioms and the methods for manipulating
the axioms are described by rules of inference. Let S be the set of axioms
together with hypotheses of a theorem we wish to prove and let 0: be the
theorem’s conclusion. The rules of inference comprise a proof method for
establishing S l- a.

This approach to reasoning goes back, at least, to Aristotle (384—322 BC)
and has been taught as the method of logical reasoning for centuries. In the
18903 it was popularized by David Hilbert (1862—1943) as a method for pro-
viding a firm foundation for mathematics. Typically in a mathematical area,
the axioms specific to that area are spelled out. However, the more general
axioms of mathematics and the rules of inference are rarely stated explicitly.
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The specific axioms and rules of inference vary from system to system,
but are all equivalent. It is standard to include at least modus ponens. This
says that, if we are given or and a —+ ,8, we may infer H. You might say, “Why
do we need this—it’s obvious from truth tables.” But truth tables are another
proof method, so they are not included in the axiomatic method.

Unfortunately, axiomatics suffers from a severe drawback that everyone
who has attempted a proof has encountered: “What should the next step be?”
In order to implement an axiomatic system on computer, guidance concerning
the next step is needed. It’s not necessary to determine the step completely,
because we can always use a search strategy as long as the amount of search
needed is not excessive. Some success has been achieved using heuristics; how-
ever, finding other proof methods has proved more fruitful for automating
mathematical logic. For this reason, we’ll say no more about axiomatics.

Resolution

Resolution was introduced in the previous chapter as the basis for Prolog.
Before resolution can begin, the formulas must be in clausal form. Resolution
then constructs a proof by contradiction; that is, it proves that the formulas
are inconsistent.

It turns out that the resolution method is sound and complete for FOL.
Unfortunately, it has some drawbacks. First, it can be time-consuming to
rewrite formulas in clausal form. Second, there is still the problem of “What
should the next step be?” To some extent, we have to expect such prob—
lems because establishing validity in propositional logic is NP-complete.
(NP-completeness is discussed very briefly on page 15.)

Prolog overcomes the first problem by limiting its syntax to statements
that are easily converted to clausal form. It partially overcomes the second
problem by further limiting syntax so that Horn clauses are obtained. This
allows us to use a limited form of resolution called SLD—resolution without
sacrificing completeness. It is easier to decide “what next” in SLD-resolution
than it is in general resolution. But we pay a price for these improvements:

Prolog does not include all of FOL. For example, we cannot say
(4 3)

P —* (q V 7‘) 01‘ (op) —> q in Prolog.
'

The remainder of this chapter is devoted to resolution and Prolog.

Exercises

4.1.A. What does it mean for a. formula to be valid? satisfiable? unsatisfiable?

4.1.3. What is the distinction between truth and proof?
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. What are the meanings and usage of l: and l-?

. What do satisfiable and unsatisfiable mean? What can you say about S I: a
if S is unsatisfiable?

. Why didn’t we discuss truth tables further?

. What is axiomatics and why are we not discussing it further?

. If our goal is a proof method for FOL, what are some problems and why is
Prolog a compromise?

. Suppose we have two proof methods, Method A and Method B, for a given
system of logic such that anything provable by Method A is provable by
Method B.

(a) Show that if Method A is complete, then Method B is complete. Why
is the converse not necessarily true?

(b) Show that if Method B is sound, then Method A is sound. Why is the
converse not necessarily true?

. Write both of the formulas in (4.3) in clausal form and explain why neither
is a Horn clause.

Resolution and Propositional Calculus

In the first part of this section, we discuss the resolution method for proposi-
tional calculus and prove that it is sound and complete. In the second part,
we do the same for SLD—resolution of Horn clauses.

The Resolution Method

There are two features of the resolution method you need to keep in mind
to avoid confusion. First, it is a method of proof by contradiction. Second, it
requires that formulas be in clausal form.
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Clausal Form

Definition 4.3 Literals and Clausal Form
A literal is either a propositional letter or its negation. The former is
called a positive literal and the latter, a negative literal. If I is a literal, l
denotes its negation with -fl canceled; that is, p is -1p and :17 is p. Recall
that a formula a is in clausal form if it has the form

alA---Aan where a, is [3,,-,1V---Vfl1;,ki

and each fl”- is a literal. Each of the ai’s is called a clause and is usually
written in the form {,65’1,...,,65,ki}. One often thinks of a as a set of
sets, each of which corresponds to a clause. Clausal form is also called
conjunctive normal form, or simply CNF.

The important result about clausal form is given by the following theorem.

Theorem 4.1 Clausal Form for Propositional Calculus
If a is a formula in propositional calculus, then there exists a formula 7
such that (a) 7 is in clausal form and (b) l: (a E 7). Furthermore, there
exists an algorithm for obtaining 7 from 0:. (Warning: There may be more
than one such 7 for a given 0:.)

Let’s recall what I: (a E 7) means. Given any assignment whatsoever of
truth values to the propositional letters, (a E 7) will be true. In other words,
(a E 7) is valid; that is, it’s a tautology.
Proof: By exhibiting the algorithm and showing that it works, we’ll auto—
matically prove the existence of 7. We’ll need the following tautologies in the
proof:

((01 —* fl) E ((—10!) V m), for step 1;

((0‘ 5 fl) 5 ((a A fl) V(("a) /\(—1fi)))), for step 2;
(("(a V m) E ((—0) A (film), for step 3;
(Ha A m) E (W) v (-fi»). for step 3;

((_'(—'P)) E P), for step 4;

(((a A fl) v 7) E ((a v 7) A (fl v 7»). for step 5.
You can prove these tautologies by using truth tables. (Two of them are special
cases of de Morgan’s laws.)

Imagine applying the tautologies by replacing occurrences of a formula
to the left of E with the formula to the right, repeating this procedure until
such replacements can no longer be made. This will transform the oz given in
the theorem to a new formula. Note that when we substitute one side of E in
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a tautology for the other, we obtain a statement with the same truth value
for every assignment of truth values to the propositional letters. Since we’ll
obtain 7 from a by just such a series of substitutions, (a E 7) will be valid.

The first step involves using the first formula to eliminate —-+. Suppose —>
occurs in the formula we are transforming. Move leftward from the ——> until
the number of left parentheses from your position to the connective exceeds
the number of right parentheses. Find the right parenthesis that is paired
with this left parenthesis. You will now have found a formula contained in
your original formula that has the form a —> fl. Replace it using the first
tautology on the list. For a complete proof, we would have to show that such
parentheses can always be found and that they do in fact delimit a formula.
We won’t do that. The process must eventually stop because each application
eliminates an ——>.

The second step involves essentially the same process to eliminate E.
The third step involves moving negations inside parentheses using the

third and fourth tautologies. The left parenthesis now immmediately precedes
the fl and the right parenthesis is found as in the first step. This process
must eventually stop because each application moves a -1 “deeper” inside
parentheses. (A formal proof requires a more precise formulation of the last
statement.)

The fourth step involves using the fifth tautology to eliminate multiple
negations on a propositional letter. When this is done, we are left with literals
connected by V and A.

The fifth step involves moving V inward and A outward simultaneously.
In this case, we use the last tautology and the one that results from the
commutativity of V. If you think of V as addition and /\ as multiplication, this
process is like expanding a complicated combination of sums and products to
obtain an expression that is a sum of products. It can be done in a manner
similar to that used in the first and second steps. It will eventually stop
because each application moves a V deeper inside parentheses. I

An alternative approach to proving Theorem 4.1 is given in Exercise 4.2.1.
Given a clause, we can sometimes simplify it: First, if a propositional

letter appears more than once in the clause, it can be eliminated. Second,
the same is true for the negation of a propositional letter. This elimination
of duplicates agrees with the notation of writing a clause as a set since the
elements of a set are all distinct. Third, if one clause is a subset of another,
the smaller clause may be dropped because

((aA (am) a (avm)
is valid. Finally, if both p and fip appear in a clause, we can eliminate the
clause because it is a tautology. (For any truth assignment, either p or -:p will
be true.)
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Example 4.2 Converting Formulas to Clausal Form

Let’s convert ((p —> q) —> (p A q)) to clausal form. Eliminating —> one at a
time gives

(((fip) V (I) —> (p A (1))
and then

(("((-'p) V (1)) V (P A (1))-
Moving —. inward gives

(«fl—'10)) A ('14)) V (P A (1))-
Eliminating -m gives

((19 A (nq)) V (p A q))-
Distributivity now gives, with some parentheses omitted,

(:2 Vp) A (I? V <1) A ((nq) V p) A ((—Iq) V q)-
Finally, the simplifications give

(10 V q) A ((—Iq) V 19)-
Of course, you needn’t slavishly follow the steps in the proof—you can use
any manipulations that don’t change truth values. I

A Resolution Algorithm

Let’s recall how two clauses are resolved. Suppose that we have two clauses
C1 and Cg, one containing the propositional letter p and the other containing
-:p. The resolvent of C1 and Cg on p is a clause consisting of all elements of
C1 and Cg except p and fip. We speak of resolving C1 and Cg on p.

If C1 and Cg consist of only p and -:p, their resolvent is empty and is
denoted by { } or Cl. What does it mean? Since the elements of a clause are
joined by “or,” at least one element of a clause must be true for the clause to
be true. Since our formula is a conjunction (“and”) of clauses, a formula with
an empty clause will be false.

The following is a nondeterministic algorithm for resolution proof in
propositional logic. (The nondeterministic part is due to the use of “choose.”)
At the end of the previous chapter, we used an algorithm similar to this one
for Prolog.
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Algorithm 4.1 Resolution Proof in Propositional Logic

Let S be a set of formulas and let a be a formula.

0 Imagine converting flu and all of the formulas in S to clausal form.
(We can only “imagine” because 8 may be infinite.) This gives a set
C of clauses.

o Repeatedly:
0 Choose a propositional letter p and two clauses C1 and Cg in C

that can be resolved on p.
o Create the resolvent, simplifying by eliminating duplicate ele-

ments.
0 Discard the clause if it contains both a propositional letter and

its negation.
o If the resolvent is not in C, add it to C.

If it’s possible to obtain the empty clause in this manner, we say that
S l- a (by resolution).

The following theorem answers two basic questions about the algorithm.

Theorem 4.2 Propositional Logic Resolution

The resolution method of proof is sound and complete. That is S l- a if
and only if 8 I: a.

Proof: Suppose that 8 is finite. By (4.1) (p. 138), we can move 8 to the right
side of l:. Thus, we’re reduced to proving I: a if and only if I- a for all a.

Recall that a collection of formulas is satisfiable if some possible assign-
ment of truth values to the propositional letters makes all the formulas true.
Also recall that a collection of formulas which is not satisfiable is called un-
satisfiable. These terms are often abbreviated SAT and UNSAT.
Soundness:
Proof by resolution is a proof by contradiction; it converts -:a to clausal form
and resolves clauses to obtain [3. We must show that if this happens, then
I: a. Let’s give a proof by contradiction. Thus, we assume I- a and [ah a and
want to deduce a contradiction.

The statement Ig’: a means that -:a is SAT. To see this, note that Iqé a
means there is some assignment of T and F to the propositional letters so that
a is F and so -:a is T. Fix this assignment.

We now claim that, for this assignment, the resolution of two clauses will
also be T. This claim is equivalent to “If V(p V a) = T and V((-1p) V fl) = T,
then V(a V fl) = T.” It can be proved directly or, instead, the equivalent
tautology

(((pvamufimvm) —+ (av/2)) (4.4)
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can be proved by using a truth table. The claim shows that all clauses pro-
duced by resolution will be true for our fixed assignment of truth to the propo-
sitional letters. Since Cl is always false, it cannot be obtained by resolution.
Thus I/ a, a contradiction.
Completeness:
Suppose that C is the clausal form of nor. Completeness means that if C is
UNSAT, then resolution can deduce [I from C.

Since a is a formula, it, and hence C, contains only a finite number of
propositional letters. We’ll prove completeness by induction on the number
of propositional letters. Let’s start the induction with a single letter, say q.
The only UNSAT collection of clauses is {{q},{—1q}}, from which it’s easy to
deduce CI.

The idea behind the induction proof is to construct from C some clauses
C” that contain neither p nor pp and then prove

(a) if C is UNSAT, then CP is UNSAT;
(b) if resolution can deduce Cl from C1”, then it can do so from C.

Before showing how to construct CP, let’s prove that (a) and (b) are enough
to complete the induction proof. Suppose that C is UNSAT. Apply (a). Apply
the induction hypothesis: completeness for fewer letters tells us that, since Cp
is UNSAT, resolution can deduce Cl from C” . Finally apply (b).

It remains to define CP and to prove (a) and (b).
The set of clauses CP is defined as follows:

0 If C E C contains neither p nor -p, then it is in CP.
0 If C1,C2 E C: P 6 C1, and (-Ip) E C2, then the resolvent of C1 and C2 on

p is in CP.

Result (b) follows from the definition: The clauses in C1” are either in C
or obtained by resolving two clauses in C. Thus, anything obtainable from Cp
by resolution is also obtainable from C.

Result (a) takes more work. We’ll prove it by establishing the contrapos-
itive; that is, we’ll assume that C10 is SAT and prove that then C is SAT. Since
C” is SAT, we may fix an assignment of values to all the propositional letters
(except p) so that all clauses in C19 are true. Let C(p) be those clauses in C
that contain p and let C(-Ip) be those that contain -rp.

If every clause in C(p) is such that at least one of its elements (other than
p) is true, then defining V(p) : F makes all clauses in C(p) and C(-Ip) true.
Since all other clauses in C lie in CP, this would make C SAT and we would
be done. In other words, either we are done or there is a clause C1 6 C(p) all
of whose elements except p are false. Interchanging the roles of p and -:p, we
conclude that either we are done or there is a clause C2 6 C(fip) all of whose
elements except pp are false.

It suffices to show that at least one of C1 and C2 doesn’t exist. If both
exist, resolve them on p to obtain a clause in C” all of whose elements are
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false. This contradicts the assignment of truth values, which was based on 6'”
being SAT.
Compactness:
We began by assuming that S is finite. In actual applications, our knowledge
base can contain only a finite number of statements, so 8 will be finite. In
general, this need not be true. Logicians usually assume that there can be
an infinite but “countable” number of propositional letters. They then prove
compactness: a is a consequence of S if and only if a is a consequence of some
finite subset of 8. You should readily see that the “if” direction is trivial. The
proof of the “only if” direction requires the Axiom of Choice. Rather than
develop this tool, let’s leave the proof incomplete for infinite S. I

Example 4.3 Double Resolution—A Common Mistake

How can the clauses {p, fiq, r} and {-1p, q, s} be resolved? A common mistake
is to “resolve” on both 19 and q to obtain {73 s}. This is WRONG. It may be
instructive to look at the reason from different viewpoints.

Before doing so, let’s look at the correct way to resolve these clauses. We
can resolve on p to obtain {-Iq,r,q,s}. Unfortunately, this clause is useless
because it is always true—either q is true or -q is true. Similarly, resolving
on q gives the useless clause {19, r, -:p, .9}.

One way to see that double resolution is wrong is by looking at a simpler
case: {1), -q} and {-np, q}. We’d obtain the empty clause, indicating inconsis-
tency; however, making both predicates true satisfies the clauses. This shows
that the method is wrong, but it does not explain why this is wrong while
resolution is not.

To explore the why, let’s look at the idea behind resolution. It’s based on
the tautology (4.4). A double resolution form of this tautology would be

(((p v I v a) A ((1,) v (-1) v m) —> (a v m). (4.5)
where l is q or --q. I’ll leave it to you to prove that this is not valid. I

Example 4.4 Two Resolution Proofs
Let’s begin with a resolution proof for

{((np)—>r),(p—>S),(r-+q),(s->(-*t)),t} '— q- (4-6)
We’ll go through the details of all the various conversions that set the stage
for resolution and then turn to the resolution.

Calling the formulas on the left 01, . . .,o5, rewrite (4.6) as described in
(3.25) (p. 115):

l- (fi(01/\--~/\o5)Vq).
Resolution attempts to derive a contradiction to the negation of the right side
of this, that is, a contradiction to 01 A - - - /\ 05 A (fiq). Let C; be the clausal
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form of 0'; and let 06 be {-Iq}. Replacing a —> fl with (no) V fl converts the
05’s to clausal form. We get

01 = {w} 02 = {w} 03 = {w}
C4={—'s,-'t} C5={t} 06={fiq} (4-7)

for the given clauses.
Here’s our procedure for doing resolution: Set 2' = I, resolve C,- with all

other clauses, increment i and repeat resolution and incrementation until the
empty clause is reached. (Stop if no new clauses are generated for a given 2'.
This happens if there is no proof.) To keep things straight, let G,- * C'j denote
the resolution of C,- and Cj. It will always be evident what propositional letter
we resolved on. This procedure leads to

C7 =Cl*Cz ={738}, Cs =C'1*03 ={P,(1},
C9 = C2 * C4 = {‘49, “'t}, 010 = 02 * 08 = {4,3},
011 = 03 * Cs = {fir}, 012 = C4 * C5 = {‘3};
013 = C4 * C7 = {hot}, 014 = C4 * 010 = {q,"t},
015 = C5 * C9 = {up}, 016 = 0'5 * 013 = {7'},
017 = 05 * 014 = {(1}, 018 = 06 * 08 = {P},
019 = 06 * 010 = {3}, C20 = 06 * C14 = {fit},

and Cs * 017 = E]. This completes the proof.
There are shorter proofs. One is

(«(03 * 06) * Cl) * C2) * C4) * 05 = D.

This proof has another, more important feature than its length. It starts
with the negation of the goal and then repeatedly resolves it with “given”
information—the ai’s.

This approach is not always possible. Consider the problem of resolving
the four clauses

{WI}, {17, fiq}, {10.91}, {-79.11} (4-8)
to obtain the empty clause. This is easily done: Resolve the first two to obtain
{p}, the last two to obtain {fip}, and these two results to obtain [3. The proof
that linear resolution is impossible is left as an exercise. I

Example 4.5 The Lewis Carroll Example Revisited

In Example 3.10 (p. 116) we used a truth table argument to prove a result in
one of Lewis Carroll’s problems. Now we’ll use propositional calculus resolu-
tion. In that example we argued that, although the statements are in predi-
cate logic, it suffices to use propositional logic. In propositional logic notation,
we’re given

(6 _’ 3): ((T'g) _’ d), ((—‘9) V c):

and want to prove ((-13) —+ d).
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In clausal form, the given conditions are

((oC) V S), (g V d), ((17) V 6).
Since the negation of the conclusion is ((-1.s)/\(-Id)), it gives rise to two clauses.
Our list of clauses is

Cl = {(fiC),S}, C2 = {9,61}, C3 : {(fig),C},
(49)C4 = {—18}, C5 = {-Id}.

Rather than go through the systematic procedure of the algorithm, let’s simply
state the result using the notation of the previous example:

(((02 * C5) * Cs) * Cl) * C4 : III. I

It should be obvious after the last two examples that we need to under-
stand resolution better. As it stands, Algorithm 4.1 has problems.

0 First, there are typically many choices of clauses to resolve. How should
we choose among the possibilities?

0 Second, it may be that proof is impossible so we should give up. How do
we decide when we’ve tried enough; that is, when we can conclude that
the result is not true?

As noted earlier, SLD-resolution of Horn clauses will partially solve.the first
problem.

The second problem has a solution in propositional logic when S is finite:
Since the number of propositional letters present is finite, there are only a
finite number of possible clauses. At some point, we will either obtain the
empty clause or discover that all of the (finite number) of possible resolutions
give clauses already present in C. In the latter case, no further resolutions are
possible, so we are done.

Unfortunately, the second problem has no solution in FOL. In fact, even
a weaker problem—the “decision problem” —has no solution:

It is impossible to produce an algorithm that takes as input
an arbitrary formula a in FOL and produces as output the (4.10)
answer to the question “Is oz valid?”

(In 1928, Hilbert and Ackermann, who called this the Entschez'dungsproblem,
had declared it to be the principal problem of mathematical logic.) You may
be familiar with the halting problem—design a Turing machine ’H such that:

o The input of ’H consists of (a) the description of any Turing machine T
and (b) the input on which T is to run.

0 The output of ’H is the answer to the question “Will 7 stop?”

Turing proved that it’s impossible to design such a machine ’H. The decision
problem for FOL is equivalent to the halting problem.
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Exercises

4.2.A.

4.2.B.

4.2.C.

4.2.D.

4.2.1.

4.2.2.

4.2.3.

4.2.4.

What is a positive literal? a negative literal?

What is clausal form?

What is the resolution method of proof? How does it use contradiction?

The resolution method of proof is sound and complete (Theorem 4.2). What
does this mean?

The purpose of this exercise is to use truth tables to prove Theorem 4.1.
(The exercise uses truth tables because each V in (c) corresponds to a row
of the truth table for pa.)

(a) A formula is in disjunctive normal form, or DNF, if it is the “or” of
one or more formulas, each of which is the “and” of one or more liter-
als. Suppose that (pa) E 7 is a tautology, where 7 is in DNF. Let 6
be the result of interchanging the symbols V and A and replacing ev-
ery literal l with l in 7. Prove that 6 is in CNF and that a E 6 is a
tautology.

(b) In view of the above, it suffices to construct a DNF for -101. Let the
propositional letters appearing in a be m, . . . ,pn. Prove that, if pa is
always false, then (121 A (-Ip1)) is a DNF for -va.

(c) Suppose that -va is satisfiable. If V is an assignment of T and F, define

Pi, if Wm) = T,7(V)=11A---/\ln, where li:{"P£,
ifV(pg)=F.

Let 7 be the “or” of those 702) for which V(-Ia) = T. Now prove that
(pa) E 7 and conclude that Theorem 4.1 is true.

Prove that formula (4.5) is not a tautology; that is, prove that it is not
valid.

Suppose that clauses (4.8) are used for resolution in Algorithm 4.1.

(a) Show that after the first resolution you will have one of the four
clauses {p}, {q}, {-Ip} and {-q}. (Ignore clauses that the algorithm
discards.)

(b) Show that resolving any of the four clauses in (a) with a clause in (4.8)
gives another clause in (a).

(c) Conclude that it’s impossible to deduce the empty clause from (4.8) by
repeated resolution starting with one of those clauses and repeatedly
resolving with any of the other three clauses in any order.

Redo Exercises 3.3.13—3.3.15 (p.119) using resolution as in Example 4.5.
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4.2.5. Let ’R(C) be the set of all clauses that can be obtained from the clauses C by
repeated resolution—including C. In other words, this is just the augmented
C produced by the resolution algorithm, without stopping if Cl is reached.
For each of the following sets of clauses, compute R(C).

(a) Clauses 01, 02 and C3 of (4.7).

(b) All the clauses in (4.7).

(c) {{WW'QWT}, {finch-18}: {mm—'1‘}, {mend}

SLD-Resolution of Horn Clauses

Recall that a Horn clause is a clause containing at most one positive literal.
We saw in Section 3.4 (p. 120) that, in simple Prolog, each knowledge-base
entry is a clause containing exactly one unnegated propositional letter and
the query corresponds to a clause with all propositional letters negated; that
is, they are Horn clauses. A Horn clause with no positive literals is called a
goal clause.

Algorithm 4.2 SLD-Resolution for Horn Clauses

Suppose that we have some rule for ordering the literals in any goal clause
and assume all goal clauses are ordered using this algorithm. We are given
a set of Horn clauses containing exactly one (ordered) goal clause Go.

Here is the SLD—resolution algorithm. For i = 0, 1, . . ., select a clause 0,-
to resolve with the first literal of G5, thereby producing a new (ordered)
goal clause G,-+1. In contrast to Algorithm 4.1 (p. 146), duplicate literals
need not be removed from the Gg’s.

If there is some choice of Ci’s that leads to El, we say that fiGo has
been proved by SLD—resolution.

Note that SLD—resolution is a special case of general resolution because it
specifies that the resolution proceeds by repeatedly resolving one goal clause
to obtain another. Furthermore, the literal to resolve on is dictated by the
ordering algorithm. This ordering may depend on anything, including all the
previous steps in the resolution. The basic result is stated in the next theorem.

Theorem 4.3 SLD-Resolution for Horn Clauses

Regardless of what ordering algorithm is used for the G5, SLD-resolution
is sound and complete for the propositional calculus of Horn clauses.
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Proof: Since removing duplicate literals only makes it easier to obtain Cl and
since Algorithm 4.1 is consistent, this algorithm is also consistent. Thus, we
only need to prove completeness. That is, if 8 contains nongoal Horn clauses
and G is a goal clause, then S I: (-1G) implies that there is a Horn clause
resolution. The proof will be in three stages:

1. We show that if there is a fact {p} in S, we can assume that no other
clause contains the positive literal p

2. We show that if we can select the ordering rule, then an SLD-resolution
proof exists.

3. We show how to convert such a proof into one for which the ordering rule
is arbitrary.

From now on, we’ll assume that 8 I: (-6). As in Theorem 4.2 (p. 146),
we’ll assume that S is finite, thus avoiding a compactness argument.
First Stage:
For every propositional letter p such that {p} E 8, remove from 8 all clauses
containing both the positive literal p and at least one negative literal. Call
the resulting set of clauses 8’ .

Suppose that 8’ I31: (-6). This means that there is some assignment of
truth values V such that V(C) = T for all C E 8’ and for G. Now suppose that
D E S and D ¢ 8’. Then D contains a positive literal p such that {p} E 8’.
By the definition of V, we have V({p}) = T. Hence V(D) = T. This shows that
V = T for all clauses in 8. Since we also have V(G) = T, this contradicts the
fact that S I: (-1G). It follows that the assumption 8’ bl: (-wG) is incorrect.
Hence, 8’ |= (fiG). This completes the first stage.
Second Stage:
Use induction on the total number of distinct propositional letters. If there is
only one letter p, then G 2 {-ip} and the only possible clause in 5’ is {p}.
Hence the proof is trivial.

By Theorem 4.2, a resolution proof 8’ I: (-6) exists. The resolution
of two clauses containing a negative literal produces another clause with a
negative literal. Thus the resolution proof must use some clause that has no
negative literals, that is, a clause {p}. Let S” be S’ with {p} removed. Let G’
be G with -up removed if it is present.

We claim that S” l: (—16"), The proof is similar to that in the first stage
for S’ I: (-1G): Suppose V is a truth assignment that proves S” Iaé (fiG’). Note
that V(p) need not be defined since p does not appear in 8” or G’. Extend
V to p by defining V(p) = T. You should be able to show that V gives the
contradiction 8’ I75 (fiG). Thus the assumption 8” Igé (-1G') is false.

By induction, there is an SLD—resolution proof of 8” l- (-1G’) where the
ordering of goal clauses is under our control. Take this proof and insert fip in
those clauses from which it was removed in creating S” and G’. The resolution
now leads to a clause containing some number of copies of -:p rather than to
El. Repeated resolution with {p} leads to Cl. This completes the induction.
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Third Stage:
We now have an SLD-resolution with

G = Go,G1,...,Gn+1 2D and C0,Cl,. . . ,0",

but it may not involve resolving in the order dictated by the ordering rule we
are given. It remains to prove that the resolution can be rearranged to satisfy
that requirement.

There are various ways to establish that resolution can be so rearranged.
One simple method is by counting. Since duplicate literals are not eliminated
after resolution, each resolution eliminates some p and its negation. Since we
end up at El, it follows that the number of times 10 appears in Go and 00,01, . . .
must equal the number of times ~11) appears.

Put all the Ci’s in a collection and set G6 = G. Now let’s use the order
rule. It tells us to resolve G; on some p. Remove a clause Cf containing 19
from the collection and use it. The counting argument in the last paragraph
guarantees that we’ll always be able to find such a clause. I

Exercises

4.2.E. What are Horn clauses?

4.2.F. Describe an algorithm for SLD-resolution. How does it differ from general
resolution?

4.2.6. Use SLD-resolution of the Horn clauses

S = {{q}) {p,—Iq,—13},{—Ip,q,-IT},{‘Iq,"11‘,8}{fiq,'r}}

and the negation of 7 = (p A q) to show that S I: 7.

4.3 First-Order Predicate Calculus

As we’ll soon see, the presence of constants makes the truth table proof
method untenable for predicate logic. Axiomatic methods can be extended. In
fact, that’s the way theorems are normally proved in mathematics. Of course,
we don’t actually reformulate the statements in terms of predicate calculus
the way we did for the definition of a limit in Example 3.8 (p. 112). As we saw
in the last chapter, resolution can also be used. After discussing the semantics
of predicate calculus, we’ll explore resolution theoretically and algorithmically
in this section.
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To carry out a resolution proof we must rewrite a formula so that all
the quantifiers are universal and on the outside while the formula inside the
quantifiers is in clausal form. This can be done as follows:

0 Adapt the algorithm in the proof of Theorem 4.1 (p. 143) to produce a
clausal form containing quantifiers. Use (3.23) (p. 115) to move negation
inward through quantifiers.

o Assign unique names to all quantified (=bound) variables and then use
(3.24) to move the quantifiers to the left side of the formula. The result
is said to be in prenea: form.

0 Use “Skolemization” to eliminate existential quantifiers.

This process isn’t needed for Prolog. For a simple Prolog statement, we can
use (3.25) (p.115) to put it in normal form. To combine Prolog statements,
all we need do is make sure that no two statements use the same name for
a variable. The fact that this procedure is so easy for Prolog is one of the
features that make Prolog practical.

Once this normal form has been achieved, resolution can begin; however,
it’s complicated by the need for “unification.” The unification must be done
so as not to impose any equalities that are not absolutely required—the “most
general unification.” Unification is no simpler in Prolog than it is in general. In
fact, you’ll see that Prolog interpreters usually cheat when doing unification.

Skolemization

Suppose we have a formula fl = ‘V’X1 ...VXn3Y a, where oz may involve
quantifiers. It’s possible to create another formula fl’ not containing Y such
that ,B’ is valid if and only if fl is valid. The idea is simple enough if you think
about what validity of fl means:

For every choice of values for X1, . . . ,Xn from the set of constants,
we can find a value for Y such that a is valid when X1, . . . ,XmY are
replaced by these values.

Thus, Y depends on the formula a and the values assigned to X1, . . . , Xn. In
other words, Y is a function of X1, . . . ,Xn, the actual nature of the function
depending on a. We can express this by creating a new function name, say
f, and saying that Y is f(X1, . . . ,Xn). This leads to a simple algorithm for
Skolemization.
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Algorithm 4.3 Skolemization

Let Q stand for a quantifier and let a be a formula without quantifiers.
Denote the formula QX1 . . . QXn a by flo. In general, let fl¢_1 be

\7’Xal ...VXakQX,- 7.

The Skolemization of ,60 is fin where fl,- is computed as follows.

0 If X; is universally quantified, @- is fi,_1.

o If X,- is existentially quantified, fl,- is ‘v’Xa1 .. .VXac, where 6 is ob-
tained from 7 by replacing all occurrences of X,- with f(Xa, , . . . , XGk)
and where f is a new function name that is added to the list of func-
tions in the language.

It’s possible that there are no universal quantifiers preceding X,. In this
case, k = 0 and the new function f would have no arguments; that is, it
is a new constant.

This is a departure from what we’ve done previously. All previous manip-
ulations of FOL formulas have involved working within the given language.
In this manipulation, we’ve created new, Skolem, functions and added them
to the language. If we could choose the interpretations we wanted for these
functions, flo would be valid if and only if fin was. Unfortunately, in the no-
tion of validity, we must allow all possible interpretations of these functions,
and not all of these preserve validity. Thus

[Skolemization of a formula does not, in general, preserve validity.

In order to understand what Skolemization does give us, we need the concept
of satisfiable, which was defined earlier for propositional logic. Here it is for
FOL.

Definition 4.4 Satisfiability

Let a be a formula with no free variables. We say that a is satisfiable if
there is some interpretation in which a is true.

Since a rigorous proof of the following theorem requires more precise attention
to semantics, we won’t give one. The discussion preceding the definition makes
the theorem plausible, and even indicates the way a proof would proceed.
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Theorem 4.4 Skolemization and Satisfiability
Let a be a formula with no free variables, let fl be its Skolemization, and
let f1, . . . , fn be the functions introduced in the process of Skolemization.
Let I be an interpretation that does not mention f1, . . . , fn and let T“ be
an extension of I to include f1, . . . , fn.

o If fl is valid in 1*, then a is valid in I.
o If a is valid in I, then there is an extension 1* in which fl is valid.

We say that a and fl are equisatz'sfiable.

Early in the previous chapter, we claimed that validity is a good idea since
it does not depend on interpretation. Since satisfiability does depend on inter-
pretation, can it possibly be any good? Yes, sometimes. The most important
situation is when something is not satisfiable:

A formula a is not satisfiable if and only if (-0) is valid. (4.11)
You should be able to prove this. (If not, see p. 137.) Unsatisfiability is the
idea behind the resolution method and some other proof methods. By proving
(fifl) is unsatisfiable, we prove that ,6 is valid.

Example 4.6 Clausal Form and Skolemization
To illustrate how the previous ideas apply, let’s convert the formula defining
a limit to the form we’ve been discussing. We can rewrite (3.20) (p. 113) in
more standard FOL form as

VZ{p(Z) —» (3Y{p(Y) A vx ((q(x, a, Y) /\ r(X, a)) —> q(f(X), 1, 2)) }) }
Now let’s work on this. First, getting rid of the ._. gives
vz{(-wp(z»v(ay{p(Y)Avx (Ham a, mm, a» }vq(f(X),I. 2)) }) }
Moving negations in and quantifiers out, we get
vzav{(ep(Z))v (pom ((—uqct. a,Y))V(er(X. a))Vq(f(X),1,Z))) }
Finally, replacing Y with g(Z) and using the distributive law to obtain a
clausal form, we have

vz VX{ ((et» v p(g(Z)))
A ((—wz» v (—iq(X. a, 9(2)» v (tax, a» v quot). 1.2)) }

The function g(Z)—or g(€) in the original form of the definition—is explored
in calculus. To prove that a limit exists, we must give a rule for determin-
ing 6 as a function of 6. The rule we obtain is simply the function g(Z) that
replaces Y. You may find it interesting to translate the two clauses back to
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something more like English. The first says that either 6 S 0 or 9(6) > 0. This
simply guarantees that 6 = 9(6) is greater than zero whenever e is. The sec-
ond clause is more interesting. It states that either |f(a:) — LI < c or one of
the three conditions

e>0, |a:—a|<6, m;£a
fails to hold. Perhaps the process of Skolemization and finding clausal form
has helped you understand the notion of limits better—or maybe it made
limits more confusing! I

Unification

The unification problem is as follows. Suppose we have the Skolemized clausal
form of a formula. Let p(t1, . . . ,tn) and fip(t’1, . . . ,t;,) be predicates from two
different clauses, where t,- and t; are terms. Unification is the process of substi-
tuting terms for some (or all) variables so that, after the substitution, t,- and
t;- are the same term for 1 S i g n. This is unification, and the substitution
is called a unifier of p(t1, . . . ,tn) and p(t'1, . . . ,t;).

I said “a unifier” because many unifications are possible. For example, a
unifier of p(X) and p(Y) is obtained by substituting f(a, Z) for both X and
Y. Another unifier is obtained by replacing X and Y with c. Still another is
obtained by substituting X for Y. The last unification is “more general” be—
cause the first two can be obtained by a further substitution for the variable
X in the last substitution—either f(a, Z) or c, respectively. The goal of uni-
fication is to obtain a “most general” unifier; that is, a unifier from which all
others can be obtained by further substitutions. A priori, it’s not clear that
a most general unifier exists.

There are various ways of describing an algorithm for finding the most
general unifier. The most easily understood involves depth-first traversal of
ordered trees associated with predicates. The trees are called formation trees.
The description of the tree construction parallels Definition 3.4 (p. 106) and
part of Definition 3.5. Here’s the definition and the tree construction in par—
allel.

The terms in .C and the associated formation trees are defined recursively
as follows.:

D1. Every variable as well as every constant is a term.
T1. A vertex labeled with any variable or constant is a formation tree.
D2. If t1, . . . ,tn are terms and f is a function that takes n arguments, then

f(t1,. . . ,tn) is a term.
T2. If t1, . . . ,tn are terms and f is a function that takes n arguments, then the

ordered tree whose root is labeled f and whose ith child is the formation
tree for t,- is a formation tree.

Finally, we have the atomic formulas:
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f(g(b, X1). f(X2, h(a))) p(X. X. f(X)) 200/. 9(2. a). W)
f P P
/\ /|\ /|\g f *XXf *Y 9 W
/\ /\ I /\

lXglll
X Z“

Figure 4.1 Some formation trees. Above each tree is the term or atomic formula
to which it corresponds. The asterisks are explained in Example 4.7.

D3. If t1, . . . ,tn are terms and p is a predicate that takes 72 arguments, then
p(t1, . . . ,tn) is an atomic formula.

T3. If t1, . . . ,tn are terms and p is a predicate that takes n arguments, then
the ordered tree whose root is labeled 1) and whose 2th child is the forma-
tion tree for t,- is a formation tree.

Figure 4.1 shows some formation trees.
Notice that, since a variable takes no arguments, it can occur only as the

leaf of a formation tree. Here’s the algorithm for finding a most general unifier.

Algorithm 4.4 Most General Unifier
Let To and T1 be two formation trees. The algorithm terminates with
both trees displaying the result of the most general unifier, or it reports
failure. Start at the root of each tree and carry out a depth—first search
and substitution as described below until both trees have been traversed.

1.

2.

Compare: Let L,- be the label at the present vertex in T,;. If L0 = L1,
go to Step 3.
Substitute: Let U,- be the formation tree rooted at the current ver-
tex in Ti. Since the roots Lo and L1 are not equal, there are three
possibilities:
(a) Neither L0 nor L1 is a variable: In this case, stop with failure.
(b) One of L,- is a variable V and V appears in U1_,-. In this case,

stop with failure.
(c) One of L, is a variable V and V does not appear in U1_,-. In

this case, replace all leaves labeled V with a copy of U1_,-. (This
substitutes U1_,- for V.)

Advance: If there are no more vertices in the depth-first search, ter-
minate with success. Otherwise, move to the next depth-first vertex
in both To and T1 and go to Step 1.

The subscript 1 —i is used to refer to the tree other than T,. This works since
(i=0)—>(1—i=1) and (i=1)—>(1—i=0).
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1’ P P P
/|\ /|\ /|\ /|\
Xak X *9 W 9 g *f y 9 *W

| /\ /\ /\ | /\ /\
X Z a Z a Z a 9 Z a Z a.

/\
Z a

Figure 4.2 Application of the unification algorithm. See Example 4.7 for details.

Example 4.7 Unification

Let’s see how the algorithm works on the rightmost trees in Figure 4.1. The
asterisks indicate where the first disagreement occurs in the depth-first search.
In this case, L0 and L1 are both variables so we can replace X with Y or Y with
X. Choosing the former leads to the two trees on the left side of Figure 4.2.

Again, the vertices where disagreement occurs are marked by an asterisk.
Now L0 = X and L1 = 9, so we must substitute U1 for X everywhere. The
results are shown on the right side of Figure 4.2. Finally, the last substitution
that the algorithm requires is replacing W with f(g(Z, a)). The final result is
p(g(Z.a).g(Z.a:).f(g(Z.a)))-

Now let’s make a slight change in the original T1. Replace the variable
W with X. In this case, the algorithm reaches its third disagreement at f in
To and g in T1 (9 instead of X because an earlier substitution for X). As a
result, it reports failure because no substitution for a variable will change the
function symbols.

Let’s make a different change. Replace W with Z in T1. The third dis-
agreement is at the same place as before, but now there is a Z in T1 and U0
contains Z because U0 corresponds to f(g(Z, A)). The algorithm ends in fail-
ure. Why can’t we simply substitute f(g(Z, A)) for Z everywhere? If we were
to do so, we would have to make the substitution in f(g(Z, a)) as well, and this
would lead to an infinite repetition: f(g(Z,a)) becomes f(g(f(g(Z,a)),a)),
which becomes f(g(f(g(f(g(Z,a)), a)),a)), and so on. It’s a bit easier to see
what’s happening by looking at X and h(X). Repeated substitution leads to
h(h(h(. . .))), where the ellipsis indicates an infinite sequence of nested h’s. I

Theorem 4.5 Most General Unifier

Algorithm 4.4 always terminates. If it terminates in failure, no unification
is possible. If it produces a unification, it is a most general one; that is,
every other unification is obtainable from that produced by the algorithm
by substituting for the variables it contains.
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Since the algorithm starts with two trees, which are finite, it may seem that
termination is obvious. This is not the case. Conceivably, the process of substi-
tution could result in larger and larger trees such that the depth-first traversal
is never finished. In fact, if we forget to include (b) in the algorithm, the al-
gorithm can go on forever as described at the end of the previous example.
This is what most (perhaps all) implementations of Prolog actually do.

Proof: How is termination proved? Very simply. At the start, the number of
variables in the two formation trees is finite since the entire trees are finite.
Because of (b) in the algorithm, each substitution eliminates all occurrences of
a variable. Hence the number of substitutions done by the algorithm is finite.
Consequently, the trees are changed only a finite number of times and so do
not grow without bound.

Any disagreement that is found by the algorithm must be eliminated if a
unification is to be found. The only substitutions that are allowed are those
replacing a variable with a term. This explains why there must be a failure
when (a) occurs in the algorithm. Case (b) must lead to failure because it
leads to an infinite chain of substitutions as discussed near the end of the
previous example.

This leaves (c). The substitution made there is the least possible to cre-
ate unification. Mightn’t a more restrictive substitution somehow allow more
freedom elsewhere in the trees? Perhaps you intuitively see that this is not the
case—and perhaps you don’t, in which case some experimentation will proba-
bly convince you. To give a proof up to present-day standards of mathematical
rigor, we’d have to spend time looking carefully at properties of substitutions.
We won’t do that, so the proof is not quite complete. I

Aside. The entire discussion of unification could have been formulated with several
atomic formulas in the predicate p rather than just two. You should find it relatively
easy to adapt the algorithm.

Resolution

To prepare for resolution, we first put formulas in clausal form, ignoring the
location of- quantifiers. Then we use Skolemization to eliminate existential
quantifiers and place universal quantifiers on the leftmost side of the formula.
At this point, we’re ready to obtain a contradiction by means of resolution.
The process is the same as that for propositional calculus, except that we
must make use of unification. We select two clauses, one containing an atomic
formula p(t1, . . . ,tn) and another containing the negation of the predicate,
say fip(t’1,...,tfi,). A most general unifier is found. The literals in the two
clauses, with the exception of p(t1, . . . ,tn) and -up(t’1,. . . ,tg), are placed in a
new clause and the substitutions of the most general unifier are applied.
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The main differences between resolution proofs for the propositional and
predicate calculi lie in the need for Skolemization and unification in the latter.
Examples of predicate calculus proofs with unification appear in the Prolog
discussion of Section 3.4 (p. 120). Because of the nature of Prolog, Skolemiza-
tion is not required. The following example involves all the various features.

Example 4.8 Lewis Carroll Yet Again

We’ve been pursuing an example from Lewis Carroll in a series of examples——
3.9, 3.10, and 4.5—primarily from a propositional calculus viewpoint. This has
required some adjustments because the original statements are more naturally
stated in the predicate calculus. In fact, according to Example 3.9 (p. 113),
the given formulas are

vx (C(X) ——> 300)

vx((ag(X)) a duo)
-.(3X (g(X) A (-uc(X))))

and we wish to deduce

vx ((-.s(X)) —» d(X)).
The propositional forms of the three hypotheses were put in clausal form

in Example 4.5 (p. 149). Those manipulations are easily adapted to give the
FOL clausal forms. The negation of the conclusion is a bit trickier since it
requires Skolemization. To begin with,

(avx ((4300) —) d(X))) (3X 4 (3(X) v d(X)))
a (3X ((4300) A (—.d(X)))).

Inside the quantifier we have a clausal consisting of two clauses with one
literal each. To Skolemize, we replace X with a function f. Since there are no
variables besides X, the function has no arguments. The result is

(*8(f( D) A (rd(f( )))°
Combining this with the clausal forms of the three hypotheses, we have the
following set of clauses:

01 = {‘16(X)S(X)}, 02 = {g(Y), d(Y)}, 03 = {11(3), 6(3)},
C4 = {n3(f())}, Cs = {“d(f())},

similar to (4.9). Resolution follows the same order as that with the clauses
(4.9):

o Resolving 02 and Cs using the unification of Y with f() gives {g(f( ))}.
o Resolving this with C3 using the unification of Z with f() gives {c(f( ))}.
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o Resolving this with Cl using the unification of X with f( ) gives {3(f( ))}.
o Resolving this with C4 gives CI.

Since a function with no arguments is simply a constant, the effect of C5 is to
to unify the variables X, Y, and Z with this constant. Since the same constant
appears in C4, a contradiction is reached in the final step. I

Soundness and Completeness

So far we’ve been concerned only with methods. What about a proof that res-
olution is sound and complete and that SLD-resolution is sound and complete
for Horn clauses?

First, there is the matter of Skolemization. As noted in the discussion
concerning Theorem 4.4 (p. 157), this is not a problem for resolution proofs.
Let’s review. Suppose we want to prove S I: 7. The approach is to show that
a = (S A (-17)) is unsatisfiable. Let fl be the Skolemization of a. With a bit
of thought, you should be able to see that the contrapositive of Theorem 4.4
asserts that a is unsatisfiable if and only if fl is. (Recall that the contrapositive
of “if A, then B” is “if -:B, then -1A.”) As a result, we can simply work with
the Skolemized formulas.

Soundness can be proved by a reduction to propositional calculus as fol-
lows. Imagine a resolution proof leading to Cl. In the process of the proof,
various substitutions have been made. Propagate the substitutions backward.
For example, if we resolve {p(X),q(X)} and {fip(Y),r(f(Y))}, the substitu-
tion of X for Y is made. If we then resolve the result with {fiq(b)}, the sub-
stitution of b for X is made. Propagating these substitutions backward, our
three clauses become {p(b), q(b)}, {-up(b),r(f(b))}, and {-:q(b)}, respectively.
The result of such replacements is a resolution derivation of Cl that involves
no unifications. Finally, replace any variables that appear in this derivation
with arbitrary constants to obtain a resolution derivation of El without vari-
ables. As discussed in Example 3.10 (p. 116), this derivation can be viewed as
a resolution proof in propositional logic, where we know consistency holds.

Can this idea of reduction to propositional logic be exploited to prove
completeness? Yes, but more argument is required. What needs to be shown
is the following. If a set S of universally quantified clauses is inconsistent,
then the same is true for a finite set T of clauses containing no variables,
where each clause in T is obtained from a clause in S by substituting terms
for all bound variables and deleting the universal quantifiers. One clause in
8 may give rise to several in 7 through various substitutions. Except for the
following example, we won’t discuss the proof of completeness further here.
You’ll have to look in a text on FOL logic for the details.
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*Example 4.9 Reduction to Propositional Calculus

Recall the Prolog definition of append from Example 3.13 (p. 126):

append([],Y,Y). 7. 1
append([X|L],M,[XILH]) :- append(L,M,LM). °/. 2

Let’s look at the resolution solution to the query :- append( [a,b] , [y,z] ) .
We’ll mix Prolog and FOL notation, but it shouldn’t be confusing.

The clauses are

01 = {append([], Y, Y)}:

02 = {append([x|L],u, [XILM]), flappend(L,M,LM)},
03 = {nappend([a, b], [c, d], z)}.

The resolution proof that Prolog constructs is ((03 * 02) * Cg) * Cl. The first
resolution requires that a be substituted for X, that [b] be substituted for L,
that [c,d] be substituted for M, and that [XILM] be substituted for Z. (The
expression [XILM] is simply a function of x and LH.) To distinguish the LM
occurring in this result from the LM in Cg, let’s prime it. Putting all these
substitutions together, Prolog uses

C}, = {flappend([a,b], [c, d], [aILM’])}
0; = {append([al[b]], [c, a], [alI-M’l), flappend([b1,[c,d1,m'>}.

to obtain {-rappend( [b], [c, d], LM’)}. This is resolved again with 02. The result
of the substitution is that LM’ becomes [b I LM] and various other substitutions
are made so that Prolog uses

05’ = {appendflbllll [c, d], [bk-Ml), nappendfl], [c, d], L10}
to obtain {flappend([], [c, d], LH)}. After unification by replacing Y and LM with
[c ,d] , this is resolved with 01 to obtain El. Making the backward substitution
for LH and LH’, we see that Prolog has used the clauses

CI; = {flappend([a, b], [c, d], [a, b, c, d])},

05 = {aPPGRdHaIbL [c,d], [allbllfidlllh “appendflbl: [c,d], [bll°,dll)},
05' = {append([b|[]],[c,d], [bllc:dll): *aPPGRdUl,[c,dl:[c,dl)},
01 = {append([], [c,d],[c,d])}

to obtain D. (I’ve taken the liberty of using the fact that, in Prolog, a term
like [a,b] is just different notation for the term [al [b]].) Since none of
these involves variables, we can simply treat them as being propositional logic
statements:

0:3 = {TPL C; = {19, fig}: Cg : {(1, fir}: Ci : {7’}:

where p is the proposition append([a, b], [c,d], [aILH’]), and so forth.
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Don’t be misled by this example. It doesn’t show you how to carry out a
reduction to propositional calculus that will lead to a resolution proof. What
we did was start with a resolution proof and derive the propositional calculus
reduction that lies behind it. The difficulty is in showing there is such a reduc-
tion without having a resolution proof to work from. To prove completeness,
we must first do the reduction and then use completeness of propositional
logic resolution to obtain a resolution proof. I

Decidability

A logic is decidable if there exists a method such that, for each formula a,
the method will tell us whether or not a is satisfiable. Since validity of a
is equivalent to nonsatisfiability of no (p. 137), decidability is equivalent to
being able to determine if a formula is valid.

If a proof method is sound and complete, it will be able to prove the
validity of any valid formula and will never “prove” the validity of an invalid
formula. However, there is no guarantee that the proof method will be able
to tell that a formula is not valid. How can this be? Certainly, if the proof
method terminates, we have an answer one way or the other. But it’s possible
that, for some invalid formula, the proof method will not terminate.

The discussion in the previous paragraph shows that the notion of de-
cidability is stronger than the notion of soundness and completeness. Does it
matter? That is, are there logics of interest that are not decidable and do we
care? A resounding “yes” on both counts. For the first, we have

Theorem 4.6 Semidecidability of FOL

FOL is not decidable; that is, it’s impossible to construct an algorithm
that will determine whether or not a given formula in FOL is valid. (Or,
equivalently, it’s impossible to construct an algorithm to determine satis-
fiability.) However, there exist proof methods for FOL that are sound and
complete. This situation is described by saying that FOL is semidecidable.

We omit the proof of the first statement in the theorem. The equivalence of
the parenthetic statement to the first statement was already proved in the
preceding discussion. The soundness and completeness of resolution proves
the final claim.

Why do we care about decidability? When using FOL, it might be use-
ful to know that a formula is not valid. In some forms of “nonmonotonic”
reasoning, it’s essential. (See Chapter 6.) As a result, the nonexistence of
such algorithms in FOL implies the nonexistence of sound and complete proof
methods for some nonmonotonic logics.
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Exercises

4.3.A. What does a formula in prenex form look like? Give an example of one in
prenex form and one not in prenex form.

4.3.3. What is Skolemization? Give an example of a formula and its Skolemization.

4.3.C. Explain what the statement “Skolemization preserves satisfiability but not
validity” means.

4.3.D. What is unification?

4.3.E. For FOL, describe the method of using resolution to obtain a proof by con-
tradiction.

4.3.F. Since a proof method should establish validity and not merely satisfiability,
why is Skolemization okay when giving a proof by the resolution method?

4.3.G. Explain the statement “FOL is semidecidable.”

4.3.1. Earlier you were asked to give propositional calculus resolution proofs for
Exercises 3.3.13—3.3.15 (p. 119). Now give FOL resolution proofs for them.

The remaining exercises have asterisks because they require familiarity with Prolog’s
list notation.

*4.3.2.

*4.3.3.

*4.3.4.

What is the FOL resolution proof of :- append( [a,b] ,Z, [a,b,c]) in
Prolog? Reduce it to propositional logic.

Prolog finds three answers to :- append(V,W, [a,b] ). What are the FOL
resolution proofs? Reduce them to propositional logic.

Consider the Prolog clauses

sub([l .L). rule 1
sub([XlL] , [XIMD :- sub(L,M) . rule 2
sub(L, [XIMD :- sub(L,M) . rule 3

(a) Give a simple non-Prolog explanation of when a query sub(L,M) will
succeed, where L is the list (11,... ,ak and M is the list b1, . . . , bm.

(b) Draw the complete Prolog search tree for query sub( [a,X] , [a,b, a] ),
indicating which rule is used at each edge. Indicate those terminal ver-
tices (leaves) where Prolog finds a solution.

(c) Translate the rules to clausal form and give an FOL resolution proof for
the query that leads to X=a.
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4.4 Prolog

Let’s review basic Prolog in light of the information in this chapter. The main
goal in doing this is to obtain a better understanding of what happens when
a clean mathematical theory collides with the real world of programming.

Let K: denote the knowledge base and 'Jl‘(IC) the translation of IC into FOL.
Each knowledge-base fact or rule leads to a Horn clause in which all the vari-
ables are universally quantified. Since each knowledge-base clause contains
exactly one predicate that is not negated, it is easily shown that 11‘(IC) is con-
sistent: Simply interpret all predicates to always be true. The interpretation
of functions and constants is arbitrary.

When we give Prolog a goal, we are asking it to exhibit some values of
the variables which make the goal true. Thus, the quantifiers on a goal are
existential. However, Prolog negates the goal and attempts to show that it is
inconsistent with the knowledge base. Since negation converts existential to
universal quantifiers, the translation of the goal can be written as a clause 7 in
which all variables are universally quantified and all predicates are negated.
We now have a collection of Horn clauses in Skolem normal form, just the
form needed for resolution.

Resolution proceeds by resolving clauses, using unification, until the
empty clause is found. When this state is reached, the unifications have made
substitutions that establish the inconsistency of [C A (-17). This is just what
we wanted: First, the inconsistency of TUC) A7 is equivalent to TUC) I: (o7).
Second, the resolution proof has determined values for the variables in the
goal in the process of establishing inconsistency.

Prolog uses SLD—resolution. As discussed earlier, its use of depth-first
search rather than breadth-first or iterative-deepening leaves open the possi-
bility that Prolog may fail to terminate even when an SLD—resolution proof
exists.

When Prolog uses unification, it ignores the possibility that the term being
substituted for a variable may contain the variable. As discussed earlier, this
lack of an “occurs check” can lead to a nonterminating algorithm. It will
probably become standard for Prolog interpreters to implement the occurs
check part of unification.

Now let’s turn to some features of Prolog that are beyond standard FOL.
From the logician’s viewpoint, these are (necessary?) evils. From the program-
mer’s viewpoint, these are features that are needed to make Prolog a viable
language.
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The Cut Operator

Perhaps you’ve been exposed to the debate over the use of goto in procedu-
ral programming. At its height, the argument ranged from ardent demands
for abolition of this habit-forming construct to impassioned defenses of its
moderate use. Among the arguments against goto are:

c It is most often used because the concept being programmed is poorly
formulated.

o It makes it harder to verify that code is correct.

0 It encourages poor thought and programming practices.

Virtually the same arguments have been raised in the debate over the Prolog
“cut” operator.

What does the cut operator do and why does it cause problems? Recall
that, at any given stage of its SLD-resolution, Prolog is looking at knowledge-
base clauses whose heads involve some predicate p. If the clause being tried
contains a cut, Prolog will not try any other clauses with head p (after this
one) at this step of the SLD-resolution. How does this fit with the objections
to goto?

Poor formulation: People often use the cut operator because they don’t see
how to structure their code to avoid infinite depth-first search. However, with
a better understanding of the problem and what Prolog does, such structuring
is often possible.

Correctness: By eliminating some parts of the search tree, the cut operator
stops Prolog from fully implementing SLD-resolution. Consequently, we can
no longer appeal to the fact that SLD-resolution is complete.

Poor thinking: The cut operator encourages procedural thinking. To write
good Prolog code, we must think declaratively rather than procedurally as
much as we can. Thus, the cut operator encourages a mode of thinking (pro—
cedural) that leads to poor code. For example, imagine programming the
predicate append(x,Y,XY), which is intended to ensure that the list XY is the
result of appending the list Y to the list x. When writing the code procedu-
rally, you may think of X and Y as being instantiated. When writing the code
declaratively, you are less likely to do so. If your code is well written, someone
will be able to use it when XY is instantiated and both X and Y are not.
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Negation

Suppose we were to allow the Prolog statement “p :- q, fir.”, where —. is
FOL negation. The corresponding clause is {p,-nq,r}, which is not a Horn
clause because it contains two positive literals. Thus, Prolog cannot allow
negation. Since negation is important, how does Prolog get around this prob-
lem?

The Prolog not connective means failure, not negation. It is often
called negation as failure.

Suppose Prolog encounters not p(X,Y) and it has unified Y with c. In this
case, Prolog temporarily takes p(x,c) as a new goal. If the goal fails, then
not p(X,Y) succeeds, and conversely.

What does this mean in FOL terms? Let ~ denote the Prolog not. Prolog
attempts to show that -np(X,c) is inconsistent with the THC). Suppose it
succeeds. Since SLD-resolution is a complete proof method, this means that

'Jl‘(IC) I: (3X p(X,c)) and so TUC) I96 (-EIX p(X,c)).

Now suppose that Prolog fails. Similar reasoning leads to

M) #6 (3Xp(x, c» and, we hope, W) t: banana».
Unfortunately, the hope is not justified, as a simple propositional calculus
example shows: We have both 19 I96 q and q lgé p—simply take the propositional
letter the the left of Igé to be true and the other to be false.

Removing some of the negations from the previous paragraph, it is simply
the statement that

The fact “a is not consequence of 'Jl‘(IC)” does not imply the fact “fia
is a consequence of 'll‘(IC).”

Since this is the case, how can we justify using negation as failure in Prolog?
Various justifications are offered.

The most common justification is the closed world assumption, abbrevi—
ated CWA. The closed world assumption says that all facts and rules relevant
to the problem at hand are contained in the knowledge base IC. What does
this mean? From a Prolog viewpoint, it means that anything not deducible
from [C may be assumed false.

What does the CWA mean from a logical viewpoint? Let a be a formula.
In FOL, the CWA means that the truth value of a is the same in every
interpretation where 'll‘(IC) is true. In other words, every formula is either
valid or unsatisfiable. In practice, this is unlikely to be the case, unless we
assume that there are some “hidden facts” in IC, namely all formulas of the
form -vp(a, b, . . .) that are consistent with the knowledge base.

Another justification of negation as failure is the completed data base as-
sumption. This means that the Prolog knowledge base gives all the ways in
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which a predicate can be true. (Data base and knowledge base are used inter-
changeably.) Here’s what this means. Suppose we attempt to unify the heads
of clauses with p(a, b). Those unifications that succeed produce a collection of
bodies a1, . . . ,ozn. The Prolog data base asserts that

((11 V - . - V an) —> p(a,b).

The completed data base assumption strengthens this to

(a1 V - - - V an) E p(a,b).

Using this approach, researchers have established a framework in which Pro-
log’s negation as failure is based on a proof method that is sound and complete.
Thus, Prolog’s negation as failure is an elegant work-around for the problem
of introducing negation in the context of Horn clauses. (As noted earlier in the
discussion, simply allowing logical negation takes us out of the Horn clause
domain.)

Equality, Arithmetic, and Procedural Code

Prolog contains various features not contained in FOL. These include equality,
arithmetic, and procedural code. How do these features fit into the scheme of
things?

Equality is the least disruptive. It can be included in FOL with some
effort. People speak of “first-order logic with equality.” The idea is twofold.

First some axioms must be added to the knowledge base concerning the
equality predicate. Writing e(a,b) to indicate a = b, the axioms logicians
usually add are

0 e(X,X).

o (e(X1,Y1) A Ae(Xn,Yn)) —> e(f(X1,...,Xn),f(Y1,...,Yn)) for all
n—ary functions f and all n.

o (e(X1,Y1)A---Ae(Xn,Yn)) —>e(p(X1,...,Xn) —>p(Y1,...,Yn)) for all
n-ary predicates p and all n.

This list contains infinitely many axioms because there are infinitely many
choices for f, p and 72..

Second it must be proved that proof methods for FOL remain sound and
complete when we insist that e(a,b) be interpreted the way we understand
equality. Don’t the axioms guarantee that equality has this property? No. For
example, we might take e(X,Y) to be true for all X and Y.

This does not entirely solve the problem of allowing Prolog’s equality
because Prolog has another meaning for it: In Prolog X = Y means that X
and Y can be unified.
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Prolog allows arithmetic. This leads to complications that aren’t found
in FOL. Turing and Church showed that it is impossible to solve the validity
problem; that is, there can never be an algorithm whose input is a general
formula and whose output is the validity/nonvalidity of the formula.

Worst of all, Prolog has procedural code. Procedural code causes theo-
retical problems when it interacts with the declarative code. For example,
assert or retract may be used to alter the knowledge base in the process of
a depth-first search attempt to find a resolution proof. These alterations are
not undone by backtracking. More than the soundness and completeness of
SLD—resolution are at stake. We can’t attach any FOL meaning to 'lI'(IC) I: a
when our “proof method” changes 'Jl‘(lC)!

Exercises

4.4.A. What is the CWA (closed world assumption)?

4.4.3. How does Prolog handle negation? When might this be reasonable? unrea-
sonable?

4.4.C. How does Prolog procedural code present problems from a theoretical view-
point?

4.5 FOL and Prolog as Al Tools

Expressing information in declarative sentences is far more
modular than expressing it in segments of a computer program or
tables. The same fact can be used for many purposes, because

the logical consequences of collections offacts can be available.

—John McCarthy (1987)

Let’s begin this section by reviewing the goals, problems, and compromises
that led to the logical aspects of Prolog. Then we’ll look at the much fuzzier
issue of the suitability of FOL and Prolog for AI.
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Goals and Com promises

The goal was to provide a system that could be used as the basis of intelligent
reasoning—the sort human beings supposedly do. Unfortunately, the lack of
understanding of human reasoning, and commonsense reasoning in particular,
makes it impossible to decide what should be done. As a result, deductive logic
was proposed as a compromise.

Deductive logic is not one thing—you’ve already seen propositional and
predicate logics. Thus, the question becomes “What deductive logic?” There
are two conflicting measures of desirability. On the one hand, a limited form of
logic is more likely to be tractable both algorithmically and theoretically. On
the other hand, a powerful form of logic is more likely to provide an adequate
framework of AI.

In such a situation, the best route is usually to start at the simple end
and introduce more complexity only when the present level is well understood
and a serious limitation has been found. The understanding and the serious
limitation provide powerful guides for adding complexity. Furthermore, un-
derstanding the simpler level helps in developing and understanding the more
complicated level.

Propositional logic is probably the simplest level. Theoretically, it has
some very nice features. The semantics is defined by truth tables which are
finite in nature. Thus, truth tables lead to a proof method that is consistent
and complete. Furthermore, truth tables show that, given any formula, we can
decide whether or not it is valid—the decision problem. (This is different from
completeness, which only ensures that a valid formula has a proof.) Finally,
truth tables can provide the basis of a computer algorithm.

As discussed earlier, propositional logic is inadequate for our needs. FOL
is much more promising. There exist sound, complete proof methods for FOL,
which is good. One of the nice features of propositional logic is lost, however:
It’s impossible to design an algorithm that will take as input an arbitrary
formula in FOL and produce as output the answer to “Is it valid?” (This is
the decision problem for FOL.)

The goal of constructing an adequate reasoning method has led from
propositional logic to the compromise of FOL. Even FOL is inadequate as a
general language for reasoning in AI. Various modifications and extensions
have been explored by philosophers and logicians. An explosion of interest
and study began in the 1970s when AI researchers became interested in such
logics and their algorithms. Before considering extensions of FOL, we should
look at another goal that is implicit in all of AI: The existence of adequate
algorithms.

What can we say about algorithms for FOL? Resolution is perhaps the
best known proof method. It requires that the formulas be rewritten in clausal
form, a task which is NP-hard. The resolution algorithm itself can be quite
slow. If such behavior is typical and no better algorithms can be found, we’ll
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have to compromise. Horn clauses provide a reasonable choice for a compro-
mise because

0 Horn clauses are already in clausal form.

0 We can use SLD-resolution, which involves much less search than general
resolution.

0 When we make statements in FOL, they are often in Horn clause form.

What have we lost in restricting ourselves to Horn clauses? Horn clauses
restrict our use of negation. For example, we can’t say

(p A (-q)) —> r or, equivalently, p —r (q V r).

Prolog is based on Horn clauses and SLD—resolution, but it goes beyond
them in order to provide a useful programming language. (See the discussion
in the previous section.) Prolog’s addition of procedural features make it prac-
tically impossible to define, much less prove, the soundness and completeness
of its algorithm.

Prolog also compromises by using depth-first search rather than breadth-
first or iterative-deepening search in its resolution. Even limited to Horn
clause logic, such an algorithm is not complete—it can fail to halt when a
proof exists. This compromise forces a further compromise on Prolog, the cut
operator. Why use depth-first search? It’s usually significantly faster than
the alternatives—a compromise for speed. Also, the effect of procedural code
is more easily visualized and controlled by the programmer with depth-first
search. Thus, adding procedural statements almost forces this compromise. As
computers become faster and more parallel, the possibility of using a different
search method for nonprocedural Prolog code becomes more attractive.

We’ve discussed the limitations of FOL and Horn clauses mainly from
a programming perspective. Limitations of FOL from an AI perspective are
discussed briefly in the next chapter as a prelude to chapters on other logics
and on quantitative reasoning methods.

Exercises

The following two exercises explore two simple idealized situations in Prolog search.
In a way, the exercises lie at opposite extremes. The second is probably more realistic
than the first.
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4.5.1. Suppose that a Prolog knowledge base is such that each predicate appears
as the head of exactly I: statements. Suppose that the search tree for SLD-
resolution has all its leaves at a depth of d.

4.5.2.

b)

(M

(d

@)

Show that the tree has led leaves.

Suppose that the goal is reached by taking, on the average, the 1th
choice at each vertex where I is much smaller than k. (This is not un-
realistic in many situations because the programmer controls the order
of statements in the knowledge base.) Since we lack the tools to deal
with averages, assume it is always exactly the lth choice. Show that the
number of nodes examined by DFS (depth—first search) is

I—1k“4—1+(k—0w+1)
k—l k—l k—l '

There’s some ambiguity here: Just when is a node examined? Consider
it to be examined when it is expanded, rejected as a nongoal leaf or ac-
cepted as a goal.
Hint. Let Dd be the number and express Di+1 in terms of D5.

Under the previous assumptions, show that the number of nodes exam-

ined by BFS (breadth-first search) is I “:11 +1.
Hint. Using the approach for 05, compute a formula for the position of
the goal leaf among the kd leaves.

Show that when kd is large, the ratio of the number of vertices examined
by DFS to those examined by BFS is approximately (Ti 1k. What does

this say about the comparative running times of DFS and BFS?

Suppose that a Prolog knowledge base is such that each predicate appears as
the head of exactly k statements. Suppose that failure leaves on the search
tree for SLD-resolution all occur after f steps off the correct path and that
the goal lies at a depth of (1. Suppose that the goal is reached by taking
the 1th choice at each vertex. Show that the number of nodes examined by
depth-first search is

da—uaf—n
k_1 +L
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Are FOL and Prolog Good Choices for Al?

Asking about the appropriateness of FOL and Prolog for AI can stir up tra-
ditional AI debates. We’ll avoid these by taking a narrower view.

People have proposed various criteria for evaluating knowledge represen-
tation and manipulation methods. Those that have been proposed have much
in common. Here’s one possible list of interrelated criteria.

0 Completeness: Does the representation method allow us to represent all
relevant knowledge? Does the manipulation method allow us to do what
we wish with the knowledge?

0 Flexibility: Can the representation of a given set of knowledge be used in
many ways? Can the method be used in a variety of situations.

0 Efficiency: Is it easy to enter knowledge? (This usually requires modu-
larity and a natural representation.) Do the algorithms for manipulation
produce results in a reasonable amount of time?

o Understandability: Is knowledge entered and stored in a clear and natural
manner? How easily can a skeptical user understand the manipulation
method so as to be able to accept or reject it?

o Modularity: To what extent can modifications of the knowledge base be
made locally with little concern for global effects? (Besides simplifying
initial construction, modularity makes extending and updating easier.)

0 Debugging: Does the representation method tend to enforce correct usage?
How easy is it to debug the entered knowledge?

For any representation and manipulation method, the answers will depend to
some extent on the use to which it is being put and on the person answering
the questions. Nevertheless, some general observations are possible. The fol-
lowing assessments are based on my own opinions and not just on facts. Thus,
assessments by others may differ because they are based on different opinions.

Aside. Evaluations of AI methodologies later in the text will be much briefer. I
strongly encourage you to carry out such evaluations on your own or in class discus-
sion. It will help you appreciate the strengths and weaknesses of the methodologies.
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Completeness
Completeness depends heavily on the problem at hand. Some limitations of
FOL and Prolog have been pointed out in this chapter and others will be
discussed in the next chapter. The limitation of Prolog to Horn clauses and
negation as failure is often not important. The use of DFS resolution in Pro-
log can have more severe consequences. First, it makes representation of some
information impossible or unnatural, even with the use of a cut. For exam-
ple, suppose we have an equivalence relation such as “sibling.” (To make it an
equivalence relation, we’ll allow someone to be his own sibling.) Call the rela—
tion p. We enter certain facts in the form p(a,b) and would like to be able to
deduce others. The natural way to represent the fact that p is an equivalence
relation is via the definition of an equivalence relation:

p(x.x). pom = —p(v.x). p(x,v) : —p(x.z),p(z,v).
You should be able to explain why this will not work with DFS and you should
have considerable difficulty attempting to find an adequate remedy.

A potential difficulty with FOL and Prolog is the size of the knowledge
base. For a well defined limited problem, this doesn’t arise. On the other hand,
vaguer and broader situations may raise severe difficulties.

Score: It depends on the problem.

Flexibility

Both FOL and Prolog score high marks for flexibility. Declarative representa-
tion of knowledge is usually quite flexible. It’s more difficult to achieve flexi-
bility when we think about knowledge procedurally. However, this distinction
is not as sharp as it may at first appear. For example, Kowalski observed that
a Horn clause such as p :- q,r can be interpreted procedurally: to solve p,
do q and r.

Score: Good.

Efficiency
There can be difficulty in translating ordinary English into FOL; however, it
is often fairly straightforward to translate more technical information. The
algorithms for FOL can be quite time-consuming.

Prolog has a much more efficient algorithm than that for general FOL,
but it imposes some problems on entering knowledge. The speed of the DFS
can depend heavily on the order in which clauses with the same head are en-
tered. In extreme cases, changing the order can convert a reasonably efficient
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knowledge base into one that leads to infinite searches. Efficiency also relates
to the cut operator and the previous discussion of flexibility.

Score: Good.

Understandability

Often, the knowledge bases in FOL and Prolog are rather easy to understand;
however, some recursively defined predicates can be rather tricky. Naturally,
texts have a tendency to overemphasize such definitions, this one being no
exception. On the positive side, it is usually possible to define and use complex
data structures in Prolog in an understandable way. (It’s also usually possible
to do so in a confusing manner.)

There are two levels at which a user might be skeptical. The first deals with
the soundness and completeness of Prolog’s proof method. We’ve discussed
that in this chapter. The second deals with the particular application: Does
the knowledge base accurately reflect the skeptic’s view of reality? Rather
than looking at the knowledge base directly, users need a mechanism that
explains the steps that led to a particular conclusion and/or the reason certain
information is being requested. There is no explanatory mode built into SLD-
resolution. On the other hand, the sequence of steps in the resolution proof
can easily be adapted to provide an explanation. Expert system shells based
on SLD-resolution frequently include this and other automatic explanations
as options. They also include options for programmer supplied explanations.

Score: Good.

Modularity

Like any language, Prolog can be used to create or subvert modularity. The
form of Prolog statements and the fact that the inference process is controlled
by the interpreter both support the production of modular code.

At another level, Prolog supports and encourages the separation of knowl-
edge statements from reasoning statements (how knowledge should be used).
This promotes clearer thinking, modularity, and reusability. We haven’t dis-
cussed the implementation of new reasoning statements in Prolog; however,
texts relating Prolog to AI often contain such examples.

Score: Very Good.



178 Chapter 4 The Theory of Resolution

Debugging
As with any other language, debugging Prolog can be a frustrating experience.
This is made worse because of the tension between declarative and procedural
code. Programmers are trained to think procedurally and an SLD—algorithm
(or any other) is by nature procedural. On the other hand, much of Prolog is
declarative in nature and it is probably best to approach Prolog programming
with a declarative mindset. When, and if, this adjustment has been made,
Prolog seems much more natural.

An additional complication is provided by the SLD-algorithm. Program-
mers are used to having rather limited system code lurking in the background
(e.g., converting floating point to ASCII for output). The hidden, all embrac-
ing DFS version of SLD-resolution is a new experience. Fortunately, Prolog
provides a trace facility that lets the programmer step through the resolutions.

Another, subtle point goes deeper than declarative versus procedural and
the hidden Prolog resolution engine. This is the different usages for the Pro-
log implication. Purely procedural usage, as in obtaining user input, is fairly
benign. A definitional use can cause problems if it involves recursion or is
bidirectional, as in

married(X, Y) : —married(Y, x).

(which is likely to lead to an infinite loop). More subtle are “real-world”
usages. They frequently involve a time flow, as the following show:

0 Diagnostic time flow is from head to body, as in

rain(Locale) : —wet(Street,Locale).

o Causal time flow is from body to head, as in

wet(Street) : —within(Locale, Street), rain(Loca1e).

o Action-producing time flow is from body to head, as in

heat (Room, on) : —temp(Room, low), occupied(Room).

Why is time flow important? The fact is,

Unless we’re very careful, including statements with different time
flow directions in a knowledge base will probably cause difficulties.

Why is this so? If we can move both forward and backward in time, we have
the potential for creating loops. Unfortunately, Prolog is incapable of detecting
time flow; moreover, the structure of the language doesn’t make considering
time flow a natural part of programming.

Score: Mixed.
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Exercises

4.5.A. Give at least three criteria for evaluating knowledge representation and ma-
nipulation methods.

Notes

Aristotelian logic, which predates Aristotle, is a primitive form of FOL; how-
ever, its use of quantifiers is rudimentary and no solid foundation is given. The
publication of George Boole’s The Mathematical Analysis of Logic in 1847 can
be regarded as the birth of mathematical logic and the beginnings of proposi-
tional logic as a mathematical subject. A variety of richer logics—richer even
than FOL—were studied in the years that followed. (Logicians use “stronger”
rather than “richer.”) First-order logic was recognized as a distinct entity in
lectures given by David Hilbert in 1917; however, the ideas had been devel-
oped several years earlier by others. Hilbert advocated basing mathematics on
a system of formal logic. Godel made an important contribution to this pro—
gram when he demonstrated the completeness of FOL in his doctoral thesis.
Hopes for the program were soon dashed, as Godel began proving incomplete-
ness theorems. The first of these is roughly as follows.

Let a consistent logic containing FOL and the ability to add and
multiply integers be given. There exists a valid formula in that logic
which cannot be proved by a sound proof method.

The second incompleteness theorem showed that it is impossible to prove the
consistency of any system this rich without recourse to a still richer system.
Thus, any attempt to prove consistency would lead to an infinite regression
of richer and richer systems of logic. At about the same time, Church and
Turing showed that it is possible to write a program to decide the validity of
formulas. For a discussion of the interactions between logic and the founda-
tions of mathematics, see Moore [4]. Smullyan [11] discusses and proves the
incompleteness theorems.

The search for practical computer algorithms for FOL began in the late
19508. Robinson’s 1963 discovery of resolution and his proof of its complete—
ness was the turning point in achieving practicality. The restriction to SLD-
resolution of Horn clauses made logic programming practical and resulted in
the birth of Prolog. Robinson has written a nice brief history of logic program-
ming and the discovery of resolution [9] as have Lobo et a1. [3]. The pre-Prolog
classical papers of computational logic are reproduced in [10]. For references
on Prolog and on logic for computer science, see the previous chapter. For a
discussion of the computational complexity of logic, see Part II of [7].
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There are a variety of texts on mathematical logic oriented toward mathe—
matics students. One such is by Nerode and Shore [6]. It contains an extensive
annotated bibliography arranged by subject and so can be used as a source
for further references in the history, theory, and applications of logic.

Unification is an example of a situation in which worst-case analysis of
an algorithm can be misleading. There exists an algorithm whose worst-case
running time is linear in the input size. However, the best average-case time
appears to be provided by an algorithm whose worst-case time is exponential
in the input size. See [1] for details.

Prolog texts usually go deeper into the issues that I touched on in the
last two sections. See the Notes of Chapter 3 for some references. In addi-
tion Naish [5] goes much deeper into the problem of negation. Researchers
have explored ways of overcoming Prolog’s shortcomings. For example, see
the monograph [8] and its bibliography.

Biographical Sketches

Kurt Godel (1906—1978)
Born in Briinn in the Austro-Hungarian empire, he received his mathemati-
cal education from the University of Vienna. In 1929, he began a decade of
pioneering work:

0 In his 1929 thesis he proved the completeness of FOL.

o In 1931 he proved the incompleteness of any system of logic that was pow-
erful enough to allow elementary arithmetic. That is, in any logical system
allowing mathematics, one can construct statements that can neither be
proved nor disproved within that system. In this regard, John Barrow
quipped that, if one defines a religion to be any system of thought es-
pousing unprovable truths, then only mathematics has been proved to be
a religion.

0 In 1937, he proved that the axiom of choice and the generalized continuum
hypothesis are both consistent with standard set theory. “fl is consistent
with a” means that, if or contains no contradictions, then adding the as-
sumption that ,8 is true will not introduce any contradictions. Essentially,
the axiom of choice says that, given an infinite collection 8 of sets, one
can assume the existence of a function f whose domain is the collection
of sets such that, for all 5' E S, f(S') E 5'. That is, f selects one element
from each set. The generalized continuum hypothesis talks about sizes of
infinite sets. The continuum hypothesis asserts that there are as many
real numbers as there are sets of integers. In 1963 Paul Cohen proved
that assuming both the axiom of choice and the generalized continuum
hypothesis are false is also consistent with standard set theory.
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In 1940 Code] moved from Vienna to the Institute for Advanced Study
in Princeton, New Jersey. From then on, he worked mostly in philosophy.
However, in 1949, he found a solution to Einstein’s equations of general rel-
ativity that described a rotating universe in which time travel is possible.
(Such research is important in exploring the limits of general relativity and
in attempting to determine the nature of our universe.)

This material is based primarily on the biography in [2].

John Alan Robinson (1930—)
Born in Halifax, England, he received his BA. degree in classics from Corpus
Christi College, Cambridge, in 1952. In 1956 he received his Ph.D. in philoso-
phy from Princeton University. His interest in automatic theorem proving and
computational logic began in 1960. Working at Rice University, he developed
resolution and refined unification. In 1967, Robinson moved to Syracuse Uni-
versity where he continues his research in computational logic and automatic
theorem proving. For more details on the history of resolution, see [9].
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Let’s Get Real

Nor is there requir’d such profound knowledge to discover the
present imperfect condition of the sciences, but even the rabble

without doors mag judge from the noise and clamour, which they
hear, that all goes not well within.

—David Hume (1740)

The great danger in computer implementation of approximate
reasoning is the use of inappropriate, unjustified, ad hoc models.

Newcomers in the domain of common-sense reasoning could be
overwhelmed by the multitude of models.

—Philippe Smets (1991)

Introduction

Predicate calculus is designed for determining eternal truths in tidy worlds.
Since the “real world” is seldom so tidy, FOL must be extended, modified, or
abandoned to meet the needs of AI.

After exploring some of the problems the real world causes for FOL, we’ll
look at some partial solutions. You should be wary whenever many partial so-
lutions or explanations exist. Such a multiplicity may indicate that we’ve con-
fused the issue by lumping together different phenomena. Or it may indicate
that we need a new way to look at the phenomenona. Or, worst of all, it may
indicate both. You probably think, “Now he’ll tell us which of these applies
to reasoning in Al.” Sorry. Cogent arguments exist for almost any opinion.

The chapter concludes with a brief discussion of missing and conflicting
information, including the Arrow Impossibility Theorem, which asserts that
there is no ideal method for resolving conflicts.

Prerequisites: Nothing,

Used in: This chapter sets the stage for Chapters 6—9, but isn’t needed in
them.
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5.1 Real-World Issues and FOL

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

——William Shakespeare (Hamlet)

When we reason about the real world, we usually lack the certainty provided
by FOL—often due to information problems:

0 Relevant information may be missing.
0 Like weather predictions, the information we have may not be in a simple

yes/no form.
0 Perhaps worst of all, some information may simply be wrong.

The “obvious” solution of gathering all possible information won’t work: The
sheer volume of information available in the real world is too great ever to be
collected and stored. Worse yet, the very piece of information that’s needed
may be unobtainable or may require too much effort to obtain. In summary,
we must often reason with an uncertain, incomplete information base—just
the opposite of what FOL requires.

As an added complication, the world changes. In some situations, this can
be ignored or can be taken care of by changing our knowledge base. In other
situations we may have to change the reasoning process itself. For example,
in the statement “If I do this, then that will happen and then ...,” time and
causality are integral parts of the reasoning process.

To develop new tools, we have to be clear on what the difficulties are.
The following list classifies the problems discussed above and adds some new
ones. Let’s begin with the organization of knowledge.

a Time: Some things must be done in a certain order; for example, you
can’t bake the ingredients for a cake and mix them afterwards. FOL has
no time sense.

0 Relevance: What information (some of which may not be available) is
relevant in the situation being considered? There is simply too much in-
formation to collect it all, so an AI system must decide what it needs.
This is essentially the “frame problem,” which is discussed a bit more on
page 190.

o Causality: We often use causal relationships in reasoning. Sometimes we
reason from cause to effects (deduction) and at other times, from effects
to cause (abduction). Causality is closely related to time and probably
plays a role in the commonsense solution to the problem of relevance.
Unfortunately, it’s unclear how to incorporate it into a reasoning method.
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Now let’s look at some attributes of the pieces of knowledge we have. One
possibility is that it is wrong. Although detecting and correcting erroneous
“facts” is an important problem for reasoning systems, let’s ignore it. Here
are other aspects of knowledge.

0 Exceptions: General rules usually have exceptions. For example, the state-
ment “Birds can fly” has exceptions related to species, health, age, and
so on. Exceptions may, in turn, have exceptions.

o Uncertainty: Betting odds and weather predictions are day-to-day events
that reflect uncertain knowledge about the world. Day-to-day use of in-
formation about uncertainty is often confused and inconsistent.

o Ignorance: Many researchers believe there’s a subtle distinction between
ignorance and uncertainty, but some disagree. I am uncertain about what
to include in this text, but I’m ignorant about whether you’re enjoying it
or not.

0 Vagueness: Some concepts are vague. Suppose you ask Joe’s friends if he
is tall. Some may say “yes,” others “no,” and still others something in
between. This is because “tall” is a vague or “fuzzy” concept.

Exercises

5.1.A. List some difficulties that FOL encounters in the real world.

5.1.B. Why is causality important?

5.2 Some Alternative Reasoning Tools

Alice: “Would you tell me, please, which way I ought to go from here?”
Cheshire Cat: “That depends a good deal on where you want to get to.”

—Lewis Carroll (1865)

We ’78 really in desperate need of some kind of overall
architecture that would enable us to integrate something like a

probabilistic model and something like the classification and
inheritance models into a coherent framework where the right

pieces play the right roles with respect to each other.
—Bill Woods (1991)

A variety of tools have been proposed for dealing with the limitations of the
predicate calculus. There will undoubtedly be more in the future, as well
as improvements of existing ones. Most tools are either primarily qualitative
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(nonnumeric) or primarily quantitative. Here’s a partial list, with references
to further discussion.

Qualitative Methods

Qualitative methods avoid the use of numeric information. Sometimes numeric
information is not relevant. At other times it may be unavailable or unreliable.
Furthermore, human reasoning processes do not normally employ numeric in-
formation. Researchers have proposed a variety of nonstandard logics—any
logics other than FOL. Here are three overlapping categories of nonstandard
logics.

o Nonmonotonic Logics: The logic we’ve studied so far is monotonic, which
means that once a result has been established, it remains true regard-
less of additional information. In nonmonotonic logic, something that was
presumably true may be found to be false in light of additional informa-
tion.

0 Temporal Logics: Temporal logics incorporate time explicitly in the syn-
tax of the logic. Although time is numeric in nature, temporal logics are
usually qualitative because they are concerned with the order in which
events occur, not their durations.

o Autoepistemic Logics: FOL focuses on validity and unsatisfiability, largely
ignoring the vast middle ground where something is neither certain nor
impossible. Autoepistemic logic reasons about belief. This approach is
based on modal logics, which introduce other truth values “between” T
and F to reflect concepts like possibility and belief.

Representational methods other than logic are used for qualitative meth-
ods. They include the following:

0 Rule Systems: Superficially, rule systems resemble logic—“If A then B.”
In logic such a statement says that the truth of A implies the truth of
B. Furthermore, the contrapositive asserts that the falsity of B implies
the falsity of A. In rule systems, the truth of A implies that the action B
should be carried out. (This action might be assigning a truth value to a
statement as in FOL.) The contrapositive plays no role. Issues of tempo-
ral order arise when “If A then C” is also present and the actions B and
C interact.

e Graphical Systems: Several types of knowledge systems are based on
graphical representations, usually with directed graphs. (See Definition 2.1
(p. 36).) The vertices of the graph contain information about conceptual
units and the edges indicate relationships between units.
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Cl 02 .01 = “It rained.”
02 = “The automatic sprinkler was on.”
R1 = “The grass looks wet.”
R2 = “The sidewalk looks wet.”

R1 R2

Figure 5.1 Multiple possible causes 0'; and results, R5. Suppose the sprinkler sys-
tem is activated only if a built-in moisture sensor decides the ground is too dry. A
simple rule-based system could equally well have the four probable rules “If 0,, then
Rj” or the four probable rules “If Rj, then 05.” They must be dealt with in differ-
ent ways: if R1 is true, then it is much more likely that R2 is true; if 01 is true,
then it is much less likely that Cg is true.

Most of the subjects listed above are discussed in the next chapter. Those
discussions are intended to give you a brief introduction to the ideas, accom—
plishments, and problems of some of the methods.

Quantitative Methods

Commonsense human reasoning tends to break down when information is far
from certain. Qualitative AI methods are useless then, too. The canonical
mathematical method for dealing with uncertainty is probability theory. AI
researchers have used it and have also developed alternative numeric methods
for dealing with uncertainty.

0 Bayesian Networks: This method uses probability theory to deal with un-
certainty in causality problems. Roughly, “If A then B” has an associated
probability measuring the chance that A will cause B. Figure 5.1 shows
a simple example.

0 Belief Theory: This theory incorporates both ignorance and uncertainty
and includes Bayesian networks as a special case.

0 Fuzzy Sets: The notion of set membership is “crisp”; that is, either 3 E S
or not—there is no intermediate situation. Fuzzy sets are based on the
idea that not all membership is crisp. For example, consider the set of
good students. Some people certainly belong and some certainly do not,
but others are somewhat in and somewhat out—so the concept of “good
student” is fuzzy. Logic can be based on set theory and, similarly, “fuzzy
logic” can be based on fuzzy sets.

Bayesian nets are discussed in some detail in Chapter 8. Chapter 7 con-
tains the probability theory on which Bayesian nets are based. An introduction
to belief theory and fuzzy logic is provided in Chapter 9.
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The notion of fuzzy logic contains a mixture of the qualitative aspects of
logic with quantitative methods. Other such marriages have been attempted
using probability theory. In attempting such a fusion, the meaning of the
probabilities is an issue. Suppose you’re given a statement 5' and associ-
ated probability p. How should it be interpreted? One possibility is a sta-
tistical statement about the world—p measures the frequency with which 5'
is true. Another is probabilistic logic, which considers a collection of possi-
ble worlds such that p is the probability of choosing one in which S is true.
Another is based on the idea the probability reflects belief. See Sections 7.1
and 9.1 for further discussion on the meaning and appropriateness of proba—
bility.

Why Such Diversity?

The reasons for the variety of methods fall into three main categories related
to knowledge and its uses:

0 Knowledge Content: What we know influences how it is described. In this
text we use the numeric (quantitative) versus purely qualitatitive knowl-
edge distinction to divide up the methods listed above as well as the
presentations in the following chapters. In the preceding brief descrip-
tions, you should be able to find less obvious examples of how content
influences method.

0 Understandability and Modularity: Ifa large system does not have its knowl-
edge organized in an understandable and modular way, it will collapse.
First, a lack of understandability almost guarantees that someone trying
to develop a knowledge base will enter some information incorrectly, even
though it will appear to be correct. This makes debugging difficult. Sec-
ond, a lack of modularity almost guarantees that unexpected undesirable
interactions between parts of the knowledge base will occur. Attempts
to correct these problems will probably be ad hoc and create new prob-
lems.

0 Knowledge Manipulation: H0w we intend to manipulate the knowledge can
strongly influence our choice of method. To overcome the need for such
a choice, we might try to design a very general system that could rea-
son in many ways. It would probably be faced with severe computational
problems that could be overcome only by restricting the system. Various
methods for restricting reasoning lead to different types of nonmonotonic
logics and to rule systems.
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Exercises

5.2.A. What do nonmonotonic logics allow that FOL does not? modal logics? tem-
poral logics?

5.2.B. What is the basic idea behind fuzzy sets?

5.2.0. What numeric method focuses on causality?

5.2.D. Why is there such a large variety of reasoning systems?

5.3 Incomplete Information

A problem faced in most reasoning situations is that all the
information that may be relevant is not available and that which

is available is confusing and not necessarily relevant.

—Raj Bhatnagar and Laveen N. Kanal (1992)

Life is the art of drawing sufiicient conclusions
from insufficient premises.

—Samuel Butler (1912)

Providing complete information on a subject in a knowledge base may be
impractical or even impossible. One approach to the problem is to be as
thorough as possible and then make the closed-world assumption, or CWA:
All relevant information is contained in the data and rules of the sys-
tem. (We’ve discussed the CWA in connection with Prolog negation on
page 169.)

While the CWA is reasonable in certain circumscribed domains such as
commercial expert systems, it is usually unrealistic in daily life. The amount
of information potentially available even in simple situations is so vast that
collecting it and reasoning about it are both impractical. This problem is re-
lated to bounded rationality—reasoning when data and computational power
are limited. People’s brains deal with this superabundance of information as
a matter ofcourse. We somehow use what knowledge we have plus “common
sense.” At times, common sense will tell us to make certain “reasonable” as-
sumptions about missing information; at other times, it will tell us to seek
more information. Designing a system with these abilities is a core problem
for AI.

Two key problems have been identified in connection with deciding what
information is (likely to be) relevant in a given situation:



190 Chapter 5 Let’s Get Real

0 The qualification problem is concerned with missing information that may
invalidate a general rule. General rules about the day-to-day world are in-
complete. That is, a general rule requires so many preconditions that it is
infeasible and perhaps impossible to list all of them. Needless to say, it is
therefore impossible to check them. How can we deal with this? A classic
example is

general rule: Birds can fly.
application: Tweety is a bird; therefore Tweety can fly.

The general rule should have preconditions that eliminate penguins,
nestlings, birds with broken wings, and so forth.

0 The frame problem is concerned with the fact that, potentially, any
change in the environment may influence any other part of the en-
vironment. How can we reasonably determine what conclusions per-
sist as time passes and actions are taken? As Hayes [13, p. 125] put
it,

One feels that there should be some economical and principled way of suc-
cinctly saying what changes an action makes, without having to explicitly
list the things it doesn’t change as well; yet there doesn’t seem to be any
way to do it. That is the frame problem.

The classic example of the frame problem is the Yale shooting problem,
named after the university where it was proposed:

Rule: If a loaded gun is fired at someone, the person dies.
Fact: Fred is alive at time To.
Fact: A gun is loaded at time T1.
Fact: The gun is fired at Fred at time T1 > To.

If T1 — To isn’t large, it’s reasonable to assume Fred will be dead because
it’s reasonable to assume that no intervening event unloaded the gun.
However, it’s also “reasonable” to assume that Fred is still alive (and so
the gun was somehow unloaded), because people who are alive at T0 are
unlikely to be dead at T1. Thus one abnormal event or the other must oc-
cur (Fred dies or the gun becomes unloaded). How can a reasoning system
be built with the common sense to decide correctly? Crockett [5] believes
that a solution to the frame problem is the key to designing intelligent
systems.

People continually deal with the qualification and frame problems in
everyday life by using common sense. They do not always reach the cor~
rect conclusion, but that is to be expected in any system where bounded
rationality is important. Similarly, any AI system will also sometimes fail
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to reach the correct conclusion. Designing a system that exhibits such com-
mon sense will require coming to grips with the qualification and frame prob-
lems or finding some unsuspected way of sidestepping them. These problems
are the subject of research and debate in AI, cognitive science, and philoso-
phy-

Exercises

5.3.A. What is the closed-world assumption?

5.3.B. What are the qualification and frame problems and why are they important
in AI?

5.4 Inaccurate Information and Combining Data

It is better to know nothing than to know what ain’t so.

—-Josh Billings (1874)

Data may be based on expert opinion or on observations. Variations in data
affect results. The media often report data problems related to global is-
sues such as nuclear winter or global warming where obtaining accurate data
is difficult. The classic example of this is Forrester’s World Dynamics [8],
which presents a model of what will happen in the next few decades as-
suming there is no nuclear war. The model requires enormous amounts of
data, most of which are not available and some of which can never be ob-
tained. As a result, most of the “data” presented in the book are simply
the guesses of researchers, who found that the model made dire predictions
that could be averted only by rapid, major, counterintuitive global action. As
the debate developed, other researchers used guesses they thought were bet-
ter and obtained other results. It may never be known whose guesses were
best.

Inaccuracies can be of various types, ranging from totally incorrect infor-
mation to slightly inaccurate numerical estimates. Sensitivity analysis studies
how slight variations in input or computational accuracy affect output. These
variations may be either quantitative or qualitative. (An example of qual-
itative is the ranking of alternatives from best to worst.) Problems where
slight input and/or computational variations produce major output varia-
tions are called ill-conditioned and should be avoided if at all possible. Un-
fortunately, sensitivity analysis is a difficult subject in all but the simplest
cases.
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Example 5.1 Simple Examples of Ill Conditioning

Suppose you want to find the roots of the quadratic equation :32 + bx + c = 0,
where b is a large positive number and c is small. By the quadratic formula,
one of the roots is given by

a: — _b + b2 — 4c
which is the same as a: -

2c"
2

_
—b—\/b2 —4c'

Mathematically, either formula is an equally good choice. In actual compu-
tations, the last formula is preferable because of roundoff error. To see why
this is so, imagine an error 6 in computing the square root. In the left-hand
formula, the leads to an error of 6/2 in the estimate for x, which is a large rel-
ative error because a: is small, about —c/b. (The relative error is about b6/20.)
In contrast, setting D = b + Vb? —— 4c, the second formula leads to an error
that is about

g 2c _ 2.5 ~2_c6
—D 6—D_DZ—Dc5~D2'

Since D m 2b, the relative error is about 6/2b, which is much smaller than
b6/2c.

Estimating parameters from data may be ill-conditioned. For exam-
ple, suppose you believe a sample consists of two unknown radioactive el-
ements in unknown proportions. From the theory of radioactive decay, the
amount of radioactivity produced by the first element at time 15 should be
about Ae‘at; by the second, Be‘b‘. (We use the term “about” because
the theory only predicts average behavior.) The total radioactivity is then
about

r(t) = Ae'“ + 36-“ where a, b, A, and B are unknown.

Since you can measure 1°(t) at various times by using a geiger counter or other
instrument, you can collect several data points and estimate the unknown
parameters. Unfortunately, this problem can be ill-conditioned, a situation
that has trapped the unwary neophyte. I

In the design of expert systems, data is often based on the estimates pro-
vided by an expert. One approach to inaccurate estimates is to consult several
experts and then create a reasonable compromise based on their estimates.
Such reconciliation is an important problem in expert system implementa-
tion [2].
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Example 5.2 Sex Discrimination

Here’s a simple example of problems with numerical data. The numbers are
fictional, but the example is based on a situation that occurred at the Uni-
versity of California, Berkeley.

Suppose that a school is divided into an Engineering Division and an
Arts and Sciences Division. In a particular year, 2,000 men and 500 women
applied to the Engineering Division. Of these 70% of the men and 80% of the
women were admitted. For Arts and Sciences, there were 1,000 male appli-
cants and 2,500 female. The admissions rates were 45% and 50%, respectively.
It appears that women were favored over men. But when we combine the fig;
ures for both divisions (do itl), we find that of the 6,000 applicants (3,000
of each sex), we find that the university admitted 1,850 (62%) of the men
and 1,650 (55%) of the women. It now appears that men were favored over
women! I

The Arrow Impossibility Theorem (proved by K. J. Arrow) shows that
reconciling qualitative data can also be a problem. What does the theorem tell
us? Suppose several experts individually rank some alternatives A,B, . . . ,Z
from most likely to least likely. Thus, each expert gives us a list that is sim-
ply a rearrangement of A, B, . . . ,Z. We want to use these lists to prepare a
master list from most likely to least likely, without interjecting any opinions
except our prior assessment of each expert’s accuracy. Imagine a computer
program into which we can feed a list of alternatives, an assessment of how
reliable each expert is, and the experts’ lists. The program will then produce
our master list, resolving conflicts in some reasonable, consistent manner us-
ing some method. What method? The Arrow Impossibility Theorem asserts
that there is no “reasonable” method for the general problem. Thus, we must
force our experts to alter their opinions or we must make some compromises
about what is “reasonable.”

*The Arrow Impossibility Theorem

[The Arrow Impossibility Theorem] has deeply influenced
theoretical welfare economics, moral and political philosophy, and

mathematical approaches to microeconomic theory.

—Jerry S. Kelly (1978)

The axiomatic method has many advantages over honest work.

—Bertrand Russell (1872—1970)

Let’s proceed in three steps:
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0 define an “election procedure,” simply called an “election”;
0 list the axioms a “fair” election must satisfy; and
o prove that the axioms are inconsistent.

Since the axioms for a fair election are inconsistent, it follows that fair elections
are impossible. An election turns out to be simply the resolving of conflicts
to produce a consensus among experts. Thus, Arrow’s theorem asserts that
there is no “fair” way to do that in general.

Uppercase letters will denote candidates and lowercase letters will denote
voters. In an election, each voter provides some ordering of the candidates.
We’ll refer to the ordering provided by voter i as a ranking by voter i and
denote it 2;. For example, with candidates A,B,C' and voters i, j,k, m, we
might have the rankings

A>iB=iC, A=jC>jB; C>IcA>kB, B=mC=mA,
where A >,- B is read as “voter i prefers A to B” and A 23' C as “voter j
prefers A and 0' equally.” Now let’s say what we mean by an ordering. An
ordering satisfies

(a) A 2i A)

(b) A 2,- B 2,- C' implies A 2; C,
(c) exactly one of A >g B, B >,- A, and A :5 B holds.

Suppose we have some fixed set of at least three voters. An election pro-
gram is a computer program that incorporates our assessment of the voters’
reliability, takes the rankings by the voters as input, and produces an ordering
“_>_” of the candidates as output.

Arrow stated certain axioms that the ranking 2 should reasonably satisfy
for the election program to be fair. He proved that the axioms were inconsis-
tent; that is, it is impossible to create a fair election program. Here are the
axioms:

Axiom 1: All conceivable rankings by the voters are allowed as input.
Axiom 2: A unanimous desire is obeyed; that is, if A 2, B for all i, then A _>_ B

with equality if and only if A :5 B for all i.
Axiom 3: Let primes denote rankings in a second election. Suppose that A >2

B whenever A >,' B. If the program concludes that A > B, it must
also conclude that A >’ B.

Axiom 4: There is no dictator; that is, given 2' and 2,, there is some ranking
by the other voters such that Z; and Z are different rankings.

Theorem 5.1 Arrow Impossibility Theorem
The axioms for fair elections are inconsistent; that is, fair elections are
impossible.



5.4 Inaccurate Information and Combining Data 195

Proof: In the course of the proof, various special cases arise because the
consensus ranking may have ties. Dealing with ties complicates and obscures
the proof, without introducing any new ideas. Therefore, let’s consider only
the case without ties.

The proof will be by contradiction. We assume Axioms 1, 2, and 3 and
then prove that there must be a dictator. This contradicts Axiom 4.

A set D of voters is decisive for A > B if, whenever A >,; B for all i E D,
we have A > B. In other words, if the voters in D agree that A is better than
B, then the fair election program must agree, too. Note that the set of all
voters is decisive for every A and B by Axiom 2.

The proof that there is a dictator consists of two steps:

0 First, show that if D is decisive for A > B, then it is decisive for C > D
for all candidates C and D.

0 Second, show that if D is decisive for A > B and has more than one
element, then a proper subset of D is decisive for some pair of voters.

Putting these two results together, we can repeatedly reduce the size of the
decisive set for A and B until it contains only one element. By the first step,
the voter in this set is a dictator.

Before carrying out these two steps, we need a simple observation. Suppose
we have an election in which A > B. Then the set D = {2' IA >5 B } is
decisive for A > B. This follows from Axiom 3: The role of the first election
is played by the election that was used to construct D. Any election for which
A >1. B for all i E D would play the role of the second election in the axiom.

We now take the first step. Let D be decisive for A > B. Consider an
election in which C >i A >,- B for i E D and B >j C >j A forj g! D. By
decisiveness, A > B. By unanimity, C > A. Putting these together, C > B.
Looking at the election we just created, it follows that D is decisive for C > B.
In a similar manner, using C >,- B >,- D and B >J- D >j C, we get that D is
decisive for C > D.

Now let’s take the second step. Let D1 and D2 be nonempty disjoint sets
whose union is D. Consider the election in which

C>iA>i B, foriEDl,

A>iB>i C, foriEDg,

B>iC>5A, fori¢D.

Since we must have A > B, only three possibilities exist:

0 C > A > B and so D1 is decisive for C > B;
o A > B > C and so D2 is decisive for A > C;

o A > C > B and so D1 is decisive for C > B and D2 for A > C.

This completes the second step and hence the proof. I
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Exercises

5.4.A. Without recourse to mathematical symbolism or terminology, explain the

5.4.1.

*5.4.2.

concept of fair elections. How do fair elections relate to the problem of re-
solving conflicting expert opinions?

Over a period of 35 years, birdwatchers observed the following numbers per
year of a rare species of bird stopping at a swamp along the migratory route.

9 7 7 8 11 12 11 8 6 6
11 15 10 8 0 3 9 11 4 18
21 9 6 6 7 11 14 9 7 6

7 9 11 11 10

A conservation group, realizing that the data fluctuates too much to examine
it year by year, decides to divide it into seven-year blocks and examine the
total for each block. To their horror, they find that the totals are decreasing
steadily from 65 at the start to 61 at the end. (Do the calculations.) You
want to drain the swamp for a housing development. Explain why grouping
the data into five-year blocks might help your cause.

Majority voting on ranking seems an easy way to satisfy the axioms. Suppose
for simplicity that the number of voters is odd and that equality is not
allowed. Define A > B if and only if A >,- B for more than half of the voters.
(a) Verify that the axioms are satisfied.
(b) Show that > may not be an ordering—this is a “hidden assumption”

that was stated in our definition of the computer program.
Hint. Look for an example involving three voters and three alterna-
tives.

(c) Where does the proof of the Arrow Impossiblity Theorem break down for
the so-called ordering produced by using majority vote? In other words,
why does the proof fail for the example you constructed in (b)?

Notes

Shafer and Pearl [16] have collected a variety of papers on uncertain reasoning,
arranged them by topic, and provided introductions to the various topics.
These papers are primarily quantitative. Ginsberg [12] has done the same for
the qualitative case. Nilsson gives a discussion of his probabilistic logic in
[14]. A good reference on the problems of combining logic and probability is
Bacchus [4]. Although a monograph, it’s like an introductory text. I’ll give
more references when I discuss relevant topics in Chapters 6 and 9.

Bounded rationality is discussed by Russell and Wefald [15]. Some recent
discussions of the frame problem are found in papers in [7]. Most of the papers
are rather technical, but the introduction by Ford and Hayes is not.
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The situation in Example 5.2, where combining information reverses an
ordering, is known as Simpson’s paradox. See [9] for two examples drawn from
baseball.

Arrow published his theorem in 1950. The proof here is based on [3], which
contains the full proof and a discussion of related topics. Feldman [6] proves
the theorem and discusses other methods of evaluating social alternatives.
For further discussion of the problems encountered in combining quantitative
data see [10] and [11]. They require some background in probability theory, so
you may need to read Chapters 7 and 12 first. Abidi and Gonzalez [1] discuss
some methods for combining input from several robotic sensors.
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Nonmonotonic
Reasoning

It is logically impossible to reason successfully about the world
around us using only deductive reasoning. All interesting

reasoning outside of mathematics inuolues defeasible steps.
—John L. Pollock (1989)

First ponder, then dare.
—Helmuth von Moltke (1800—1891)

Introduction

Inquiring AI researchers want to know “What is common sense?” because
they want to mimic it. Since most people have common sense, discovering the
answer should be easy. But it isn’t—duplicating common sense has proved
surprisingly difficult.

0 Some researchers believe we understand common sense well enough and
that it involves knowing a considerable amount about the way the world
is. They believe that, once we’ve captured this information in a knowl-
edge base, we’ll be able to implement commonsense reasoning. Proposed
implementations are based on some form of nonmonotonic reasoning.

0 Most researchers believe that the problem is more fundamental—we don’t
really know how our commonsense reasoning works. Much of the research
on the problem has involved nonmonotonic reasoning methods. Many peo-
ple believe that further research in this area will eventually lead to a
solution.

What is nonmonotonic reasoning and why is it so important?

199
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Ordinary first-order predicate logic (FOL) is timid—if something is uncer-
tain, FOL makes no assumptions. Human beings would get nowhere doing this
in the real world. We all must make (tentative) assumptions all the time—I
assume the building I’m in is structurally sound, you assume the other drivers
will obey the traffic signals, and so forth. If an assumption seems wrong at
the moment, we discard it for that particular situation, a process called non-
monotonic reasoning. Some methods of nonmontonic reasoning are based on
extensions of FOL; others on tools outside mathematical logic. Which is best?
Researchers disagree on this, but they generally agree that it’s important to
find approaches that can provide a solid theoretical foundation—the problem
seems too complex and our ignorance too great to rely solely on intuition and
experiment. Since classical mathematical logic has a solid foundation, some
people look for ways of extending it to deal with uncertainty. Others look for
solutions outside mathematical logic, arguing that commonsense reasoning
employs methods that don’t comfortably fit into the framework of mathemat-
ical logic.

Where does the name nonmonotonic reasoning come from? As a result
of FOL’s lack of assumptions, results stay proved. That is, if you prove the
truth of a statement using only part of a knowledge base, you won’t discover
that your proof is invalid when you look at the entire knowledge base. Such a
theory is called monotonic because adding to the knowledge base never inval-
idates previously discovered truths. In non-monotonic reasoning conclusions
reached by using part of the knowledge base may become invalid when the
entire knowledge base is used. For example, suppose I tell you that Prolog is
a programming language and that good programmers usually learn new pro-
gramming languages easily. From this you’d conclude that a good programmer
would probably learn Prolog easily. Now add the information that good pro-
grammers frequently have difficulty learning Prolog. Your previous conclusion
is invalid. This problem is attributable to the presence of words like “usually”
and “frequently,” which occur in commonsense reasoning but are not a part
of FOL.

In the next section, we’ll examine some issues in commonsense reasoning
and sketch some methods developed to deal with them. In the remaining
sections, we’ll discuss these nonmonotonic approaches in more detail.

Prerequisites: You’ll need some of the graph theory concepts from Sec-
tion 2.1. Knowledge of first-order logic is required—you should be familiar
with the concepts and results in Chapter 3 and in Section 4.1. Other parts of
Chapter 4 are helpful but not necessary.

Used in: No other chapters require this material.
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6.1 Coming Attractions

What’s most depressing is the realization that everything we
believe will be disproved in a few years.

—Sidney Harris (ca 1975)

Suppose that [C and IC’ 2 [C are knowledge bases and that we use FOL to
show that [C l- a. Then IC’ l- a, too. What does this mean in ordinary English?
It simply says that if we’re able to conclude a from IC, then the additional
knowledge in IC’ won’t invalidate a. This property of FOL is referred to as
monotonicity because the set of conclusions that can be reached increases as
the knowledge base increases. It has an extremely important practical conse-
quence: Suppose we can use a small part [C of a large knowledge base IC’ to
reach a conclusion. Since information in the rest of the knowledge base can’t
invalidate the conclusion, we can ignore the rest of the knowledge base.

By definition, nonmonotonic reasoning methods allow us to reach conclu-
sions that may become invalid as we gain further knowledge. As a result:

It is a priori necessary to examine the entire knowledge base before
reaching a conclusion.

This leads to a core problem for nonmonotonic methods whose solution is
crucial for designing an algorithm that runs in a reasonable time:

How can we limit our attention to a (small) part of the knowledge
(6 1)base and still guarantee that the conclusion reached will be correct?

'

In FOL, Prolog avoids examining the entire knowledge base by using Horn
clauses. As a result, Prolog needs to look only at clauses whose heads can be
unified with the predicate currently being examined. Perhaps one should look
for something similar in nonmonotonic reasoning.

In commonsense reasoning we somehow make “reasonable” assumptions
about missing data. This leads to another core problem for nonmonotonic
reasoning methods:

During the reasoning process, how do we detect missing knowledge
(6 2)and make reasonable assumptions about it? '

The detection problem is closely connected with problem (6.1). The extent to
which the assumption problem is dealt with varies from method to method.

0 At the most basic level, an approach would tell us what choices of
assumptions could be justified as being “rational.” However, it would not
give any reason for favoring one possibility over another. For example, it’s
rational to assume that a car will come speeding around the corner and
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it’s rational to assume that no car will speed around the corner; however,
it’s not rational to make both assumptions.

0 At the next level, some procedure for selecting among assumptions is
part of the reasoning mechanism. Because there is a red light and drivers
usually obey traffic signals, it’s more reasonable to assume that no car
will speed around the corner.

0 Finally, the decision problem can be brought to the fore: After determining
the gains and losses that can result from various assumptions or actions,
a procedure is used to decide which is best. This requires quantitative
methods, which are outside this chapter’s scope.

Exercises

6.1.A. What distinguishes monotonic reasoning from nonmonotonic reasoning?

6.1.B. What are two major problems that nonmonotonic reasoning must face?

Types of Qualitative Nonmonotonic Reasoning

The first step in analyzing nonmonotonic logic is to determine what
sort of nonmonotonic reasoning it is meant to model. After all,

nonmonotonicity is a rather abstract syntactic property of an
inference system, and there is no a priori reason to believe that all

forms of nonmonotonic reasoning should have the same logical basis.
—Robert C. Moore (1983)

As already mentioned, we can distinguish two approaches to qualitative
nonmonotonicity—those motivated by a desire to expand FOL beyond its lim-
itations and those motivated by a desire to replace mathematical logic with
more appropriate methods. This distinction has blurred as researchers have
found ways to translate between various reasoning methods. Nevertheless, it’s
still a useful distinction.
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Non monotonic Logics

We want to adapt FOL by adding statements of the form “typically oz,” mean-
ing that a is true except in “unusual situations.” For example, “typically birds
fly,” which could be written in an FOL-like form as

VX (typically (bird(X) —> flies(X))) . (6.3)

Unfortunately, this doesn’t tell us how to detect the unusual situations in
which a is not true. We could specify unusual situations in FOL by ANDing the
negation of a variety of conditions with bird(X). This would give us something
like

VX ((bird(X) /\ fi(penguin(X) V injured(X) V - - -)) —> flies(X))), (6.4)

where the elipsis indicates other possible conditions. This is unacceptable for
various reasons. Here are two.

0 Objection 1: Every time we discover a new condition, we must modify
(6.4), eventually obtaining an extremely long statement.

0 Objection 2: More important, (6.4) doesn’t accomplish what we want.
Unless we can actually prove that X is neither a penguin, nor injured,
nor , we can’t use FOL and (6.4) to conclude that X can fly. In
practice, when you know Tweety is a bird, you assume that Tweety can
fly unless you have some information that makes Tweety abnormal (a
penguin, injured, etc.).

Such objections show that FOL is inadequate for formulating nonmonotonic
ideas such as (6.3).

Various nonmonotonic logics have been proposed. Perhaps there are differ-
ent aspects of reality for which different logics are needed. Perhaps researchers
have not yet discovered the right logic. Or perhaps both are true. Only time
will tell. Here are the four main approaches to nonmonotonic logic.

0 Default Logic: Default logic works with statements like (6.4), but it treats
the negation appearing there in a different manner. Instead of proving that
penguin(X) and so on are each false, default logic insists only that it not
be possible to prove them true. In other words, default logic meets Objec—
tion 2 head on. With this modified interpretation of negation, statements
like (6.4) are called defaults. Default statements are rules of inference—
after we check the left side of (6.4), we can conclude that X flies. Such
statements cannot be manipulated as in FOL. In particular, we can’t re-
place (oz ——+ 6) with (,8 V (-:a)). (More on this later.)

You may have noticed that the preceding discussion sounds like Pro—
log’s negation as failure: Instead of proving -1penguin(X), it determines
that it cannot prove penguin(X). We discussed Prolog’s negation as failure
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on page 169 and will explore its connection with nonmonotonic reasoning
in this chapter.

At first sight, default logic seems to be a complete resolution of the nonmono-
tonic reasoning problem. Unfortunately it’s not. First, default logic doesn’t
tell us how to reason; that is, how to derive results. Second, default logic says
that, if we can’t prove that X is a penguin, then we may assume that X is not
a penguin—not that we must assume it. Which defaults should we assume?
What if defaults contradict one another? Default logic lets us determine if a
certain set of defaults can be assumed by a “rational” person, but it doesn’t
tell us which defaults should be assumed.

o Defeasible Reasoning: Superficially, defeasible reasoning is like default
reasoning in that it augments FOL with rules of inference for dealing with
rules that have exceptions. There are important differences. Default logic
emphasizes the logical concepts whereas defeasible reasoning emphasizes
the reasoning methods.

0 Autoepistemic Logic and Modal Logics: Epistemology is the branch of
philosophy that investigates the nature and limits of human knowing.
Autoepistemic reasoning involves reasoning about one’s own knowledge.
For example, if I have no knowledge that I am an ax murderer, I may
conclude that I’m not an ax murderer. Not all lack of knowledge can be
used this way. For example, although I do not know that all students
will do exceptionally good work in this course, I should not conclude
that they will—although they might like me to do so. Somehow, I must
distinguish between knowledge I would have if it were true (ax murderer)
and knowledge that there is no reason to believe I would have (future
student performance).

Autoepistemic logic is an example of modal logic, which is an extension
of FOL that introduces one or more operators to indicate states of belief
or (partial validity).

o Circumscription: Circumscription extends the knowledge base rather than
the language of FOL. For example, suppose we have

VX ((bird(X) A normal(X)) ——> flies(X)).

A circumscriptive approach might attempt to make the predicate “nor-
mal” apply to as many terms as possible. This sounds very much like de-
fault logic and, indeed, there are connections between the two approaches.

Temporal reasoning—reasoning about situations in which time plays a central
role—is often based on adaptations of these methods.

All the above methods modify the interaction between FOL and a knowl-
edge base in some manner in order to deal with beliefs. Here’s a quick de-
scription of some major differences:
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a Default logic isolates beliefs in a new type of knowledge-base statement,
the default rule, which is used to produce additional FOL statements (in
other words, assumptions). These assumptions supply information that
is incomplete in the FOL part of the knowledge base. Thus, beliefs are
contained in a part of the knowledge base that has limited interaction with
the remainder and all reasoning is done in FOL. The theory describes how
to decide if a set of assumptions is acceptable, but it doesn’t tell us how
to find such sets.

0 Defeasible reasoning introduces new reasoning rules as well as new types
of knowledge-base statements on which these rules act. The amount of
FOL that is allowed depends on the default logic. Some limit the FOL
formulas to Prolog-like statements.

0 Autoepistemic logic extends the language of FOL by adding the ability
to indicate that something is believed—a modal operator. Just as it is
necessary to develop a new theory when we move from propositional logic
to FOL, it’s necessary to develop a new theory when we move from FOL
to autoepistemic logic.

0 Circumscription introduces predicates for abnormality, but makes no
changes to FOL and introduces no new types of statements. Typically,
we introduce one or more predicates whose truth indicates an abnormal
situation. Beliefs are expressed as predicate logic rules in the knowledge
base by insisting that the abnormal predicate be false—the situation is
not abnormal. If the abnormal predicates were always false, the knowledge
base would be inconsistent. To maintain consistency, circumscriptive rea-
soning adds new FOL statements to the knowledge base that assert that
abnormality is true in certain situations. The number of additional state-
ments (abnormalities) should be kept small.

Other Approaches

Another way of overcoming the problems with FOL is to look for approaches
that are not based on mathematical logic. This strategy leads to alternative
methods for both monotonic and nonmonotonic reasoning. Here are three
important ones:

0 Rule Systems: Although we’ve viewed Prolog clauses as a part of FOL, we
can instead view them as rules: Whenever the conditions in the body of
a clause are satisfied, the rule (i.e., clause) gives us the head of the clause
as a new fact. Obviously, the FOL and rule system approaches to Prolog
are quite similar.

0 Graphical Methods (Semantic Nets): Some people—including me—use the
term semantic nets to designate graphical reasoning methods in general;
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others use it to designate a particular type of graphical reasoning struc-
ture. Semantic nets use directed graphs with knowledge stored at both
the vertices and the edges. Roughly speaking, vertices contain facts and
edges describe relationships. For example, “a cat is a feline” could be rep-
resented by “cat” and “feline” vertices joined by an “IS-A” edge. The rules
for reasoning with a semantic net are described in terms of the net’s local
structure; for example, if there are IS-A edges from u to v to 10, we can
deduce the edge u IS-A w.

Rule systems and semantic nets were developed in the search for methods
where the representation and manipulation of knowledge seemed more natural
than FOL and nonmonotonic logics. While the inventors of nonmonotonic
logics emphasized provable results over representation and algorithms, the
inventors of alternative systems emphasized representation and manipulation,
often ignoring theoretical foundations. Unfortunately, intuition alone doesn’t
provide answers to questions like “Are the algorithms guaranteed to produce
consistent results?” For that, mathematical rigor is required.

In their search for secure theoretical foundations, researchers have of-
ten translated alternative approaches into nonmonotonic logics. Thus, graph—
ical methods can usually be viewed as alternative representations of certain
nonmonotonic logics. Should we therefore abandon such systems in favor of
mathematical logic? No. In the first place, the interpretations are sometimes
incomplete. In the second place, the form in which something is represented
is important. In other words, choose the tool to fit the task. While mathe-
matical logic might be the best tool for proving something about a reasoning
method, it may not be the best tool for representing knowledge or using the
method. You’ve already seen this in connection with Prolog: The resolution
algorithm is based on finding a contradiction, but the Prolog interpretation
of it is more direct—it traverses a tree looking for solutions. (See p. 129.)

Exercises

6.1.C. What are the four main approaches to nonmonotonic logic? In FOL we have a
reasoning method and a knowledge base. How do these three methods adjust
the reasoning method and/or knowledge base to allow for nonmonotonic
reasoning?

6.1.D. What are two approaches to (nonmonotonic) reasoning that aren’t based on
logic?

6.1.E. Why is a semantic net useful even if it can be described by a nonmonotonic
logic?
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How Well Do Nonmonotonic Methods Work?

Nonmonotonic reasoning has turned out to be far more difi‘icult
than any of us expected. The fundamental advantage of working
with formal methods—racking falsifiable claims—is that we are

forced to address these difiiculties, to confront the nasty surprises
that lie between speculation and practice.

—Matthew L. Ginsberg (1991)

How much will nonmonotonic methods contribute to AI in general and to
commonsense reasoning in particular? What will be the relative importance
of qualitative methods versus quantitative methods? It’s too soon to tell;
however, it’s possible to make some general observations. Let’s do this against
the backdrop of goals, difficulties, and compromises.

Goal

The holy grail of nonmonotonic researchers is commonsense reasoning. It’s
generally accepted that an important facet of such reasoning is the ability
to reach sensible conclusions when faced with incomplete and/or uncertain
information. Hence, designing methods for doing so is a primary goal of AI
research on nonmonotonic reasoning.

Difficulties

Nonmonotonic methods have been quite successful in some limited environ-
ments, but seem far from being able to duplicate commonsense reasoning.
Some believe the main problem is inadequate knowledge bases; others believe
it is the reasoning tools. Still others believe that both the tools and knowledge
bases need major improvements. Another possibility is that the problem is too
complex to attack directly; instead, a reasoning system and a basic knowledge
base should be combined with a learning system that augments the knowl-
edge base. A few believe that commonsense reasoning is an impossible goal.
Only time will tell who is right.

In an earlier discussion we identified some core problems for nonmonotonic
reasoning: limiting search of the knowledge base, detecting missing knowledge,
and making reasonable assumptions. (See (6.1) and (6.2).) Extending FOL
makes these problems essentially intractable:

0 Problem 1. FOL is NP-hard: Since no efficient algorithm is known or likely
to exist for FOL, the same is true for any extension of it. (As we noted on
p. 172, preparing a general FOL knowledge base for Horn clause resolution
is NP-hard.)
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Problem 2. FOL is semidecidable: Missing information is detected by being
unable to prove something: If the truth of (—Ia) is not implied by the
data, we may be allowed to assume that a is true. Unfortunately, FOL is
semidecidable. This means that although we can create algorithms (such
as resolution) that allow us to prove any statement which is true in an
FOL language, it is impossible to design an algorithm that will allow us
to decide if statements are true or false. (See Theorem 4.6 (p. 165) for
more details.) What this means in practice is that there cannot be an
algorithm to decide if statements are undecidable; that is, we can’t create
an algorithm to decide if additional information is needed to determine
the truth or falsity of a statement.

Regardless of whether or not the method uses FOL, making assumptions is a
source of difficulties. Here are some:

Problem 3. Consistency is hard: Whatever assumptions are made should
be consistent with one another and with the data base. It is often difficult
to prove consistency.
Problem 4. Selecting assumptions is unclear: If the consistency problem
is overcome, how should the reasoning system choose between compet—
ing consistent assumptions? The problem here is both conceptual (what
should the decision criteria be) and procedural (how can they be imple-
mented in a reasonable manner).

Com promises

The first two problems with FOL can be dealt with in at least three ways:

1. The expressive capability of the language can be limited to the point
where both problems disappear.
The difficulty can be dumped onto the shoulders of the knowledge-base
designer.
They can be ignored. In Problem 2, for example, if a proof of fl is not
obtained in a reasonable period of time, it could be assumed that H cannot
be proved.

The usual compromise is a blend of the first two methods. Prolog is an example
of such a compromise in FOL. While the third way is probably akin to the hu-
man approach, its lack of precision poses theoretical difficulties and researchers
have generally avoided it. I believe major breakthroughs in large-scale non-
monotonic reasoning await the development of good methods for trading time
and information that are implicit in the third approach.

Limiting the expressive capability of the language can make dealing with
assumptions easier, too—particularly the problem of determining their con-
sistency.
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One “solution” to the problem of choosing between competing assump-
tions is to declare Problem 4 to be a separate issue outside the reasoning
process. That is, the reasoning process determines what assumptions are rea-
sonable and the user must employ some other method for choosing between
them. Splitting a problem up this way is called divide and conquer, which is
an effective tool for attacking complicated problems.

If the reasoning method must actually decide what to assume, an obvi-
ous approach is to assume as little as possible. This is not as easy as it sounds
because sets of assumptions frequently conflict with one another. A conserva-
tive compromise is to make only those assumptions that, in some sense, must
be true. Unfortunately, this approach may result in too few assumptions. For
example, if two completely conflicting assumptions are possible, the system
would assume nothing. Another solution is to have some method for choos-
ing one set of assumptions over another. For example, given two assumptions
(“Birds fly” and “Penguins don’t fly”), we choose the less general one (“Pen-
guins don’t fly”). Compromises are needed to avoid slow algorithms. The
following example illustrates some problems facing anyone who must decide
among conflicting assumptions.

Example 6.1 Which Defaults Should Be Assumed?

Nixon-Republican-Quaker: Nixon is a Quaker and a Republican. Without con-
trary evidence, Quakers are doves and Republicans are not. (Although Nixon
is deceased, we’ve retained the present-tense phrasing in this classic 1960s
example.)

Consider the query “Is Nixon likely to be a dove?” Using the “Quaker,”
information, we could assume that Nixon is a dove. Unfortunately, this is
opposed by the “Republican” information, which leads to the belief that Nixon
is not a dove. What should we do? If no other knowledge is available, the most
reasonable response to the query is “Insufficient information.”

Mollusca: Species in the phylum of Mollusca, which includes clams and snails,
normally have external shells. Mollusca contains the class Cephalopoda, which
includes squid and octopi. Cephalopods normally lack external shells; however,
they include the genus Nautilus, and nautiloids normally have external shells.

Consider the query “Is the chambered nautilus likely to have an external
shell?” Since nautiloids normally have external shells, we might answer “Yes.”
On the other hand, since nautiloids are cephalopods and since cephalopods
generally lack external shells, perhaps we should say “No.” On the third hand,
since cephalopods are mollusks, which generally have external shells, perhaps
“Yes” is correct after all.

What should we do? Researchers generally agree that the most restrictive
condition should be used. Since the three conditions are nautiloid, cephalopod,
and mollusk from most restrictive to least, we should use the information that
nautiloids normally have external shells. To carry this out in general, we need
an operational definition of “more restrictive.” I
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Exercises

6.1.F. What are some problems encountered in designing a method for nonmono-
tonic reasoning?

6.1.G. What are some methods for dealing with these problems?

6.2 Default Reasoning

If] knew what was true, I’d probably be willing to sweat and
strive for it.

—H. L. Mencken (1918)

Introduced by R. Reiter in 1980, default logic is still an active research area.
We’ll begin with an informal discussion of the meaning and usage of defaults
and then explore the formal ideas. The definitions are phrased in terms of
FOL; however—

All references to FOL in the following definitions can be replaced by
references to propositional logic with no changes.

Let’s assume such replacements whenever we use propositional logic.
Recall the semantic and syntactic definitions of consistent: Semantically,

we say that H is consistent with S if there is an interpretation in which both
fl and the formulas in S are true. Syntactically, fl is consistent with S if
8 l7’ (fifl). These definitions are equivalent in FOL because of the soundness
and completeness of the proof method for FOL. We’ll extend the syntactic
definition to default logic.

Definition 6.1 What Defaults Mean
If a, ,6, and 7 are formulas in FOL with no free variables, then

azfl—— which we can also write as (a 3 fl) —‘ 7

is a default rule, also called a default. (The notation (a : fl) ——x 7 is not
standard.) This rule means “if a is true and fl is consistent with what is
true, then we may assume that 7 is true.” There are two special cases:

0 The rule (01 z) —* 7 means “if a is true, then we may assume that 7
is true.” This is not the same as a —> 7, which says that if oz is true,
then we must assume that 7 is true.

0 The rule (: fl) -—* 7 means “if H is consistent with our beliefs, then
we may assume that 7 is true.”
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To indicate that (a(X) : fi(X)) _. 7(X) is a default rule when any sub-
stitution is made for X, we write

am woo e(X) = M)
”l 700 700 ' (6'5)

The extension of this definition to more than one variable should be ob-
vious.

Often, D and W denote the sets of default and FOL formulas, respec—
tively.

) or, more simply,

Definition 6.1 says that we may assume 7 is true—not that we must assume
it is true. Because of the may/must distinction, it’s important to regard (6.5)
as representing a collection of default rules instead of one single rule. If the
substitution of t for X gives an inconsistent Mt), then we cannot assume 7(t).
If the substitution of t for X gives a consistent fl(t) and a true a(t), then we
may assume 7(t) but need not do so. Consequently, we might assume some
7(t)’s and not others.

Let’s look at Example 6.1 in terms of default logic.

Example 6.2 Nixon and the Nautiloids Revisited

Nixon-Republican-Quaker: Let’s use predicates for dove, Quaker, and Repub-
lican and denote them by initials. Each takes one argument—a person. With
this notation, the Nixon information translates into the FOL and default for-
mulas

W = {(102), r(n)} and D = {q(Xd)(iXC§(X), T(X_ZC;(;03(X)} , (6.6)

respectively. The only constant in the language E is n and the only predicates
are q, 7°, and (1.

Since q(n) is true and d(n) is consistent with W, the first default
tells us that we may assume d(n). If we do so, we have the “extension”
8 = {q(n), r(n), d(n)}. Since fid(n) is not consistent with S, we may not apply
the second default rule.

On the other hand, if we’d started with the second default rule instead of
the first, we could have obtained 8’ = {q(n), 7°(n), -1d(n)}.

Mollusca: In this case, the translation is

W = {VX(n(X) a e(X)), VX(c(X) a mom}
,D:{m(X):e(X)

c(X):-1e(X)
n(X):e(X)}.

(6'7)
e(X) ’ “16(X) ,

e(X)
The only predicates in the language L: are m, c, n, and e. The only constant
will be a. By adding n(a) to W, we’d be in a position to answer the query
posed in Example 6.1. Let’s consider two other cases first.
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If we add m(a) to W instead, the first default rule tells us that we may
assume 6(a). There is no way we could use any other default rule, so it’s
reasonable to assume 6(a).

Suppose we add C(a) to W instead. Now W tells us that m(a) is also true.
Consequently, we may assume either 6(a) using the first default or -re(a) using
the second default.

Finally, suppose we add n(a) to W. Now W tells us that C(a) and m(a)
are also true. Consequently, we may assume either 6(a) using the first default,
-16(a) using the second default, or 6(a) using the third default. I

Default logic extends FOL by allowing default rules in the knowledge base.
A central concept is the idea of an extension, which consists of everything that
can be deduced given the FOL part of the knowledge base and some additional
formulas. Such formulas 7 are given by default rules (a : fl) —* 7. A recursive
definition is provided for deciding when something is an extension—that is,
deciding whether something is based on reasonable assumptions concerning
the default rules. The theory provides neither an algorithm for producing
extensions nor an algorithm for choosing which of several possible extensions
is best. This limits its usefulness.

The difficulty with producing extensions is essentially a consistency issue.
Normal default rules are an important special case of default rules because
they overcome this problem. As a result, an algorithm exists for producing
extensions when all the default rules are normal, provided the semidecidability
problem of FOL is dealt with—we must be able to decide that a formula cannot
be proved. This can be dealt with by restricting the allowable formulas to some
subset of FOL as discussed on page 208. Fortunately, many default knowledge
bases can be written in normal form.

Extensions

The idea of assuming defaults can be described explicitly by the notion of an
extension. Underlying the idea of an extension is the concept of a rational set
of beliefs. Suppose we have A = (’D, W). Our beliefs should certainly include
W and its consequences in FOL; however, we may believe additional formulas.
Suppose that (a : fl) —* 7 is in D, that a follows from our beliefs, and that
fl is consistent with them. Then it’s reasonable to believe 7 as well. Is more
required for rationality? Yes, what we believe should be what is deducible from
applying FOL to W and those 7’s obtained from D by the above procedure.
Writing this out in an explicit manner requires a somewhat convoluted and
cryptic definition. We’ll need to exercise a bit of care in stating the definition
in order to get it correct. The rest of this subsection is devoted to the definition
of an extension and a discussion of what it means.
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Definition 6.2 Some Terminology
Suppose we are given a predicate logic language .6 as in Definition 3.3
(p. 106). For any collection 8 of FOL formulas, let ThL(S) be the set of
all FOL formulas or such that S I- a; that is, Th£(S) is the collection of
all results that can be derived from S in Li. Usually, we’ll simply write
Th(S), with [I being understood.

Again, assuming a FOL language L, let W be a collection of FOL
formulas and let ’D be a collection of default rules. We call A = (D, W) a
default theory.

In order to define an extension of a default theory, we need to make use
of what is known as a nonconstructive definition; that is, a definition that
doesn’t tell you how to construct the object being defined. Nonconstructive
definitions don’t guarantee that the thing being defined exists or that it is
unique. You’ve already encountered such problems in calculus, as the following
example illustrates.

Example 6.3 Nonconstructive Definitions in Calculus

The derivative of f(x) is defined by
I

_
of (w) — ,{Igg

Although this definition appears to be constructive, it relies on the notion of
limit, which is nonconstructive:

We say liqa g(a:) : L if, for every 6 > 0, there is a 6 > 0 such that
If(a':) — LI < 6 whenever 0 < Ia: — a| < 6.

f($+h) - f0”)
h .

Because this definition is nonconstructive, we must prove that if a limit ex-
ists, it has only one value; that is, we can’t have limxda g(x) = L and
liqa g(:c) = M with L ¢ M. To avoid the problems of nonconstructive
definitions, we prove theorems that allow us to compute derivatives construc-
tively; e.g., (m”)’ 2 nm"'1 and (f(g(a:))’ : f’(g(a:))g’(m).

We could define the indefinite integral of a function f(0:) to be a function
F(a:) such that F’ (at) : f(a:). This definition is also nonconstructive. One of
the basic results of calculus states that if F(x) is any function which is the
indefinite integral of f (:13), then every indefinite integral of f (1:) is of the form
F(m) + C. This result is satisfactory in one way because it tells us what all
indefinite integrals of f(:3) look like in terms of one of them. In other ways,
however, it is unsatisfactory. For example, it doesn’t tell us whether f(x) has
an indefinite integral. (In fact, it may not.) I

In attempting to define an extension, let’s begin with an appealing, but
incorrect, definition and then explore how to correct it. We’re doing this be-
cause the complexity of the correct definition should be justified.
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Definition 6.3 Extension of a Default Theory (Incorrect)

Let a default theory A = (D,W) be given. For any collection 8 of FOL
formulas, define A5 to consist of W plus all formulas oz —> 7 for which

-I,B¢S and #ED.

If Th(A5) = S, we (incorrectly) call 8 an extension of A.

In this definition, we can think of S as a set of beliefs and we can think of A5
as W plus those FOL formulas our beliefs tell us we can obtain from D. The
equation Th(A3) = S then says that what we can deduce from our beliefs
and A is precisely our beliefs.

Where does the definition go wrong? The heart of the problem is as fol-
lows. If we are given a —> b and -1b in FOL, then we can conclude -:a. If
we are given (a :) A b and -b, we find nothing in the definition of defaults
about concluding -:a. In other words, defaults work only from left to right,
but ordinary implication works in both directions because of the contrapos-
itive, (-ib) —> (no). This causes problems in Definition 6.3 because -1b 6 W
anda—WE’DIeadto

‘IbEAs and (a—rb)€A3

for all 5. In other words, a —> (2 allows more reasoning than (a z) —x b because
of “contrapositive” reasoning based on (ob) ——> (-Ia). How can this problem
be resolved?

0 An obvious solution is to allow such “contrapositive” reasoning with de-
fault rules. There’s a good argument against allowing it: Sometimes it’s
not wanted; and if it ever is wanted, we can simply include (-I7 : fl) —>
(fia) as another default rule. As a result, such “contrapositive” reasoning
is not allowed with defaults and another resolution of the problem with
Definition 6.3 must be found.

0 Another approach is to try to define a new connective, say —\, that pre-
vents such reasoning. Unfortunately, this can’t be done within FOL—see
Exercise 6.2.1.

0 Yet another approach is to check that a is true and then include 7. This
leads to a better definition of As—in fact, to the one that is used.

A careful refinement of the last idea could lead to the following definition. In
keeping with standard notation, we’ll use I‘(S) in place of Th(A5) and add
the condition Th(I‘(S)) = I‘(S) to ensure that I‘(S) does in fact include all
the FOL formulas that can be deduced from something.

To simplify future discussion, we’ll assume that there are no rules of
the form %—‘ in ’D. With some care, this constraint can be removed.
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Definition 6.4 Extension of a Default Theory

Let a default theory A = (D, W) be given and let S be any collection of
FOL formulas. Define I‘(S) to be the set of FOL formulas such that

(a) Th(F(8)) = F(S) 2.) W.

(b) If “7‘2 e 1), a e r(3), and an 95 s, then 7 e r(5).

(c) [(8) is a minimum with respect to (a) and (b); that is, if I" satisfies
(a) and (b), then I" Q I‘(8).

Finally, if I‘(S) = S, we call 8 an extension of A.

Definition 6.4 is one of the more convoluted definitions in this text. Think
about it this way. 8 is what someone says is a reasonable set of beliefs given A.
We then construct I‘(S) to be those things we ought to believe based on A and
the beliefs 8. By (a), what we ought to believe should be closed under logical
deduction (Th(l"(S)) = I‘(8)), and we ought to believe what is absolutely true
(F(S) 2 W). By (b), we ought to believe results of default rules if we believe
a and if B doesn’t contradict the reasonable set of beliefs. By (c), we don’t
include anything in what we ought to believe unless it’s forced upon us by
A and 8. Finally, if the original set of beliefs was reasonable, this procedure
should merely have reconstructed it; that is, F(S) = S.

The definition contains two rather nasty twists. First, in (b) we use I‘(S)
to help define itself. Is such a procedure valid? Yes, when used carefully. In
this case, we can simply use (b) iteratively to build up F(S)—every time we
add more to I‘(S), we may find more rules with a 6 1(8). In fact, this iterative
application is the basis of Theorem 6.1 (p. 217). Second, in (c) we insist that
I‘(8) be a minimum. How do we know there is a minimum? Example: There
is no smallest rational number greater than 0. Example: There is no smallest
set X (_Z A = {1, 2, 3, 5} such that every element of A is either in X or a sum
of two numbers from X—both X = {1,2,3} and X = {1,2,5} are minimal
(nothing smaller works) but neither is a minimum (everything that works is
larger) because neither contains the other. The proof that the minimum in
(c) exists is left as Exercise 6.2.3.

Some examples of finding extensions should clarify how the definition
works.
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Example 6.4 Some Extensions

Nixon-Republican-Quaker: Consider the default theory (6.6). It has two default
extensions, namely

Th({q(n), r(n), d(n)}) and Th({q(n), r(n), fid(n) }). (6.8)

Why are these extensions and why are there no other extensions?
Suppose 8 is an extension. By definition, it must contain W. There are

four cases to consider regarding d(n)—whether or not it and/or its negation
are in 5. Here are the cases and the results.

0 d(n) E 8 and fid(n) E 8: We cannot apply the first default in (6.6) since
-ud(n) E 8. We cannot apply the second default since d(n) E 8. Hence
I‘(S) = I‘(W) and so does not contain d(n) or -Id(n). Hence we cannot
have F(£) = 8. Since 8 was assumed to be an extension, this case doesn’t
occur.

0 d(n) E 8 and -1d(n) ¢ 8: We can apply the first default to conclude that
d(n) E I‘(£); however, we cannot apply the second since d(n) E 8. Thus
I‘(£') : Th(W U {d(n)}).

o d(n) ¢ 8 and fid(n) E 8: Arguing as in the previous case, we get
I‘(£) = Th(W U {—ud(n)}).

o d(n) ¢ 8 and -Id(n) ¢ 8: Now both defaults apply and so d(n) and
-Id(n) are both in I‘(£), which is therefore larger than 8. Since 8 is an
extension, this case can’t occur.

What decision should we reach based on the two extensions in (6.8)? A
very conservative approach is to make only those assumptions that lie in all
extensions. Doing this means no assumptions would be made concerning the
truth or falsity of d(n).

Mollusca: In a manner similar to the above, you should be able to determine
the extensions of (’D, W’) where ’D and W are given by (6.7) and either

W' = W U {m(a)} or W' = WU {0(a)} or W' = WU {n(a)}.
For the first W’, there is one extension, Th(m(a),e(a)). Each of the others
has two extensions. Unfortunately, default logic does not tell us how to choose
among the possible extensions. The conservative approach suggested for Nixon
would lead to the conclusion that nothing should be concluded about a cham-
bered nautilus having a shell.

A Theory with No Extensions: Extensions need not exist. To see this, consider
the following simple default theory, which is written in propositional logic:

: a : -1a
W20 and D: ,—

flCl a

Let 8 be an extension. We claim that -1a 6 8. If not, the first default can be
applied to obtain -:a E I‘(£) = 8. Likewise, the second default tells us that
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a E 8. Unfortunately, if a, fia E 8, then neither default can be applied and so
neither a nor flu is in I‘(£), a contradiction. I

You may have concluded from the previous example that determining
possible extensions and verifying that they are extensions is nontrivial. This
is indeed the case. The following theorem makes verification easier. However,
the determination of extensions is, in general, much more difficult than solv-
ing an N P-complete problem. As a result, researchers have looked for special
situations in which a reasonable algorithm for finding extensions can be con-
structed. Soon we’ll discuss a classic case—normal default theories.

Theorem 6.1 Reiter’s Test for Extensions

Let A = (D, W) be a default theory and let 5 be a set of formulas. Define
80 = W and, for 2' 2 0,

g.+1=Th(s.-)u{7 aaafl ((aes.) A (swam 9%9 ED) }
Then 8 is an extension of A if and only if 8 = US$06}.

Computer programs deal with finite situations. Since 83- g 8.41, they even-
tually have 8,; : n+1 for some 17.. You should be able to easily show that
8,- : 8,, for all i Z n and so @9308,- = 6),. The theorem therefore leads to an
algorithm for verifying that a set 8 is an extension. It does not provide an
algorithm for generating extensions since we must already have 8 in order to
define 85+1—the definition includes fifl ¢ 6'.

The following proof of the theorem is closely reasoned and a bit tricky, so
it will probably require some study on your part.

Proof: Let 8’ = ugoa. In the proof, the obvious relations

5’ 2 5i+1 2 T110902 52' 2 50 = W
will be useful. We’ll begin by proving

(a) Th(£’) = 8’ 2 W.
(b) Ifa—,;IQ ED, aeg’, and fifl¢£, then 7 68’.

We have 8’ 2 80 = W. Since Th(T) 2 T for any T, (a) will be proved when
we show that Th(8’) g 8’. Suppose or E' Th(£’). It is deduced from a finite set
of formulas in 8’ (possibly just one, a itself). Any formula in 8’ must be in
one of the 85’s whose union constitutes 8’ . Since the Si’s increase with 2', the
finite set of formulas needed to deduce oz must be contained in some 513. Since
8’ Q Th(8k), we have 8’ Q Th(8’), and so (a) is proved. Claim (b) follows
because a must be in some 8,- and so 7 6 554.1.

Comparing (a) and (b) with the corresponding parts of Definition 6.4 and
using the minimality of I‘, it follows that

r(::) <_:_ 5' (6.9)
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for any set 8.
Since the theorem is an if and only if, we’ll consider two separate impli-

cations.
First, assume that 8 = I‘(8) and prove that 8 = 8’. By (6.9) and 6 =

I‘(£), it suffices to prove 8’ g 8. We claim that 8.- Q 8. Here’s a proof
by induction. The case 2' = 0 is simple. Now assume that 85-1 g 8. Then
Th(8,-_1) _C_I Th(8) = 8, the last because 5 is an extension. Let 9g E D be
such that a E 8;-1 and fifi ¢ 8. Then a E 8 and so 7 E I‘(£) = 8. This proves
the claim. From the claim, 8’ Q 8.

Second, assume that 8 = 8’ and prove that 8 = F(£). By (6.9), it suffices
to show that 8’ (_I I‘(£), for then I‘(8) = 8’ = 8. To prove 8’ (_Z F(£), it
suffices to prove by induction that 8,- g I‘(£). The case 2' = 0 is simple:
80 = W Q l"(8). For purposes of induction, assume 8;-1 (_: I‘(£). We need
to check two things. First, we have Th(€,-_1) g Th(I‘(£)) = I‘(£). Second, if
a 6 815-1, fifl ¢ 8, and if E ’D, then a E I‘(£) and so 7 E I‘(£). This proves
that 8,; g F(£), completing the proof. I

Example 6.5 Verifying Extensions

Let’s use the theorem to verify the extensions in the previous example. First,
consider (6.6) with

5 = Th({q(n),r(n),d(n)}).

By the theorem,

80 = W = {(101), 7171)},
81 = Th({q(n), 7‘(72)}) U {6100},
82 = Th({¢I(n), 7"(71), d(”)D U {6101)},
53 = Th({‘1("): 7’01): d(n)}) U {(103)} = 52-

Since 8 = 82, it is an extension.
Next consider the Mollusca example with 8 = Th(W U {e(a)}) and

n(a) E W. Since the only constant is a, we can simplify W accordingly. By
the theorem,

50 = W = {01(0) —* 6(0)), (0(0) —* 771(0)), 71(0)},
81 = Th(W) U {6(0)},
82 = Th(W U {6(a)}) U {6(0)},
83 = Th(W U {6(a)}) U {6(a)} = 82.

Finally consider the Mollusca example with 8 = Th(W U {fie(a)}) and
n(a) E W. By the theorem,

50 = W = {01(0) —* 0(0)), (0(0) —* m(a)), 71(0)}:
azrmwx
£2 : Th(W) U {—‘3(a)}a
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83 = Th(W U {“€(a)}) U 96(0)},
84 = Th(W U {-Ie(a)}) U {-ie(a)} = 83.

In the first Mollusca case, we picked up 6(a) immediately because n(a) E 80.
In the second case, we needed c(a) to get -ue(a) and this did not appear until
81. I

You’ve just seen how Theorem 6.1 provides an algorithm for checking
proposed extensions. It can also be used in place of Definition 6.4 to simplify
proofs.

Here are two facts about the nature of extensions. Their proofs are left
as exercises.

o Incomparability of extensions: Iff,‘ g 8’ are extensions of A,
then 8 = 8’ . In other words, given any two extensions, each (6-10)
must contain formulas not contained in the other.

0 Consistency of extensions: If A has an inconsistent exten-
sion, then that is its only extension. If W is consistent, then (6.11)
all extensions are consistent.

Aside. I didn’t give the general definition of defaults. A general default has the
form (a : 31,...,flm) —* 7, where the commas are like ANDS. The requirement
fifl ¢ 5 is then replaced by the set of m requirements fifli ¢ 5 for 1 S i S 717.. Let
6 = [91 A - - - A flm. The default (a : 6) —~ 7 is not quite equivalent to the original
default. See Exercise 6.2.6 for more details.

Exercises

6.2.A. Various desiderata for an extension were listed. What is the correspondence
between each of them and the parts of Definition 6.3? Definition 6.4?

6.2.B. Let E be a set of FOL formulas. Prove that Th(£) = 8 if and only if 5
consists of all the FOL formulas that can be deduced from E.
Hint. This requires nothing more than an understanding of the problem and
the definition of Th.

6.2.1. We want to define a connective —~ in FOL such that
(i) (a A (01 —-* 6)) I: 3 and
(ii) it is possible to have (16) A (a -—- [3) true, but this provides no

information about 01.

(a) Show that the first condition implies that whenever a and (1 —~ 6 are
true, 6 is true.

(b) Show that the second condition implies that whenever fl is false, we
must have a —* 6 true, regardless of the value of a.
Hint. What happens if a _. [3 is both true and false when 6 is false?

(c) Show that the previous conditions cannot be satisfied simultaneously.
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6.2.2.

6.2.3.

6.2.4.

6.2.5.

*6.2.6.
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Determine all extensions of the following default theories. (The number of
extensions ranges from zero to two.) Use Theorem 6.1 to verify that each
extension is indeed an extension. In each case prove that you have found all
extensions.

(a) W: {a,—.a}, D={‘—b‘1}.
(b) W={a,b}, D={%'3}.
(c) W: {a,b,fic}, D={9‘—b}.

(d) w: {a,} v: (“T‘bf—C, MW}.
(e) W = {b —> fi(aVc)}, D: {€,%,¥}.

The purpose of this exercise is to prove that the minimality condition (c) in
Definition 6.4 makes sense. Define I” (S) to be any set that satisfies (a) and
(b) in the definition and define I‘(S) to be the intersection of all I” (S)’s.
Prove that I‘(S) satisfies (a), (b) and (c) in the definition.

The goal of this exercise is to prove (6.10). Suppose 5 and 8’ are both
extensions of A and that 6' Q 5'.
(a) Prove by induction that when the construction in Theorem 6.1 is applied

to E and 8', we always have 8,- I_) 8;.

(b) Use the previous step and the theorem to conclude that 8 Q 8'. Then
conclude that E = E’.

Prove (6.11). Recall that, if T is inconsistent, then T I: a for all formulas
or.

9

Hint. Use (6.10) for the inconsistency claim. Prove the consistency claim by
contradiction: Assume 8 is inconsistent and prove that E = W.

This exercise refers to the discussion in the Aside preceding the exercises.
Recall that ,6 = [31 A - - - A flm. Let 5 be a set of FOL or propositional logic
formulas with Th(£) =

(a) Let 'D1 = {(a : b,b’) —- c}, let D2 = {(a. : bAb') —~ 0}, and let
W = {a, ((-Ib)V(fib’))}. Determine the extensions of (D1,W) and
(03, W). (You needn’t prove your results.) Which extensions contain 0?

(b) Suppose that the ,6,- are distinct propositional letters and that m > 1.
Show that 13 E Th(-I,B) and that i3; ¢ Th(-1,6) for all 2'.

(c) Prove 16 ¢ 8 implies that 16,- ¢ 3 for 1 S 2' S m.
Hint. State and prove the contrapositive.

(d) Prove: If one may use (a : ,6) —- 7 to include 7 in an extension, then
one may use (a : ,31,...,flm) —~ 7 to do so, but not necessarily con-
versely.
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*6.2.7. Let 3 be a consistent extension of A = (D, W), let [3 Q 5, and let
A' = (D, W U B). Prove that 8 is an extension of A’.
Hint. You can apply Definition 6.4. The hard part is the minimality condition.
You can also use Theorem 6.1, but it has a difficult part, too.

Normal Default Theories

To illustrate the nonmonotonicity of default logic, suppose that W = {a, -1b}
and D = {(a : b) —* b}. Using only a from W and the default in D, we arrive
at the unique extension Th({a, (2}). Hence b is true. Using all of W and D, we
arrive at the unique extension Th({a, fib}). Hence it was incorrect to conclude
that b is true.

What can be done to avoid looking at all of A? The requirement that fifi ¢
8 in the definition of an extension means that we have to look at the entire
knowledge base W and whatever we have derived from defaults. Given the
definition, the need to use all of W is inevitable. People have created default
theories where not all of D need be used. Among these, Reiter’s “normal”
default theories are the first and best known. For them, what you don’t know
about D won’t hurt you. In other words, an extension built using part of D
can be augmented to obtain an extension that uses all of D. Not only that,
every normal default theory has at least one extension.

Definition 6.5 Normal Defaults
A default of the form (a : fl) —* fl is called a normal default. If all defaults
in D are normal, then (D, W) is called a normal default theory.

The following theorem contains the remarks in the opening paragraph and a
bit more.

Theorem 6.2 Properties of Normal Default Theories

Let D’ g D be sets of normal defaults, let A = (D,W), and let
A’ = (D’ , W). The following are true.

(a) The theory A has at least one extension.
(b) For every extension 8’ of A’, there is an extension 8 :_> 8’ of A such

that
GD(8’,A') g GD(£,A) (6.12)

where

a:fl
GD(8,A)={——7—ED aegandfiflglff}.

(This is the general definition of GD( ). For normal theories, ,6 = 7.)
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We call the set GD the “generating defaults” set because it, together with W,
produces 8:

8=Th(WU{7|((a:fl)—¥7) EGD(£,A)}). (6.13)
What (6.12) tells us is that 8 is generated by a set of defaults that include
those used to generate 8’. See Reiter’s paper [20] for proofs of Theorem 6.2
and (6.13).

Theorem 6.2 allows us to construct a proof method for normal default
theories similar to SLD-resolution—the basis of Prolog. Indeed, Prolog can be
used to implement such a method.

How does this method work? For simplicity, let’s examine a pseudo-Prolog
example. Unlike ordinary Prolog, the pseudo-Prolog knowledge base will grow
as the proof progresses (and shrink upon backtracking). Suppose we are cur-
rently trying to establish pred(a,X). It may be possible to establish it by
ordinary FOL from the knowledge base. If not, we look for a default rule
(oz : ,8) —* 6 where ,8 can be unified with pred(a,X). We must verify that
-:fl is not provable from the FOL part of the knowledge base and we must es-
tablish 6. Once this is done, the fact pred(a,X), possibly with X replaced by
another term, is added to the FOL knowledge base. During backtracking, it
must be removed.

To see why this works, let A = (D,W) be the original normal de-
fault theory. Let D’ consist of those defaults (a : ,6) —~ ,6 for which 6
was added to the knowledge base. The pseudo-Prolog reasoning produces
an extension 8’ of A’ = (D’,W) in which the original query is true. In
fact, GD(8’,A’) = D’—all the defaults in D’ are generating defaults for
8’. Theorem 6.2 shows that 8' is contained in some extension 8 of A.

Exercises

6.2.C. Define a normal default and a normal default theory.

6.2.D. What does it mean to say that what you don’t know about ’D won’t hurt
you if ’D contains only normal defaults? Give an answer in words and then
give an answer in terms of one extension’s containing another.

6.2.8. Using the definition of I‘(S), prove (6.13) when 8 is an extension of A. In
other words, prove that if 8 is an extension as defined in Definition 6.4, then
the right side of (6.13) is a formula for 5.

6.2.9. How does default logic deal with the four problems listed for nonmonotonic
reasoning? (See p. 207.) What about normal default theories?
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6.2.10. Sir Galahad, a knight of the Round Table, is facing a dragon which is guard-
ing Lady Millicent, a damsel. The knights of the Round Table are acquainted
with the following facts of medieval life:

A dragon will kill a knight if and only if the dragon is dangerous.
Dragons guarding damsels are always green.
Fire-breathing dragons are always dangerous.
Dragons guarding damsels normally breathe fire.
Green dragons normally do not breathe fire.
Green dragons are normally not dangerous.

(a) Write the rules and facts in the notation of a normal default the-
ory.

(b) What are the possible extensions? Explain.

(c) What can you conclude about the dragon’s color and ability to breathe
fire in the various extensions? About Sir Galahad’s getting killed?
Why?

Prolog and Default Reasoning

Prolog treats negation as failure; that is, the formula -np(. . .) is considered
to be true if the attempt to prove p(. . .) fails. (You can see the discussion
on page 169 for further explanation; however, it’s not needed here.) In this
section, we’ll briefly discuss this from two points of view. First, how Pro-
log’s negation as failure can be viewed as default reasoning. Second, how
Prolog’s negation as failure might be used to implement default reason-
ing.

We claim that treating negation of a predicate as failure can be trans-
lated into a normal default theory. To do this, we add defaults of the
form

: fiPn(X1,.. .,Xn)
"IPn(X1, . . . ,Xn) , (6.14)

for all n and all n. argument predicates Pn. Why does this work? The ex-
planation is closely related to the discussion at the end of the previous sec—
tion on normal defaults. Try to explain why (6.14) works before reading fur-
ther.

* * * Stop and think about this! * * *

Suppose we want to establish -1P(a1, . . . ,an). According to (6.14), we can as-
sume it, provided it does not lead to an inconsistency. Recall that a consistent
FOL knowledge base together with any formula or is inconsistent if and only
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if -va can be proved from the knowledge base. In our particular case, the fact
that -1P(a1,...,an) is not inconsistent means that -1(—:P(a1,...,an)) can-
not be deduced. Canceling the double negation and putting it all together,
(6.14) tells us that we may assume fiPn(a1,...,an), provided P(a1, . . .,an)
cannot be deduced from the knowledge base. This is precisely negation as
failure.

In the previous section, we saw that the assumptions must be added to
the knowledge base of the normal theory before continuing. Prolog doesn’t do
this—it doesn’t add fiPn(a1, . . . ,an) to the knowledge base. In general, failing
to add assumed formulas can lead to errors. Consider

: -1a : -1b
W={aVb} and ’D:{ fia ’T}'

We can assume either act or fib. Assuming both leads to an inconsistency be-
cause W contains a V b. Prolog’s knowledge base does not allow general FOL
statements. In particular, it doesn’t allow a V b, so we can’t conclude from
this example that what Prolog is doing can produce inconsistencies. Clearly
we need a solid grasp of the concepts and tools to decide if Prolog’s treat-
ment of negation is consistent with default logic. What Prolog does is okay,
but let’s not prove it here.

Let T(a) be the translation of the FOL formula a to Prolog. If fl is the
negation of a predicate, define the translation of

11‘((a :fl) ——»7) to be 'Jl‘(7) :- not 'll‘(-Ifi)), 'll‘(a).

*6.3 Other Modifications of Logic

In this section, we’ll briefly explore the two other approaches to adapting FOL
mentioned earlier in the chapter: circumscription and modal logic. Although
defeasible reasoning logically belongs in this section, we’ll postpone it until
Section 6.6, after we talk about semantic nets.
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Circumscription

In default reasoning, the rule (a : fl) —A 7 means roughly that it’s okay to
assume fl in proving 7 as long as everything remains consistent. We’re then
told to assume as much as we can without causing inconsistency. This usu-
ally leads to more than one possible extension and so we’re faced with the
problem of what to believe.

John McCarthy’s circumscription [14] attempts to deal with this problem
by calling attention to the abnormal situation in which —.fl is true rather than
the normal situation in which fl is true. It then seeks to minimize abnormality.
If this were all, it would be no different from default reasoning. Circumscrip-
tion makes two other changes. First, it eliminates default rules, using instead
FOL statements like (a /\ (fip)) ——> 7 where the predicate 10 indicates abnor-
mality. Second, it insists that the circumscribed interpretation be such that p
is not true unless it is true in all possible interpretations. Interpretation here
refers to the semantics of the FOL language which was defined informally in
Definition 3.6.

The approach to circumscription that we’ve just sketched requires work-
ing with the semantics of FOL. Since proof techniques for FOL are based
on syntax, it’s reasonable to ask if and how the concept of circumscription
can be formulated purely syntactically. This can be done using second-order
predicate logic: that is, FOL with the added feature that predicates can be
quantified. Unfortunately, it is impossible to find complete proof methods for
second-order predicate logic—they’ve been proved not to exist. Nevertheless,
one could hope for something reasonable: Circumscription is only a special
case of second-order logic, and besides, a proof method that sometimes failed
might be acceptable in practice.

What is the syntactic form of circumscription? Let p(X) be the pred-
icate whose truth we want to limit and let A(p) be the conjunction of all
the formulas in the knowledge base. (Hence, the knowledge base must be
finite.) Add the following statement, where the variable ¢ stands for a pred-
icate:

V¢ (WW /\ VX(¢(X) _. pm») _. VX(p(X) _. ¢(X))). (6.15)
This looks rather confusing and intimidating. What does it say? Since the for-
mula inside the V43 is an implication, it only tells us something when the left
side is true.

0 A(¢) tells us that 45 is a predicate for which all formulas in the knowledge
base are true.

0 VX (¢(X) —-> p(X)) tells us that p(X) is true whenever ¢(X) is true.
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The conclusion can be rewritten in the equivalent form

VX ((‘1¢(X)) —* ("P(X)))-
In this form, it says that p(X) is false whenever ¢(X) is false.

Why does this ensure that p is not true except when necessary? The left
side of (6.15) tells us that 45 is any predicate that can be used to replace p
in the knowledge base and that is true whenever FOL tells us that p is true.
Imagine we have such a predicate and we use it in place of p because it works
just as well. Might this new predicate do better than p; that is, might it be
false sometimes when p is true? No, the right side of (6.15) says that this is
impossible.

Thus, by describing properties that 19 must have when compared to all
possible predicates, (6.15) creates limits on when p can be true.

Example 6.6 Applications of Circumscription

Suppose that our knowledge base contains the following FOL formulas:

VX ((bird(X) A -ap(X)) —-> flies(X)) 1

VX (penguin(X) —+ p(X)) 2

bird(b) 3
bird(c) 4
penguin(c) 5

Using FOL, the only simple predicate conclusions we could reach about I) and
c are formulas 3—5 and, by using 2 and 5, p(c).

Now suppose we circumscribe the predicate 1) using (6.15). Then A(p) is
the conjunction of 1—5. By the previous paragraph, A(¢) I: 45(6). Because
of this, we should try letting ¢(X) be a predicate that is true when X = c
and false otherwise. For this 45, A(¢) is true. Does ¢(X) imply p(X)? Yes,
as we now show. We need to check only the situation in which ¢(X) is true.
This only happens when X = 0; but it was noted in the first paragraph that
A(p) I: p(c), and so p(c) is true.

Now for the right side of (6.15). By (6.15), p(X) must be false whenever
43(X) is false. Since ¢ was chosen to be true if and only if X = c, it follows
that p(X) must'be false except possibly when X = c. On the other hand, we
know that A(p) I: p(c), and so the predicate 1) must be true for c and nowhere
else.

As a result of circumscription, we can use formulas 1 and 3 and fip(b) to
conclude flies(b).
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The previous example is a standard example in nonmonotonic reasoning.
Here’s another.

quaker(nixon)
republican(nixon)

VX ((quaker(X) A (fip1(X))) —-> (dove(X))) 8

VX ((republican(X) A (-Ip2(X))) —> fidove(X)) 9

You should show:

0 By circumscribing p1 we are able to conclude dove(nixon).
o By circumscribing 192 we are able to conclude -rdove(nixon).

Which conclusion is correct? It seems best to circumscribe both p1 and 192.
This presents difficulties that are beyond the scope of the present discus—
sion. I

Modal and Autoepistemic Logics

Modal logics enrich the language of FOL (or propositional logic) by adding
one or more modal operators. The operators are added to the language I. and
Definition 3.5 (p. 107) is expanded to allow for them. One possible addition
to Definition 3.5 is:
(e) If C? is a modal operator and a is a formula, then (0a) is a for-

mula.

If the operator 0 is intended to capture belief, you can think of (9a as saying
“oz is believed.”

In FOL, manipulation and interpretation of formulas built using con-
nectives are based on our knowledge of propositional logic. This in turn
relies on the notions of T and F. Someone defining a modal logic is now
faced with the problem of what to do with formulas containing modal op-
erators.

One possible approach is to use the axiomatic method of proof (p. 140).
In this method, we provide schemes that can be used to reason about formu-
las. A scheme looks like a formula, except that it contains arbitrary formulas.
We’ve already used something like this in defining formulas; for example, if a
is a formula then so is (-:a). In the axiomatic approach to ordinary logic, a
common axiom is

(a A (a —> fl» —-> ,6, called modas ponens.
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In modal logic, the axiom system will depend on what meaning the de-
signer intends to capture by the modal symbols. If we think of @a as meaning
that a person believes a and if we want to reason about beliefs in a rational
manner, we might introduce the following axioms:

o (0(a —> fi)) ——> ((0a) —> (Om) If one believes that (1 implies fl, then
it is true that a belief in a implies a belief in fl.

0 (00:) —> (00a) If a is believed, then one believes that or is be-
heved.

o (-106!) —> (0-1001). If a is not believed, then one believes that a is not
believed.
In FOL, we state an axiom system and then attempt to prove that

it is sound and complete. The notions of soundness and completeness re-
quire a notion of what formulas mean, that is, a semantics. Without any
semantics, an axiom system is rather uncertain: How do we know that it
is powerful enough to prove what we want but not so powerful that it al-
lows us to reach incorrect conclusions? Without semantics, such “knowl-
edge” is simply a belief. In some areas, belief suflices. In nonmonotonic rea-
soning, a paper proposing a reasoning method is usually followed by pa-
pers that point out unsuspected deficiencies in the method. Consequently,
it’s important to provide as much of a theoretical foundation as possi-
ble.

Modal logic was introduced by C. I. Lewis in the 1930s because of prob-
lems with implication. In FOL, the truth of a —> ,6 depends only on the truth
of a and H. The “normal” interpretation of implication says that or —> ,8 is
true only when fl “can be deduced” from 0:. Consider the following two state-
ments.

0 If X is a unicorn, then X is a fish.
0 If X is a unicorn, then X has hooves.

Since there are no unicorns, both statements are true in FOL. Only the latter
statement is true with the normal interpretation of implication. The solu-
tion proposed for this problem was to introduce the modal operator D, which
is read “it is necessary that.” The statement Ba means that in all possible
worlds (which must be defined), a is true. Then

0 D(if X is a unicorn, then X is a fish) is false because we can imagine
worlds with unicorns; but

0 D(if X is a unicorn, then X has hooves) is true because the concept of a
unicorn, essentially a horse with a horn, includes the notion that unicorns
have hooves.

This is called strict implication.
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Note: Modal logics need not deal with belief; for example, temporal logics
deal with situations where time is important.

6.4 Rule Systems

A rule base which contains say, .500 rules, might only contain
some 10,000 words, perhaps less. Yet textbooks are seldom less

than 100,000 words. What has happened to the 90,000 words
which are omitted from expert systems? Were they superfluous to
the textbook? Is expertise in an expert system more refined, more
formalist even that that contained in a textbook? My suspicion is

that all the faults which flow from the textbook tradition are
simply magnified by the expert systems methodology.

—Philip Leith (1990)

We’ve already noted the distinction between oz —> 0 and (a : ) —* 0; namely,
the former allows us to conclude -:a from 10 while the latter does not. This
is the essence of rule systems.

Basic Concepts of Monotonic Systems

A basic rule system consists of a language .6 consisting of atomic formulas A,
which were defined in Definition 3.5, and rules of the form

VXI...VXk((a1A..-Aan)—xfi) (6.16)
where n 2 0, a1,...,an,fl E A, and the only variables in a1,...,an,fl
are X1,...,Xk. Rule systems being used in research and commercial ex-
pert systems allow more general rules. Nevertheless, they share some features
that distinguish them from FOL. In FOL, quantifiers and connectives pro-
vide the foundation for constructing and reasoning about complex formulas.
In rule systems, both the construction and the reasoning are severely lim—
ited:

o The connectives —* and A are always present, but their use is limited
to the form given in (6.16). For example, we cannot say p -—* (q —x r).
The connective -. is usually allowed, but its meaning differs from that in
FOL.

0 Usually the only quantifiers allowed are as specified in (6.16).
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o Reasoning with the rule (6.16) is done as follows. If the a,- are known
to be true, then ,8 is also true. In particular, when n = 0 the rule
has the form —* fl, and so ,3 is known to be true a priori. We are
not allowed to conclude (fifl) —* (pa) from a —* ,6 as we are in
FOL.

One type of proof method in FOL, called the axiomatic method, is based on
reasoning with rules that are often called axioms. Unlike rule systems, these
rules are “metarules” about the language. An example of such a metarule
18

For all formulas a and fi, if a and a —> 6 are true, you may conclude
. (6.17)that ,8 1s true.

Note that this is a rule that holds for all formulas a and 6. In contrast, in
a rule such as (6.16), 01, . . . , amfl are specific formulas. Thus an axiom like
(6.17) represents an infinitude of rules in a rule system.

Given these limitations of rule systems, why are they used? Here are some
arguments in favor of rule systems:

0 By limiting the expressiveness of the language, it’s possible to find more
efficient algorithms than have been found for FOL.

o The rule system interpretation of if—then statements is closer to natu-
ral language than the FOL interpretation is. This closeness facilitates the
design and maintenance of knowledge bases.

0 Unlike FOL, rule systems isolate inconsistencies.

0 Rule systems can incorporate procedural statements, which FOL can-
not.

0 Rule systems can incorporate quantitative features, which FOL can—
not.

As a result, rule systems are a popular format for designing expert systems
and can be found in nearly every expert system shell. These shells frequently
include a numeric approach to uncertain reasoning, usually based on either
certainty factors (Chapter 8) or fuzzy logic (Chapter 9).
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Forward versus Backward Chaining

You may have noticed that rule systems look a lot like Prolog. In fact, Prolog
is a rule system. Suppose that m, . . . , an and ,6 are atomic formulas, that is,
predicates with terms as arguments. The rule

(alA---/\an)—~fl (6.18)

is used just like a Prolog rule—we can conclude that fl is true if the ai’s
are true. When rule systems use Prolog’s method of depth-first search for
answering queries, it’s referred to as backward chaining. The pros and
cons of depth-first search were already discussed in connection with Prolog
(p. 122).

Rule systems also use what is known as forward chaining. Instead of
working backward from the desired conclusions, we work forward from the
given facts. In other words, if a .1 ,6 is a rule and a is a fact or a con-
junction of facts, then the system adds fl to its collection of facts. This is
called firing the rule a —* fl. Actually, things are not this simple. We should
avoid firing rules that only give known facts. If rules were purely declara-
tive, we could simply avoid firing rules twice. Unfortunately, most rule sys-
tems allow procedural code and so it makes sense to fire a rule more than
once.

Negation

Rule systems often allow negation and deal with it the same way Prolog
does—negation as failure. (We discussed this for Prolog on page 169 and in
connection with default logic on page 223.)

If a rule system allows negation in the consequence of a rule (head of
a clause), new problems arise. As long as the heads of clauses cannot con-
tain negations, there is a consistent FOL interpretation of the knowledge
base: Interpret every predicate as always true. This is consistent because
a —> fl is true in FOL whenever fl is true. If negation is allowed in the
heads of clauses, we can no longer use such a simple interpretation because
any clause whose head has a negation will now have its head interpreted as
false. Here’s a simple set of three pseudo-Prolog rules that illustrate the prob-
lem:

p(X) :- q(X). fip(X) :- q(X). q(a).

This knowledge base is inconsistent and both p(a) and —. p(a) can be
deduced.
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Example 6.7 Implementing Negation in Prolog

It’s actually a relatively simple matter to implement a form of predicate nega-
tion in Prolog. First, define a new operator (function), say neg, to indicate
this negation. Next introduce rules for negation:

negate(neg Literal, Literal) :- !.
. . (6.19)negate(Literal, neg Literal).

If negate is applied with its first argument instantiated to either an atomic
formula or its negative, then negate will instantiate its second argument to
the negative of the literal. To see this, note that the first clause strips off a
neg if one is present and prevents the use of the second clause with a cut
operator. The second clause simply adds a neg regardless of the nature of
Literal. This is very far from being a full FOL implementation of negation.
For example, suppose we are given

p(X) :- q(X). neg p(a).

In FOL, we can deduce neg q(a), but the Prolog inference engine will not
do so. When faced with the query “'?- neg q(a) . ” it looks for clauses whose
heads can be unified with neg q(a). Since there are none, the query fails. Ba-
sically, all (6.19) does is allow Prolog to use negations in front of predicates
and to realize that the negation of a negation is the original predicate. Nev-
ertheless, this can be a useful alternative to negation as failure. I

Limiting the Effects of Contradictions

In the various forms of logic, consistency plays an important role; however,
we cannot design an algorithm to check that a general FOL knowledge base
is consistent. (This is the semidecidability of FOL mentioned earlier.) Unfor-
tunately, if the knowledge base is inconsistent, then everything is a conse-
quence of the knowledge base—from a false hypothesis you can deduce any-
thing.

Aside. Why is this so? Recall that S l: a means that, for every interpreta-
tion in which 5 is true, a is also true. Equivalently, we can state this in con-
trapositive form: For every interpretation in which 01 is not true, 5 is also not
true. The statement that 8 contains a contradiction means that there is no in-
terpretation in which 8 is true. It follows that S l: a in this case, regardless
of what the formula or is—it may even use only predicates and terms that don’t
appear in S!
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In contrast, the limited reasoning powers of rule systems allow them to
limit the effects of inconsistencies. As a result, errors in one part of the knowl-
edge base will not affect unrelated parts of the knowledge base. This is im-
portant in practical applications because a large knowledge base may easily
contain contradictions, especially if it is produced by more than one per-
son.

If a reasoning system is to be practical for large applications, then
(6 20)it must localize the effect of knowledge-base contradictions. '

What about Prolog? Since it’s based on FOL, it apparently doesn’t
localize contradictions. Not so, because, as recently noted, an ordinary Pro-
log knowledge base is always consistent. Suppose Prolog is extended to al-
low a form of negation in the heads of clauses, as in (6.19). Inconsisten-
cies are possible. Does Prolog localize them? Yes. Prolog with negation
is a rule system rather than a full implementation of FOL negation.

Non monotonicity

So far, we’ve only described statements such as “If a then 6.” Rule systems
might allow nonmonotonic statements such as

“If a then 6 unless 7.” (6.21)

Such a statement could be translated into the default logic rule

(a = av) —* fl.
Since negation is regarded as failure when using backward chaining, the rule
will apply if a can be deduced and 7 cannot be deduced.

When using forward chaining, the interpretation of (6.21) is different:
The rule can fire if a is known to be true and 7 is not known to be
true. The condition on 7 is much weaker than the requirement that 7 can-
not be deduced because it doesn’t preclude the possibility that 7 might be
deducible. Why would someone want such a rule? The situation is quite
common in procedural code because once something has been done, it’s
“known.” A generic example of such a rule could be phrased “If a then
do ,8 unless 7 has been done.” An example of such a rule is “If going
to bed then set the alarm clock unless the alarm clock has been set.”
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Exercises

6.4.A. What is a rule system? Why is Prolog a rule system?

6.4.B. What are some of the advantages of a (monotonic) rule system over FOL?

6.4.C. Why is a rule system able to isolate the effects of an inconsistency in its
knowledge base? Why is this important?

6.4.D. What is backward chaining? forward chaining?

6.4.E. How are nonmonotonic rules interpreted differently in forward and backward
chaining?

6.4.F. Why is a Prolog knowledge base always consistent?

6.5 Semantic Nets

Information is generally organized into hierarchies with a twofold
goal: devise a conceptually clean model of the represented world,
and give rise to a compact storage organization which may also

enable easier navigation through and search of information.

—Maurizio Lenzerini, Daniele Nardi, and Maria Simi (1989)

Symbolic logic deals primarily with bricks and mortar, semantic
nets more with principles of architecture.

—Fritz Lehmann

While rule systems depart from FOL by limiting the reasoning power to a
“more natural interpretation” of if—then statements, semantic nets depart
from FOL by focusing on relationships between concepts and representing
them graphically. A semantic net is a directed graph (Definition 2.1 (p. 36))
in which each vertex contains information about a concept and each edge
describes a relationship between two concepts.
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Definition 6.6 Semantic Net

A binary relation R on a set V, often just called a relation, is simply
a binary predicate. Binary relations are sometimes written in infix no-
tation; for example, “a: R y” means “R(x,y) is true.” A semantic net
is a set V of concepts and one or more binary relations R1,R2, . .. on
V.

The situation is represented graphically by letting V be a set of ver-
tices and joining u and v with an edge labeled R; if u R,- v. The edges are
called links.

A common alternative representation replaces each labeled directed edge in
the definition by two unlabeled directed edges connecting at a vertex whose
label is that of the original edge:

becomes

Parse trees, which you have probably seen in connection with computer
languages, are related to semantic nets. In fact, semantic nets were originated
by researchers in natural language understanding. In this case, links indi-
cate grammatical (i.e., syntactic) and semantic relations between parts of a
sentence—agent, object, manner, et cetera. Some researchers still limit the use
of the term to such situations while others have adopted the broader defini-
tion given above. A variety of semantic nets have been developed for a variety
of tasks. We’ll explore two types.

0 Frames: Developed independently of the semantic net concept, frames
can be viewed as general data structures for representing semantic nets.
Frames use the same method for data representation as object-oriented
programming: A frame has “slots” for data, may contain other frames,
and may “inherit” properties from other frames. In fact, frames inspired
the development of object-oriented languages even though frames were
created to facilitate reasoning, not to design programs.

0 Inheritance Systems: These are semantic nets in which attribute informa-
tion tends to be “transitive” (defined below). For example, the information
that a cat is a feline is a carnivore could be represented by the vertices
“cat,” “feline,” and “carnivore” together with the edges cat —> feline and
feline —> carnivore, with the edges labeled “is-a.” Through inheritance,
we can conclude that a cat is a carnivore.

We’ll look at some default reasoning with a simple inheritance system. Here’s
a definition of an inheritance system.
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Definition 6.7 Inheritance System

We say that a binary relation :3 4 y is a partial order if the following
conditions hold:

0 We never have a: 4 a3.

0 Whenever a: 4 y and y 4 z, we have a: 4 z.

A partial order is also called a transitive order. If the concepts V in a
semantic net have a partial order, we say that the net is an inheritance
system (with respect to the partial order).

In drawing the graph associated with a partial order, we frequently omit
edges that can be deduced by transitivity. Thus, if (u, v) and (v, w) are edges,
we may omit (u,w). The edge (u,w) is understood to be present by inheri-
tance.

Example 6.8 Some Simple Inheritance Systems

The biological classification of organisms is a traditional example of an inheri-
tance system. The concepts (vertices) are types of organisms and the ordering
relation is “is a” as in “a lizard is a reptile” and “a reptile is a vertebrate.”
We’ll denote the ordering by IS-A. Since IS-A is transitive, we have an in-
heritance system and we can draw conclusions such as “a lizard IS-A verte-
brate.”

In a tournament, the entities are the players and the ordering accord-
ing to who wins each match. This ordering is not transitive. For example, it
may happen that Alice beats Bob, Bob beats Cathy, and Cathy beats Alice.
Transitivity would have required that Alice beat Cathy. Thus this is not an
inheritance system.

A semantic net may have more than one relationship (edge). A common
type of relationship indicates an attribute as in “a reptile has four limbs.”
This can be converted to IS-A: “A reptile IS-A four-limbed creature.” Because
IS-A is transitive, it follows that “a lizard has four limbs.” We may still want to
distinguish between the two types of edges, since one indicates a classification
and the other indicates attributes.

Unfortunately, if we add “a snake IS-A reptile,” we would be able to con-
clude “a snake has four limbs.” One solution to this problem is to not declare
that reptiles have four limbs, but rather declare it for each type of reptile
that has four limbs. Since snakes are practically the only exception, it would
be better if we could override the inheritance by declaring that a snake has
no limbs. In IS-A terms, “not(a snake IS-A four limbed creature).” Since the
ability to override default information is a key attribute of nonmonotonic
reasoning, inheritance systems provide a method for implementing such rea-
soning. I
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Exercises

6.5.A. What is a binary relation?

6.5.B. What are semantic nets? inheritance systems?

6.5.C. Give an example of an inheritance system that is not found in the text.

Frames

A frame is something that contains slots. An attribute is associated with each
slot. For example, the frame for a matrix might contain three slots whose at-
tributes are:

(a) number of rows,
(b) number of columns, and
(c) entries in the matrix.

For any particular matrix, each slot (a) and (b) contains a positive integer
and slot (c) contains a list of real numbers. Frames are related to one another
in two ways:

0 Containment: Usually a slot is simply filled with a value or values, but it
may contain a frame; for example, the frame for automobile may contain
the frame for internal combustion engine.

0 Specialization: The frame for computerized classroom is a specializa-
tion of the frame for classroom which is a specialization of the frame
for room. A specialization may inherit slots (door, blackboard), delete
or override others (desk), and introduce new ones (computer termi-
nal).

A frame is often represented pictorially as a tabular array, as shown in Fig-
ure 6.1.

We’ve seen that defaults play a major role in nonmonotonic reason-
ing. They first appeared when Minsky introduced frames in 1975. How do
frame defaults work? The default value for the fuel type of an auto-
mobile’s internal combustion engine subframe may be gasoline. This
leads to nonmonotonicity since we would normally conclude that the fuel
is gasoline, but might override the default value with diesel for some en-
gines.
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Sports Car —>- Automobile
doors:2 doors 4-~ wheels 4 .

engine;---"---> I.C. Engine

fuel: gasoline
cylindersz?

Figure 6.1 Part of an automobile frame system. I . C . stands for Internal Com-
bustion. A dashed arrow points to a frame that is part of another frame and a
solid arrow to a superframe of a frame. The values of attributes are inherited un-
less the frame contains a value that supersedes the inherited one. A question mark
indicates that the value is not specified by the frame.

Example 6.9 Converting Frames to Rule Systems

The description of frames can be phrased in terms of rule systems or default
logic. One possibility is to introduce predicates for the various frames and
slots. This leads to a mess. The key idea for a cleaner translation is to in-
troduce predicates that express the relationships of a frame system. Here’s a
possible (partial) set of predicates.

predicate meaning
frame(X) X is a frame.
Is-A(X,Y) Frame Y is a special case of frame X.
slot(X,S) S is a slot of X.
default(X,S,V) V is the default value of slot S of X.

Some of the relationships in Figure 6.1 are described by the following Prolog
facts

frame(automobile).
slot(automobile, doors).
default(automobile, doors, 4).
slot(automobile, engine).
defau1t(automobile, engine, ic_engine).
IS-A(automobi1e,sports_car).
defau1t(sports_car, doors, 2).

In addition to the facts, the knowledge base must have some axioms or rules
so that conclusions can be drawn. One FOL axiom is the transitivity of
IS-A:

VX VY VZ((Is-A(X, Y) /\ Is-A(Y, 2)) —» Is-A(X, 2)),
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which can easily be rewritten as a rule for a rule-based system.
This quick sketch omits quite a bit. For example, there must be ax—

ioms that allow defaults to be inherited and to be overridden. Also, a
complete translation of a real frame system would use additional predi-
cates. I

Manipulating Simple Inheritance Systems

We can take two approaches to the manipulation of inheritance systems. First,
we can interpret the system in terms of another reasoning tool, as was illus-
trated in Example 6.9. Second, we can develop methods directly without con-
verting to another system. We’ll explore this approach for semantic nets in
which IS-A edges provide a partial order. (Remember that this may involve
some rewriting, as in “a reptile IS-A four legged creature” rather than “a rep-
tile has four legs.”) The nets we’ll consider will be directed graphs with two
types of vertices and four types of edges.

0 The edges are absolute (—~) and default (--->), each of which may be
negated. (We’ll temporarily ignore default edges.)

0 The two types of vertices are constants and predicates. No edge may point
toward a constant and only absolute edges and their negations may point
away from a constant.

0 An edge 7' —> 3 means s(r) if r is a constant and ‘V’X (r(X) ——> s(X)) if r
and s are predicates.

0 An edge r 7‘» 3 means -:s(r) if r is a constant. If r is not a constant, it
means VX (1°(X) —> fis(X)), which is equivalent to VX (-ur(X) V -Is(X)).
From this symmetric form, it follows that, when r and s are not con-
stants,

s 74» r and r 74— s are equivalent. (6.22)

Although we’ve translated —> and 74> into FOL terms, full FOL reasoning
with them is not allowed in inheritance theory. All that’s allowed is (6.22)
and transitivity based on —>. This is like reasoning in a rule system. Here are
the rules of inference:

(a) Symmetry: If a: +> y and a: is not a constant, we may add the edge y 7‘» a:
to the digraph.

(b) Positive chain: If x,- —> n+1 for 1 S i < k are edges in the digraph, we
may add the edge 3:1 —> an, to the digraph.
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(c) Negative link: If x,- —> 33,-4.1 for 1 _<_ z' < k, yj —>yj+1 for 1 S j < m, and
wk 7‘» ym are edges in the digraph, we may add the edge :31 74> yl to the
digraph if yl is not a constant.

These inference rules can be justified by FOL interpretations. They can also
be justified from the inheritance net viewpoint. In that case, we adopt them as
axioms (or definitions) based on the intended meaning of the digraph. Which
approach is better?

0 In either case, we must introduce axioms or definitions. To convert to
FOL, we must define the meaning of the digraph in FOL terms and then
use the axioms and definitions of FOL.

o In converting to FOL, we make available the machinery of FOL, but this
is trap. Notice that the allowed rules of inference are limited, so any FOL
result must be checked to see that it uses only those rules. If we get sloppy
on this, we’ll make mistakes.

On balance, it seems preferable to justify (a)—(c) as axioms based on what we
want the digraph to mean. Let’s do that now.

Symmetry: An edge :13 74> y means that no a: is a y. Suppose that y 74> a: is
not true. Then there must be some u that is a y and also an (1:. This contra-
dicts the meaning of a: 71-» y, and so we’ve justified (a). Note that this is not
a proof, because we’ve shown that (a) should be assumed given our under-
standing of what :13 74> y should mean. This is comparable to the geometry
assumption (axiom) that says, based on our understanding of what points
and lines mean, precisely one straight line can be drawn through two distinct
points.

Positive chain: Since a: —> y —> z means that every :8 is a y and every 3/ is a
2, every :1: is a z. This forms the basis of (b).
Negative link: We can justify (c) in one step, but it’s probably easier
to see if we do it in parts. First, 1) —> q 74» 7* says that every p is
a q and no q is an T. It follows that we should conclude no p is an
r; that is, p 71-» r. This argument can be expanded to justify (c). Do
it!

* * * Stop and think about this! * * *

Alternatively, we can deduce (c) using the p—q-r result with (a) and (b):
For simplicity, assume that neither :81 nor yl is a constant. From (b),
1:1 —> an, and y1 —> ym. It follows with p :: (1:1,q : 1:1,, and r = ym
that :31 71+ ym. By (a), ym 74> 1:1. Since yl —> ym, we have yl 7‘» :31. Ap-
ply (a)-



6.5 Semantic Nets 241

black widow—’ spider —> arachnid

/\
lives with humans ‘— pet exoskeleton

\
Spot—’beagle -—> dog —> mammal

Figure 6.2 An inheritance network without default rules. All the vertices are
predicates except for “Spot,” which refers to some constant—a particular thing. See
Example 6.10 for a discussion of possible inferences.

Example 6.10 Reasoning with —> and 7‘»

Figure 6.2 shows a small inheritance network. Here are some of the conclusions
that (a)—(c) allow us to reach.

0 Using (a), we can reverse the directions of the two negative edges if we
wish.

0 Using (b), we can reach conclusions such as “a black widow spider has an
exoskeleton,” “Spot is a dog,” and “beagles live with humans.”

0 Using (c) with m = 1, we can conclude things like “spiders are not pets,”
“dogs do not have exoskeletons,” and “pets are not arachnids.” (Actu—
ally, the first is not correct in the real world because some people keep
tarantulas as pets.)

0 Using (c) and the paths from Spot to pet and black widow to pet, we can
conclude that “Spot is not a black widow spider.” This conclusion can also
be reached by using the paths from Spot to mammal and black widow to
mammal, where the latter ends with a negative edge from exoskeleton to
mammal. I

We’ve interpreted “Spot” and “beagle” in Figure 6.2 as a constant and
a predicate, respectively; however, they could both be considered constants.
Simply let “beagle” be the set of all X that are beagles. For consistency, let
“Spot” be the singleton set {Spot}. Then a: —+ y simply means that :1: g y.
This process of converting a predicate (like beagle) into a constant is called
reificatz'on.

What we’ve seen so far is just a subset of FOL. Now we come to an
important distinction. Like rule systems, inheritance nets localize contradic-
tions.
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mammal

/\
exoskeleton +>milk

/\
bird ‘— pigeon

Figure 6.3 Additional edges and vertices for Figure 6.2. See Example 6.11 for a
discussion.

Example 6.11 Limiting the Effects of Inconsistencies
Let’s include information about milk giving and about birds in Figure 6.2 by
adding the edges and vertices

mammal —> milk and bird 7‘» milk,

because we believe that mammals give milk and birds do not. Actually, pi-
geons secrete a cheeselike substance, called pigeon’s milk, into their crops
and regurgitate it for nestlings. Figure 6.3 shows the new parts that we’ve
added to the digraph in Figure 6.2 plus two facts related to exoskele-
tons.

The figure contains a contradiction because we can conclude pigeon 74>
milk, contradicting pigeon —~ milk. In FOL, the existence of a contradic-
tion allows us to deduce that anything whatsoever is true. Because of the
limited rules of inference in an inheritance net, this does not happen. Since
the contradiction involves pigeons, any contradictory result must involve the
mention of pigeons. (This is true in FOL as well as inheritance nets.) From
the rules (a)—(c), we see that the derivation of a contradiction will involve
a path through “pigeon.” In other words, a contradiction will involve state-
ments about pigeons or about things that are pigeons, such as Tweety in
Tweety —> pigeon. Thus, the contradiction does not affect other parts of the
digraph. I

While localization'of contradictions is important, we need more—a way to
eliminate the contradiction and still preserve the structure of the net. That’s
the purpose of default edges. In particular, we should replace bird +>milk
with bird -/-> milk and introduce appropriate interpretations and rules for rea-
soning with such edges. The edge a: ---> y corresponds to the default rule a: —-* y.
The edge a: -/-> y corresponds to the statement “most .7: are not y” or to the
statement “normally, at’s are not y’s.”

What reasoning rules should be used when the nets contain default edges
as well as absolute edges? Let’s revisit Example 6.1 (p.209) to get some guid-
ance.
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dove
,x' ‘-.. external shell

Quaker Republican \

Nautilus —* Cephalopoda —* Mollusca
Nixon

Figure 6.4 The information from Example 6.1 (p. 209) as an inheritance system.
See Example 6.12 for a discussion.

Example 6.12 Nixon and Nautiloids Revisited Again

The information about Nixon and the Mollusca phylum that was given in
Example 6.1 is represented pictorially in Figure 6.4.

In the Nixon diamond on the left in Figure 6.4, there are two directed
paths from Nixon to dove. If we treat the default edges as solid, we could con-
clude that Nixon is a dove by using the left path and that he is not by using
the right path. There are two options. Either accept one of the contradictory
conclusions or accept neither.

In the Mollusca digraph, there are various paths that could allow us to
conclude that nautiloids and/or cephalopods have or do not have external
shells. Unlike the Nixon example, there are correct choices: Nautiloids usually
have shells and cephalopods usually do not. I

How can the issues raised in Example 6.12 be dealt with in the context
of inheritance systems? Let’s sketch the basic ideas.

As a first step, pretend that all edges are absolute; that is, replace --->
with —> and -/-> with 74>. Then use the rules of reasoning with —> and 74>.
If no contradiction is present, your conclusions should be accepted with two
modifications. First, any chain of reasoning that used a default edge should
state its conclusion with a default edge. Second :8 -/-> y does not imply
y -/-> 3:.

When contradictions arise, as in Figure 6.4, the reasoning process is more
complicated. There are three basic principles:

1. If more than one path leads from A to B, the one with the more restric-
tive default rules is preferred. While this resolves the problem with the
nautiloids, it needs to be stated more carefully and precisely to cover all
cases.

2. If more than one path leads from A to B and if contradictory paths
are not “preempted” by more restrictive ones by the previous princi-
ple, we are faced with an ambiguous situation. A conservative reasoner
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would avoid drawing any conclusion. This arises in the Nixon exam-
ple.

We should not add edges based on inferences that use default rules.
This contrasts with what we said about reasoning with absolute rules
(page 239). To see why this principle is needed, suppose we didn’t know
that nautiloids normally have shells. This means that the edge

Nautilus ---> external shell

would be missing in Figure 6.4. Using the modified digraph, we would
infer

Nautilus -/-> external shell. (6.23)

If someone later added

Nautilus ---> external shell (6.24)

because she knew more than we, it would conflict with the inference (6.23).
The rule of preferring the more specific default would lead a user to use
(6.24) and so reach the correct conclusion. On the other hand, if the in-
ference process had been allowed to add an edge for (6.23) before the
fact (6.24) had been added, there would be no way to resolve the conflict.

Exercises

6.5

6.5.

6.5.

.1. Show that, if edges are added using the positive chain rule (p. 239), then —>
becomes a transitive relation.

2. For this exercise, use the FOL meaning of 7‘» given before (6.22). Suppose
that :12 7‘» y and y 74— 2. Should we be allowed to conclude either a: —> z
or 23 74> z? If the answer is “yes,” prove it. If not, give a counterexam-
ple.

3. Select some topic and construct an inheritance network for it like those in
Figures 6.3 and 6.4. Your network should have at least three of the four
types of edges and in the neighborhood of ten vertices. Explain all edges
that require specialized knowledge or are not self-evident. List at least two
conclusions that can be drawn from your network.
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6.6 Defeasible Reasoning

A simpler system is probably a better account of actual human
reasoning, provided of course that it otherwise adequately reflects

what we observe in ordinary practice.

—Donald Nute (1992)

The ideas and pitfalls encountered in previous sections can provide the ba-
sis for constructing still other methods for nonmonotonic reasoning. In this
section, we’ll briefly explore defeasible reasoning. Let’s begin with some ob-
servations drawn from previous discussions.

0 A solid algorithmic foundation is important. This lack was a problem for
default logic. On the other hand, the complexity of nonmonotonic reason-
ing makes a solid theoretical foundation important, too.

0 Negation plays an important role in nonmonotonic systems. Thus we must
face what negation means—FOL negation, Prolog negation as failure, or
something else as in Example 6.7.

o A reasoning system with a direction, like the edges in nets and the arrows
in rules, helps localize the effects of contradiction.

0 From our study of inheritance systems, it appears that generality is
important—among competing default rules, those whose conditions are
the most specific are the most believable. For example, a default rule
about attributes of cephalopods is more believable than one about at-
tributes of mollusks when we’re studying a cephalopod.

Defeasible reasoning, or defeasible logic, is the name given to a collection of
nonmonotonic reasoning methods that focus on algorithms with a solid the-
oretical foundation. These methods have a rule-system flavor. Defeasible rea-
soning methods use generality (and possibly other methods) to defeat chains
of reasoning whose rules can have exceptions.

The Syntax of Defeasible Reasoning

A simple defeasible reasoning system is essentially a rule system. We’ll define
a system with three types of rules: absolute, defeasible, and defeating.



246 Chapter 6 Nonmonotom'c Reasoning

Definition 6.8 The Syntax of Defeasible Reasoning

As in FOL, we are given constants, variables, functions, and predicates.
We use them to construct

(a) terms, which are the same as in FOL (Definition 3.4 (p. 106));

(b) atomic formulas, which are the same as in FOL—predicates whose
arguments are terms (Definition 3.5(a));

(c) literals, which are atomic formulas and their negations;
(d) conjunctions of literals.
Instead of formulas, we have facts and rules:
(e) A fact is a literal that contains no variables.
(f) A rule is a string of the form VX . . .VY(a :> I) where

0 all variables have been universally quantified (so none are free);
a a is a conjunction of one or more literals;
o l is a literal and
o :> is one of the symbols —>, --->, and -/->.

When we refer to a conjunction of literals, we allow for the possibility
that there will be only one literal (and hence no /\ symbol).

Facts and rules using —> should be thought of as ordinary facts and rules;
that is, they are always true. We’ll call them “absolute.” Rules using ---> are
called “defeasible.” They are presumed true unless there is reason to believe
otherwise. Rules using -/-> are somewhat like the negative of those using --->
and are called “defeaters.” Facts normally have no variables. The universal
quantifiers are often omitted because they’re understood to be present. Here’s
a simple example of each type of rule:

bird(tweety) Tweety is a bird. a fact
bird(X) —> wb(X) Birds are warm-blooded. rule 1

bird(X) ---> 11370!) Birds can normally fly. rule 2
bird(X) /\ sick(X) -/-> f1y(X) A sick bird may be unable to fly. rule 3

A defeater oz -/-> [3 is like the defeasible rule a ---> fifi. For example, we might
say

bird(X) /\ sick(X) ---> fif1y(X) A sick bird normally can’t fly. rule 4

There is a significant difference between rules 3 and 4. Both prevent us from
concluding that a sick bird is likely to be able to fly, but rule 4 does more. It
allows us to conclude that a sick bird probably can’t fly. If we think that lots
of sick birds can fly and lots can’t, we’d put rule 3 in our knowledge base. If
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we think sick birds usually can’t fly, we’d put rule 4 in our knowledge base
instead.

The Laws of Defeasible Reasoning

What are the laws for manipulating the various rules of defeasible reasoning?
Prolog can be used to manipulate rules and facts that contain —>. In this ma-
nipulation, a negated term is treated like a term. For example, -1bird(rover)
can be thought of as neg_bird(rover), where neg_bird is a new predicate.
Defeasible rules are used in the same manner, unless there is a good reason
for believing that the rule is not applicable. The notion of what constitutes
a “good reason” forms the heart of defeasible reasoning and will take some
time to explicate fully.

There are two reasons why we would not use a defeasible rule even though
its body is satisfied. The first reason is the existence of a defeater. For exam-
ple, if Tweety is sick, rule 2 and the fact bird(tweety) suggest that Tweety
can fly, but rule 3 defeats this. The second reason is that we can also de-
rive the negation of the rule’s conclusion (head in Prolog). This brings us to
the situation discussed earlier: Of two defeasible rules, the one with the more
specific preconditions is favored.

How can the reasons in the preceding paragraphs be made explicit
enough to be implemented in an algorithm? Four things require explica-
tion:

0 how to negate a literal (copied from FOL),
0 how to use facts and absolute rules (copied from monotonic rule sys-

tems),
0 how to use defeasible rules and facts, and

how to “defeat” a possible defeasible derivation.

Except for consistency and the notion of defeating, the rules for doing these
things are fairly straightforward. To simplify the discussion, we’ll assume con-
sistency of the facts and absolute rules:

Consistency Assumption: If the facts and absolute rules are
used to form an FOL knowledge base, with -1 interpreted as

(6.25)negation and —> as implication, the FOL knowledge base is
consistent.

Since descriptions are simpler without quantifiers, we’ll assume that any
rule in the knowledge base having universal quantifiers has been replaced by
a (possibly infinite) set of rules in which all possible variable-free terms have
been substituted for the variables.
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Negation: Iffl is p(. . .) for some predicate p, then fifl is -:p(. . ..) Iffi is -np(. . .)
for some predicate p, then —»fl is p(. . ..) The latter is simply the FOL fact that
fifia is equivalent to at. (It’s necessary to state this explicitly because FOL is
not used as a basis for defeasible reasoning.)

Absolute Derivation: Call a literal fl absolutely derivable if the fact ,6 is
in the knowledge base or if the rule a—>fl is in the knowledge base and
a is a conjunction of absolutely derivable literals. This recursive defini—
tion is essentially a statement of the way monotonic rule systems oper-
ate.

Defeasible Derivation: This definition is more complicated than that of ab-
solute derivation because it’s possible to contradict a conclusion—a process
called “defeating.”

Call the literal fl defeasibly derivable if one of the following is true:
0 fl is absolutely derivable;
o a —> fl is in the knowledge base, a is a conjunction of defeasibly deriv-

able literals, and a —> fl is not defeated by method (a) or (b) below;
or

o a ---> ,8 is in the knowledge base, a ---> ,8 is not defeated, and a is a
conjunction of defeasibly derivable literals.

Defeating: Here are the ideas behind defeating. An absolute rule can be de-
feated by a fact or a contrary absolute rule. These also defeat a defeasible
rule. In addition, a defeasible rule a m» fl can be defeated by a defeasible rule
7 ---> ~18 or a defeater 7 -/-> ,8 unless the hypothesis a is “more restrictive”
than the hypothesis 7. Stating what “more restrictive” means is a bit tricky.
It’s contained in (ii) below.

Now for the explicit formal definition. Let a be a conjunction of the de-
feasibly derivable literals a1, . . . ,an. The rule a ---> fl is defeated by all three
of the following and the rule a —> ,6 is defeated by (a) and (b).

(a) -:fl is fact.
(b) 7 —>-fifl is in the knowledge base and 7 is a conjunction of defeasibly

derivable literals.
(c) 7 is a conjunction of defeasibly derivable literals 77- such that

(i) either 7 ---> fifl or 7 -/-> H is in the knowledge base and
(ii) at least one 77- is not absolutely derivable from the rules in the knowl-

edge base and the additional facts a1, . . . ,an.

Condition (ii) is somewhat confusing. Let’s unwind it. Suppose that the hy—
pothesis 7 were less restrictive than the hypothesis 0:. Then we should be
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able to derive 7 from a and our general knowledge. (General knowledge
can be thought of as rules. Facts are normally specific knowledge.) Con—
dition (ii) simply states that this doesn’t happen, where “derive” is inter-
preted as “derive absolutely.” Since this doesn’t happen, the rule in (i) is
at least as believable as a ---> [3. The next example should help clarify
the application of the definition and also help explain why it’s appropriate.

Example 6.13 Nixon and the Mollusks One More Time

The rules for the Nixon diamond can be read from Figure 6.4 (p. 243). Perhaps
the claim that most Republicans are not doves is too strong. Let’s weaken it
a bit. The resulting rules for our knowledge base are

quaker(X) ---> dove(X) . rule 1
republican(X) -/-> dove(X) . rule 2
quaker(nixon). fact 1
republican(nixon) . fact 2

There’s no rule that would let us conclude absolutely that Nixon is not a
dove; however, rule 1 and fact 1 potentially let us conclude defeasibly that
he is a dove. Is rule 1 defeated? The only rule that might defeat it is rule 2
since it satisfies (i) in the definition of defeating. It also satisfies (ii) because
a = a1 : quaker(nixon), 7 = 71 = republican(nixon), and 71 is not abso-
lutely derivable from a1 and the rules in the knowledge base—we also need
fact 2.

The mollusk rules from Figure 6.4 are

nautiloid(X) —> cephalopod(X) rule 1
cephalopod(X) —>mollusk(x) rule 2
nautiloid(X) ---> external-shell(X) rule 3

cephalopod(X) ---> fiexternal-shellfli) rule 4
mollusk(X) ---> external-shell“) rule 5

Suppose we add the fact cephalopod(octopus). We can now conclude abso-
lutely that an octopus is a mollusk. What can we say about its shell? The only
rules that are useful in this connection are 4 and 5. Rule 5 does not defeat
rule 4 because we can use rule 2 to derive the hypothesis mollusk(octopus)
from the hypothesis cephalopod(octopus). Thus, we can use rule 4 to con-
clude defeasibly that an octopus does not have an external shell. On the other
hand, you should be able to see that rule 4 defeats rule 5. Hence we cannot
use rule 5. I
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Concluding Remarks

We’ve seen why defeasible reasoning is not simply an extension of FOL. Is
it a rule system? That depends on your definition. Some people think of
rule systems as having relatively simple methods for manipulating the rules—
something on the order of complexity of simple Prolog. Others allow more
complex manipulations. Whether you call defeasible reasoning a rule system
depends on your position on complexity.

How reasonable are the assumptions behind defeasible logic? Probably
the most controversial issue is the way in which defeat is defined. In de-
ciding whether a rule a ---> ,6 is defeated, we do not concern ourselves
with how a = al A A an was established. If we take into account the
rules that were used to establish the ag, we might be able to show that
some rule 7 ---> fl defeats our rule. Essentially, this means that once we’ve
decided to accept something, we don’t question it every time we use it.
Defenders argue that human reasoning seems to work this way and that
it gives a computationally practical algorithm. Attackers argue that hu-
mans do eventually reexamine accepted “facts” and also point out that the
goal is to develop a solid reasoning system, not to imitate a human be—
mg.

Aside. I’ve cheated a bit in this section. First, there’s the consistency assump-
tion (6.25). As I noted at the time, it’s not essential. The ability of rule sys-
tems to isolate the effects of inconsistencies can be utilized to eliminate it. In
doing this, you must be more careful with the definitions of derivability and
defeat. Second, I chose the method of presentation I thought would best con—
vey the motivation behind defeasible reasoning. Unfortunately, this is probably
not the best approach for proving properties of defeasible reasoning. As a re-
sult, the treatment you’ll find in the literature differs from the one given here.

Exercises

In the following exercises, defeasible reasoning always refers to the definition intro-
duced in this section.

6.6.A. What is the syntax of defeasible reasoning?

6.6.B. When is something absolutely derivable?

6.6.C. Without explaining defeating, explain when something is defeasibly deriv-
able.
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6.6.D. What are the basic ideas behind defeating? How is this related to a major
criticism of defeasible logic?

Each of the following exercises has four parts:

(a) Translate the prose into defeasible logic syntax.

(b) Use defeasible reasoning to answer the queries.

(c) Translate the prose into default logic syntax using normal defaults.

((1) Find all extensions.

6.6.1. (Answer follows) Here are the rules:

Mammals usually don’t fly. Bats normally fly.
Vampires are mammals. Bats are mammals.

Given that Dracula is a vampire, what should we believe about Dracula’s
ability to fly? Given that Tea Tray is a bat, should we believe that Tea Tray
flies?

6.6.2. Here are the rules:

College students are adults.
Adults normally work full time.
If someone works full time, he/she works.
College students often work.
College students normally do not work full time.
College students over 30 often work full time.

For each of the following should we believe that they work? work full time?
don’t work full time? Why? What happens if we remove rule 4?

Mary, who is an adult.
John, who is a college student.
Bill, who is a 35—year-old college student.
Karen, who is a 25-year-old college student.

6.6.3. These rules are taken from [15]:

1. Utah residents are usually Mormons.
2. Mormons usually do not drink beer.
3. BYU alumni living in Utah are usually football fans.
4. Football fans usually drink beer.

Should we believe that BYU alumni living in Utah drink beer? Do you agree
with the conclusion? Why or why not?



252 Chapter 6 Nonmonotonic Reasoning

6.6.4. The statements for this exercise are the same those as for Exercise 6.2.10
(p. 223).

(a) Write the statements in defeasible reasoning notation.

(b) What can you conclude about the dragon’s color and ability to breathe
fire? Why?

(c) What can you conclude about Sir Galahad’s getting killed? Why?

Answers

6.6.1. Here are the translations of the rules in the same order given in the prob-
lem. Universal quantifiers have been omitted. The meanings of the predicates
should be obvious.

m(X) -/-’ f(X) b(X) ---> f(X)v(X) —» m(X) b(X) —» m(X)
An alternative version of the first rule is m(X) ---> fif(X). Given 'v(d),
we can certainly conclude m(X). With the rules as stated, that is all we
can conclude. With the alternative first rule, we can conclude that Dracula
presumably doesn’t fly. Given b(tt), we can certainly conclude m(tt). From
b(tt), we can defeasibly derive f(tt), unless the rule is defeated. Since only
the first rule could defeat the conclusion, we need only look at case (c) in
the definition of defeating. Since we are trying to defeat b(X) ---> f(X) with
m(X) -/-> f(X), a = b(X) and 7 = m(X). Since 7 is derivable from b(X)
and the rules, our attempt at defeat fails. In other words, we can conclude
that Tea Tray can presumably fly.

For default reasoning, we can construct normal default rules for the two
default situations:

D: {m(XwflX) b(X)=f(X)}#(X) ’ f(X) '

The remaining rules together with one of the facts constitute either Wd or
Wt, say. For Wd, there is a unique extension obtained by using the first rule
in 'D to conclude -1f(d) and then taking the closure using Th. This contrasts
with the defeasible case where the two versions for the first rule gave two
different results. For Wt, we can use the second rule in ’D to add f(t) and
the take the closure using Th. Another extension can be obtained by first
concluding m(t) and then proceeding as we did for Dracula. In contrast to
the defeasible case, we have two extensions. Whether Tea Tray can fly or not
depends on the extension.
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Notes

Current logic will interact with AI and computer science,
it will be forced to evolve into its next evolutionary stage,
and the new logic will do wonders for AI and computing.

—-Dov M. Gabbay (1992)

Logicians and philosophers have studied nonstandard logics for some time.
(Any logic not contained in FOL is called nonstandard.) Much of their re-
search has been oriented toward logics with different levels of truth (as
in modal logics, which we barely touched on). AI researchers are rela-
tive newcomers. But after McCarthy introduced his idea of circumscription,
they entered the field in force and began to dominate it. Their orienta-
tion was toward nonmonotonic logics, which appear to be different from
logics with multiple truth levels; however, the two can be reconciled. By
1980, many AI researchers accepted the idea that some form of nonmono-
tonic reasoning would be essential to achieve the goals of Al. The field is in
flux.

For a mathematical treatment of a wide variety of topics, see the hand-
book [6]. For various aspects of qualitative nonmonotonic reasoning, see the
articles collected and introduced by Ginsberg [8]. Brewka [2] and Ramsay [19]
have written monographs on nonmonotonic logic. Pollock [17] discusses as-
pects of nonmonotonic reasoning in connection with his research on self-aware
machines. For a more detailed discussion of Pollock’s defeasible reasoning,
see [18]. The results on default logic in the text are taken from Reiter’s
original paper [20] which is quite readable and contains many more results
and examples as well as a discussion of algorithms for normal default theo-
ries. Marek and Truszczyriski [13] treat default and autoepistemic logics and
their relationships to each other. You may find Geffner’s thesis [7] interest-
ing.

Several AI texts discuss rule systems and some types of semantic nets,
for example, [9], [25], [1] and [21]. Brewka [2] relates rule systems to non-
monotonic logic. In the other direction, FOL can be done pictorially. See [22]
for an introduction. The broadest in-depth introduction to semantic nets is
provided by the collection [11] edited by Lehmann. A more limited intro-
duction is given by Carpenter and Thomason [3]. Some aspects of inheri-
tance systems and other semantic nets are discussed in [12] and [24], respec-
tively.

My material on defeasible reasoning was based mainly on [4] and [15].
The former is an introductory text containing an implementation of defeasible
reasoning in Prolog. The version is somewhat different from that presented



254 Chapter 6 Nonmonotonic Reasoning

here—the rule a —> ,8 is not defeated by (b). Nute’s article [15] provides
the theoretical background that I omitted. Since it contains logic techniques
that I haven’t discussed, it may be difficult. Pollock [18] presents a more ex-
pressive defeasible reasoning language than Nute does, but is then faced with
potentially slower algorithms.

Most of the methods proposed for nonmonotonic reasoning face com-
putational problems, at least as far as worst-case behavior is concerned.
Some approaches are undecidable; others are N P—hard. Papadimitriou and
Sideri [16] discuss the computational complexity of finding extensions in de-
fault logic. Selman and Levesque [23] discuss the computational complex-
ity of inheritance systems. How important are these computational prob-
lems? If we’re willing to accept the possibility of occasional failure, worst-case
behavior may not be too important. Unfortunately, typical behavior is of-
ten much more difficult to determine. Regardless, the results on computa-
tional complexity indicate that nonmonotonic methods must be used with
care.

Biographical Sketch

Raymond Reiter (1939—)
Born in Toronto, he received his BA. and MA. at the University of Toronto,
where he now teaches. In 1967 he received his Ph.D. in computer science from
the University of Michigan at Ann Arbor. His research areas are mechanical
theorem proving, the theory of computation, and their connections with ar-
tificial intelligence. In 1978, Reiter stimulated research on the closed-world
assumption by defining it for databases and establishing some of its proper-
ties. It seldom happens that an idea is born mature—later researchers usually
improve and extend it. Reiter’s important 1980 paper on default logic is an
exception. In fact, the default logic section of this chapter is little more than
an abridged version of Reiter’s paper.
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Probability Theory

The theory of probabilities is at bottom nothing but common
sense reduced to calculus.

—Pierre Simon de Laplace (ca 1820)

Probabilities are numbers, and number crunching is exactly what
AI was supposed not to be.

—Glenn Shafer and Judea Pearl (1990)

Introduction

In this chapter we’ll look at some basic probability theory that’s needed for
AI work. Formally, probability theory is a part of real analysis, whose study
presupposes a thorough grounding in calculus. Fortunately, we don’t need all
this power; in fact, for this chapter we don’t even need calculus.

The next section introduces the core concept—the finite probability
space—and some related ideas. Then we examine conditional probability and
independence—tools that are essential for incorporating new information in a
probability-based expert system. The next chapter applies these tools to the
study of Bayesian networks.

Prerequisites: No previous chapters are required.

Used in: Much of the following material relies on this chapter.

257
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7.1 Finite Probability Spaces

This section introduces some basic concepts—finite probability spaces, com-
pound events, and random variables—and associated notation. Be sure that
you understand the concepts and are comfortable with the notation before
studying later sections.

The Notion of Probability

I consider the word probability as meaning the state of mind with
respect to an assertion, a coming event, or any other matter on

which absolute knowledge does not exist.
—Augustus DeMorgan ( 1838)

Illustratatiue examples will be provided to explain the empirical
background . . ., but the theory itself will be of a mathematical

character. We shall no more attempt to explain the “true
meaning” of probability than the modern physicist dwells on the

“real meaning” of mass and energy or the geometer discusses the
nature of a point.

——William Feller (1957)

When applying mathematics to physical problems, we usually make assump-
tions that are untenable—matter is continuous, lines exist, et cetera. We’ve
become so inured to these assumptions that we tend to ignore them. Probabil-
ity theory is no exception. Like all mathematical theories, probability theory
is not about the physical world. Rather, it is a theory about an abstract sit-
uation based on mathematical concepts. How it can and should be applied
to the real world in any particular situation is open to discussion and even
argument, which persists to this day. These arguments are not about the math-
ematical foundations of the probability theory. In the world of mathematics,
which we are pursuing in this chapter, such issues can be put aside. This is a
common situation: Einstein said, “As far as the laws of mathematics refer to
reality, they are not certain; and as far as they are certain, they do not refer
to reality.”

Let’s look at a concrete example of probability theory and the real world.
What does a statement such as

“The probability of heads when this coin is tossed is %” (7.1)

mean? It many seem obvious on the face of it; however, this is not the case.
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To begin with, there is no specification as to how the coin is to be tossed—
what if it were tossed by a magician? On the other hand, specifying precisely
how the coin is to be tossed may make tossing it correctly impossible and may
eliminate the element of randomness in the tossing. Let’s decide not to worry
about this problem.

Having met defeat at the hands of randomness, let’s attack another ad-
versary. What does it mean to say that the probability is %? Presumably it
means that if the coin is tossed many times, the ratio of heads to total tosses
will approach %. This is rather vague; after all, we could be extremely unlucky
and get no heads at all. There doesn’t seem to be an operational definition of
“the probability is a” To avoid a philosophical morass, let’s assume that we
understand what “the probability is %” means.

Let’s try another problem: How can we possibly know that the probability
is {.7 The answer is simple—we can’t. What we can do is convince ourselves
after some thought and experimentation that this is probably the case. (A
careful person might say that it seems fairly certain that the probability is
close to 5) In the end, our “probability” is simply a matter of belief based
on our (supposed) knowledge of the situation. What we think is correct can
easily be wrong. For example, if a coin is spun like a top on a smooth surface,
what is the probability it will land with heads up? Not %! When a coin’s two
faces are unevenly balanced, the heavier face tends to fall downward—try it
with a new penny. Even if we carry out some experiments, we may be wrong
because when we assign a probability we are trying to extrapolate based on
past experience and learning.

So what does the previous discussion tell us? Here’s a summary:

In applications, a probability reflects our (informed?) belief about
what we expect to occur in situations that we think are similar to
the one being considered. (This statement is intentionally vague and (7.2)
provides no information about how to estimate probabilities in the
physical world.)

Suppose we change the question about (7.1) slightly:

I’ve just tossed a coin, looked at the result, and hidden it from you.
What is the probability that the coin I just tossed came up heads?”

Since you haven’t seen the coin, you’ll probably answer “one-half.” On the
other hand, I would answer “zero” because I’ve seen the coin and it came
up tails. Since we’re both talking about the same event, we can’t both be
right—can we?

Yes, we can. The probability is based on information and your information
differs from mine: I know how the coin landed, but you only know that the toss
was fair. Thus I’m looking at one particular toss, but you’re looking at some
sort of average behavior. In other words, our different answers reflect our state
of knowledge about the situation. It’s common to overlook this point and find
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it confusing that different individuals can obtain different probabilities when
their knowledge of the situation differs.

The idea that probabilities change with changing knowledge is crucial for
expert systems. An expert system can use probability to record its knowledge
of a situation and to reflect changing expectations as the system’s knowl-
edge about a particular situation increases through interaction with a user.
Therefore, it is essential to understand how to calculate such changes.

Probability Spaces

The mathematical concept of a finite probability space is quite simple. Nev-
ertheless, it seems to capture the essence of what we mean when we speak of
probability.

Definition 7.1 Finite Probability Space
Let 8 be a finite set and let Pr be a function from 8 to the nonnegative
real numbers (IR'l') such that

E Pr(e) = 1.
e68

We refer to 8 as the event set and Pr(e) as the probability that the event
e occurs or, more briefly, the probability of e. The pair (£,Pr) is called
a (finite) probability space. The elements of 8 are called simple events or
elementary events. We call Pr the probability distribution.

Intuitively, 8 is the collection of things that can happen. In any particular
situation, exactly one of these things will happen (or occur). The value Pr(e)
is our estimate of the fraction of the time that e will occur in the type of
situation we’re studying.

Example 7.1 Heads and Tails: Some Simple Probability Spaces

Let £1 = {H,T} and Pr1(H) = Pr1(T) = %. This can be interpreted as the
probability space associated with a single toss of a fair coin. If we replace Prl
with Pr'l and set Pr'l (H) = 0 and Pr'l (T) = 1, we obtain a new probability
space—same event set, new probability distribution. We can interpret the new
space as the probability space of the toss of a coin where it has been observed
that the coin came up tails.

Let 8;; be all 2" k-long strings of H’s and T’s and let Prk(e) = 2"“ for
each e E 5],. We can interpret this as the outcome of a sequence of k tosses of
a fair coin. Suppose we are only interested in the total number of heads in a
sequence of k tosses. One approach is to define a new probability space with
E}, = {0,1,. . . ,k} and Pr;c(e’) equal to 2"c times the number of sequences
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in e 6 8],, that contain exactly 6’ heads. A more flexible approach is to keep
the same probability space (81,, Prk) and introduce a function on 8k whose
value at e E 8k is the number of heads in 6. Such functions are, unfortunately,
called random variables. (We’ll discuss them soon.) Sets of elementary events,
called compound events, can also be used to keep track of the number of
heads. I

Example 7.2 Selecting an Elementary Event at Random

In computer simulations of situations that are described by probability theory,
it is often important to select elementary events at random. This is done by
using so-called random-number generators.

What is a random-number generator? Suppose that the computer uses m
bits to represent the digits of a number in floating point. (This doesn’t include
exponent and sign bits.) A good random-number generator will produce each
of the 2’” numbers

0 1 2 3 2m — 2 2m — 1
fiw2727127 2m ’ 2m

nearly equally often when it’s run many times.
How do we use a random-number generator to choose elementary events

from (8, Pr)? Let the elements of 8 be e1, . . . ,en. Define

._ 0, ifi=0,
3’ —

3,-_1 +Pr(e,;), if 1 g 2' g n.

Note that 3,, = 1 since it is the sum of the probabilities of all the e5. Let a:
be the number produced by the random-number generator. If 35-1 3 a: < 32',
choose 83'. I’ll leave it as an exercise for you to show that the frequency with
which e,- is chosen is approximately Pr(ei). I

Definition 7.2 Compound Events

Let (8, Pr) be a probability space. A subset of the finite set 8 is called a
compound event. For a compound event A g 8, define

Pr(A) = Z Pr(e).
eEA

(By the mathematical convention that the value of a summation with no
terms is zero, Pr((b) : 0, where (D is the empty set.) We identify e with the
subset {e}. If 6 occurs and e E A, we say that A occurs. The compound
event consisting of that subset of elements of 8 not in A is called the
negation, or complement, of A and is denoted by fiA or A or 8 — A.
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Intuitively, the elements of 8, the simple events, are such that exactly one of
them must occur and Pr(A) is the probability that the simple event which
does occur is an element of A. Unlike simple events, more than one compound
event can occur. In particular, if A occurs and A (_I B Q 8, then B also occurs.

Aside. Although we write Pr(e) and Pr(A) using the same function symbol, Pr,
these are different functions. The domain of the former is 6' while the domain of the
latter is all subsets of 8. Both functions are denoted by the symbol Pr to emphasize
that they both arise from (3, Pr). When you get to random variables, you’ll see yet
another usage for Pr. (In computer language terminology, another “overloading” of
Pr.)

Example 7.3 Heads and Tails: Compound Events

As mentioned above, we can define various compound events in 5;, for keeping
track of the number of heads—simply let A,- be the set of e E 8;, that contain
exactly 2' H’s. For example, A0 = {TT- - ~T}, Ah : {HH - --H},

A1 ={HT---T, THT---T, ..., T---TH}

and A,- = (0 whenever i > k. I

Definition 7.3 Terminology for “and” and “or”

It’s common to think of Pr(statement) as the probability that “statement”
is true. Since we think of Pr(A) as the probability that A occurs, and since
A stands for “and,” we read Pr(A A B) as the probability that both A
and B occur. Similarly, Pr(A V B) denotes the probability that at least
one of A and B occurs.

This notation is suggestive of propositional logic. The following example shows
that the notation is more than just suggestive.

Example 7.4 Logical Connectives in Probability

If A and B were statements rather than sets, it would be natural to think
of A A B in Pr(A A B) as a logical “and” since the symbol is the same. Is
this double meaning just an unfortunate overloading of the operator A? No,
there’s more to it.

A compound event often has a simple verbal description such as

A: The first three tosses of the coin were heads.
B: The coin is fake—it has heads on both sides.
C: There will be rain next week.
D: There will be sunshine next week.

The operations V, A, and —. then produce other compound events whose de—
scription corresponds to what we do with logical connectives. For example,
the description of the compound event (-1A) A B is “the first three tosses of
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the coin weren’t all heads and the coin is two-headed.” The event C V D is
described by “there will be rain or sun next week.”

This doesn’t explain how the probability enters. Imagine that each e E 6'
is a possible “world” and Pr(e) is the probability that it occurs. If we select
a world at random according to Pr, then Pr(A) is the probability that we
selected a world in which A is true. This is the starting point for probabilistic
logic, which won’t be discussed in this text. I

Recall that U and 0 stand for set union and intersection, respectively; i.e.,

AUB: {clcercEBorboth}
AflB= {clcEAancB}.

Thus, if C = A F! B, then Pr(C) = Pr(A A B); while if D = A U B, then
Pr(D) = Pr(A V B). (If A D B = (D, the empty set, then we say that A
and B are disjoint sets.) Even given the previous example, you might wonder
why we’ve used Pr(AA B) instead of Pr(Afl B). At this point, either notation
would be acceptable. But for sets of random variables, the distinction becomes
important.

The next theorem states some important basic properties of probability
spaces. Its proof is left as an exercise.

Theorem 7.1 Properties of Probability

Let (8, Pr) be a probability space.
(a) HA 9 B <_; S, then 0 S Pr(A) g Pr(B) g 1.
(b) If A, B Q 8, then

Pr(A /\ B) + Pr(A A -IB) 2 Pr(A). (7.3)

(c) If A,B (_Z_ 8, then

Pr(A V B) = Pr(A) + Pr(B) — Pr(A A B). (7.4)

(d) If A,- (_I 8 for 1 S i g n and Az- flAj = (0 whenever i 75 j, then
Pr(A1 V A2 V - - - V An) = Pr(A1)+ Pr(Ag) + ~-+ Pr(An). (7.5)

Equation (7.4) is essentially a special case of what we call the Principle of
Inclusion and Exclusion. When we have A,- H Aj = (0 as in (7.5), we say that
Az- and Aj are disjoint events. Equation (7.3) is a special case of (7.5)—set
n22, A1 =AflB, and A2 =Afl-IB, and use

AluAgz(AnB)u(An—.B)=An(Bu—:B)=An£=A.
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Exercises

7.1.A. Define the terms simple event, probability space, and compound event. Give

7.1.B.

examples of these concepts.

What do Pr(-IA), Pr(A A B), and Pr(A V B) denote? Give some simple
equations that relate their values and the values of Pr(A) and Pr(B).

. (Answer follows) Express each of the following events in terms of the events
A, B, and C' and the operations -I, A, and V.

(a) A and B occur, but C does not.

(b) At least one of the events A, B, and 0 occurs.

(c) At least two of the events A, B, and 0 occur.

(d) At most one of the events A, B, and 0 occurs.

. Let A and B be compound events in a probability space. Let C' = AUB and
D = A n B. Prove that

Pr(A V B) = Pr(C’) and Pr(A A B): Pr(D).

. Using the notation of Example 7.], find subsets A0,. . . , A], of 8;, so that the
event A; corresponds in a natural way to the simple event z' 6 5,2.

. Describe each of the parts of Theorem 7.1 in words. For example, the first
part states that the probability of every event lies between zero and one, and
if the occurrence of one event A implies the occurrence of another event B,
then B is at least as probable as A.

. Show that the case n = 2 of (7.5) follows from (7.4).

. Prove Theorem 7.1.

. In this exercise, you will prove the Principle of Inclusion and Exclusion.

(a) Using (7.4) and A n (B U C) = (A n B) U (A n C), prove that

Pr(A V B V C) = Pr(A) + Pr(B) + Pr(C’)
— Pr(A A B) — Pr(A A C) — Pr(B A C') (7.6)

+ Pr(A A B A C).

*(b) State and prove a generalization of (7.4) and (7.6) to an arbitrary num-
ber of sets.
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7.1.8. The set of die faces is given by

D={E],[:],[3,[Z],I’[Q}
The black dots on a face are called “pips.” Let E = D x D, the set of all two
long sequences of dice. An element of E is called a “roll.” We’ll assume that
the dice are fair; that is, Pr(e) = 316' for all e E E.

(a) Prove that (8, Pr) is a probability space.

(b) Let Ak be the set of rolls such that the sum of the pips on a roll is k.
List the elements of A7.

(c) Determine Pr(Ak) for 0 S k S 12.

7.1.9. What is best can be tricky. For example, suppose we ask three people to list
three outcomes in order of preference. We might obtain

1st 2nd 3rd
Alice: A B C
John: B C A

Pat: C A B

Now most people prefer A to B, most B to C, and most C to A!
Can we do something similar with probability? Imagine making three

dice using only the standard spot patterns 1—6; however, you need not use
each pattern exactly once on a die. Make three dice such that, when they
are rolled, the first will probably be higher than the second, the second will
probably be higher than the third, and the third will probably be higher
than the first. “Probably” means more than half the time.

Answers

7.1.1. There’s often more than one way to express these events. I’ve tried to give
the ones you’re mostly likely to come up with.

(a) A A B A (-10), where the parentheses can be omitted.

(b) A V B V C.

(c) (AAB)V(A/\C)V(BAC).

(d) You might observe that this is the same as saying “At least two of the
events -1A, -:B, and -:C' occur.” Then you could use the previous answer
and simply replace A, B, and C' with fiA, -IB, and fiC’. Alternatively,
you could start from scratch and come up with the same formula.
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Random Variables

Functions on a probability space provide a useful way of defining compound
events and manipulating information about them. Such functions are called
random variables:

Definition 7.4 Random Variable
Let (8, Pr) be a probability space and let S be a set. A function X : 8 —-> S
is called an S-valaed random variable or, simply a random variable. Often
the term random variable is reserved for the case in which 5' = R; however,
we won’t require that S 2 1R. Random variables are typically indicated
with uppercase letters near the end of the alphabet.

A random variable X can be used to define a set of compound events,
namely those sets on which X is constant. In other words,

X'1(s)={668|X(e)=s}
is one such compound event, namely the set on which X equals 3. Of course, if
we never have X(e) = s for any e E 8, then X—1(s) = (0. For a given X, these
compound events “partition” 8; that is, each e E 8 lies in precisely one of the
compound events. Instead of the notation X"1(3), we usually use X = s to
indicate the compound event. This is suggestive since the compound event is
just the set of simple events e for which X(e) : 3.

Aside. You have probably seen inverse functions in calculus. The idea is that an
inverse function undoes what the function does. For example, the function a: —> e‘”
is the inverse of the function a: —+ loge(:z:). However, our “inverse function,” X“1 is
not a function because it has a whole set of values corresponding to 3. Why is this?
In general, there is an ambiguity concerning how to undo a function. For example,
if f : a: —> 2:2, what should f_1(9) be? If f—1 is to be a function, it must be 3 or
—3, but not both. Thus, we’re faced with a decision: either (a) restrict the domain of
f and the range of f‘1 or (b) decide not to insist that f ‘1 be a function. The first
choice is appropriate in calculus and the second choice is appropriate in the present
context.

One type of probability space along with its associated random variables
is particularly useful in expert systems. Recall that, if A1, . . .,Ak are sets,
then their (Cartesian) product is

A1Xn-xAk:{(a1,...,ak)|a1€A1,...,akEAk}.

Suppose that 8 = 81 x -- - x 8h. The random variable X,- : 8 —> 8,- defined by
Xi(e1, . . . ,ek) = ez- is a projection onto the ith component.
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Example 7.5 Heads and Tails: Some Random Variables

Recall that in Example 7.1 we defined 8;; to be all 2’“ long strings of H’s and
T’s. This can be thought of as the Cartesian product of 1:: copies of {H,T}.
The projection onto the ith component is simply the result of the ith toss.
There are two compound events associated with it, namely X,- = H (the set
of all sequences that give a head on the ith toss) and X,- = T.

As mentioned in Example 7.1, we can define the random variable X (e) to
be the number of H’s in e. The compound event X = i is the same set as the
compound event A,- defined in Example 7.3. I

Definition 7.5 Probability of Random Variables

Let X be a random variable on the probability space (£,Pr). As noted
above, X = s is a compound event, so Pr(X = s)—read “the probability
that X = s”—is the probability of that compound event. By Pr(X) we
mean the function whose domain is the range of X and whose value at s
is Pr(X = s).

From the definition, it follows that we combine compound events described
by random variables as we do compound events; for example,

(X = a) A (Y = b) is the same as A /\ B, (7.7)

where A : X‘1(a) and B : Y‘1(b). The expression on the left of (7.7) is
read “X equals a and Y equals b,” which conveys just what we should expect
the expression to mean.

Aside. Now our symbol Pr stands for a whole new class of functions whose domains
depend on the domains of the random variables involved. This should not cause
confusion because all the uses of Pr relate to the same idea—the probability that
“statment” in Pr(statement) is true, given the probability of the elementary events.
If the statement has (implied) variables as in Pr(X), then the result is a function
instead of a single value. In fact, had I used standard functional notation, I’d’ve
written something awkward like Pr(X" 1( )).

To get some idea how these concepts might relate to expert systems, let’s
consider two very simplified examples.
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Example 7.6 Medical Testing

Suppose that a physician is attempting to diagnose a disease for which there
are three possible tests. The first two tests can have two outcomes, positive or
negative, which we denote by P and N, respectively. The third test produces
a numeric value; however, it does not make sense to consider a distinction as
fine as that implied by considering all real numbers. In fact, medical opinion
says it is reasonable only to distinguish three levels, namely low, medium, and
high. Finally, the patient either has or does not have the disease, denoted by
Y and N, respectively. Define

5 = {P,N} x {P,N} x {L,M,H} x {Y, N}.
Suppose that one person in 500 has the disease. The values of Pr(e) could

have been estimated by medical researchers who have studied a large number
of people, say 20,000. In fact, we could take a different point of view; we could
say that the probability space consists of these 20,000 people and Pr(e) :
1/20,000 for each person 6. We could then imagine four random variables
(X1, X2, X3, X4), the first three giving the results of the tests and the third
reflecting the presence or absence of the disease.

In the previous paragraph, we took a large sample of people so that the
subsample with the disease would be large enough to provide reasonable esti-
mates for our probabilities. Researchers don’t do this. Instead, they first esti-
mate Pr(X4 = Y) for the population. Then they study Pry (e) (resp. PrN(e))
for a sample of people having (resp. not having) the disease. This involves the
notion of conditional probability, which we’ll discuss in the next section. An-
ticipating the notation and concepts, Pr(A I B) is the probability of A when
we know that B has occurred. In that notation,

Pry(e) = Pr(e | X4 = Y)
Pr(e) = Pr(e | X4 = Y) Pr(X4 = Y) + Pr(e | X4 = N) Pr(X4 = N).

This approach allows researchers to obtain reliable estimates using smaller
samples. I

(7.8)

*Example 7.7 Credit Risk Assessment
Suppose we’re attempting to build an expert system to assess someone’s
creditworthiness. Imagine taking a collection of 1,000 people and classifying
them according to six coordinates (possible outcomes—values—are indicated
in parentheses):

1. marital status (M or 5'),
2. age in years (a positive integer)
3. annual income in thousands of dollars (a positive integer)
4. liquid assets in thousands of dollars (a positive integer),
5 . nonliquid assets in thousands of dollars (a positive integer), and
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6. creditworthiness as assessed by an expert (A to F).

Never mind how we gather these people or get our expert to assess them—
this is only an example to illustrate some concepts. At present we cannot
form a finite probability space because there is an infinite number of positive
integers. Therefore, we introduce some bounds in 2—5. We can take 8 to be
the Cartesian product of the six sets of possible outcomes. Using the results
of the expert’s assessment, we can assign probabilities to each 6 E 8, namely
the number of people that correspond to 6 divided by 1,000. Of course, many
of the elementary events will be assigned the probability 0 and quite a few of
the remaining elementary events will be assigned the probability 1/1,000.

Here is an extremely simple expert system that uses the data to assess
the creditworthiness of a loan applicant. It begins by determining the age,
marital status, annual income, liquid assets, and nonliquid assets of the ap-
plicant. Next our system looks at that subset S of the 1,000 people who
have the same values of these five coordinates and defines a probability for
creditworthiness as follows. If Aw denotes the subset of A with creditwor-
thiness w E {A,B,C,D,E,F}, then the probability that our applicant has
creditworthiness U) will be taken to be |Aw I/IAI. If we wish, this can be rewrit—
ten in terms of the original probabilities: Let a,- be the applicant’s answer to
the ith question and let X,- be the projection onto the ith coordinate. Then

IAwl_1,000PI'((X1 = a1)/\ °"/\(X5 = a5)/\(X6 = 10))

IAI
— 1,000 Pr((X1 = al) A . . . A (X5 2 a5))

(7.9)

(This is actually an application of conditional probability.)
There are serious problems with this approach. If there are no people in

our sample of 1,000 who match our applicant in the first five components,
our system cannot assign any probabilities to her creditworthiness. Worse,
suppose exactly one person matches our applicant. Then our expert system
would happily assign the same creditworthiness that the matched person was
given and tell us that it was certain of that assignment. Why is that bad? First,
the expert’s assessment is not perfectly accurate, and second the expert may
have used additional criteria that we failed to take into account in constructing
8.

To some extent, this can be remedied by a less “fine-grained” approach;
for example, Y2(e) E {2,3,4,5,6,0} might depend on whether the age was
20—29, , 60—69 or older. We might define a random variable that reflects
some combination of liquid and nonliquid assets. And so on. In assessing the
credit risk of the applicant, we now look at persons who have the same values
as the applicant on these random variables.

Of course, considerably more work needs to be done to build a useful
expert system, including using more data. I
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Exercises

7.1.C. Define the concept of a random variable X and define Pr(X = s).

7.1.D. Explain how Cartesian products and projections are often associated with
random variables.

7.1.10. Let Ah be as in Exercise 7.1.8. Interpret a random variable for which
X‘1(k) = A1,.

7.1.11. If we replace A,- in (7.5) by X; = a;, what does the condition A,- 0 A; = 0
become for random variables?

7.1.12. Let (E, Pr) be a probability space. Let ’P be a partition of the set 5; that is, a
collection of pairwise disjoint subsets of 5 whose union is E. A propositional
variable is a random variable mapping 8 to 1’. Explain why a random variable
which is a projection can be thought of as a propositional variable.

7.1.13. In Exercise 7.1.8, a probability space for tossing two identical “fair” dice,
each with faces having 1—6 pips was defined. In Exercise 7.1.10, a random
variable for this space was defined.

(a) It should be clear how to define a similar space and random variable
when the dice are still fair but may differ in the number of pips on the
faces; for example, it might happen that one die has 3 pips on each of its
faces. Do it. Call the random variable for this space Y to distinguish it
from the random variable of Exercise 7.1.10, which was called X.

(b) Show that Pr(X = k) = Pr(Y = k) for all k if one die has face counts
1, 2,2,3, 3, 4 and the other has 1, 3, 4, 5, 6, 8.

7.2 Conditional Probability and Bayes’ Theorem

But if probability is a measure of the importance of our state of ignorance,
it must change its value whenever we add new knowledge. And so it does.

—Thornton C. Fry (1928)

Suppose that we’re interested in some situation such as a sequence of ten tosses
of a fair coin. We can construct a probability space for this situation, namely
the space (£10,Pr10) of Example 7.1 (p. 260). So far, our only information has
been that the coin is fair. Now suppose that someone gives us some additional
information; for example, that there were at least three heads. How can we
construct a new probability space that is consistent with the old space and
the new information?

Constructing such new spaces in which Pr is altered due to new informa-
tion is a central problem in the design of expert systems based on probability.
This is because an expert system keeps acquiring new information by asking
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the user questions. Conditional probability is the concept that incorporates
new information.

Conditional Probability

Let A and B be compound events in some probability space. Suppose some
simple event e occurred. Then Pr(B) is the probability that e E B, given our
initial knowledge of the situation as reflected by Pr. Intuitively, the conditional
probability Pr(B I A) is the probability that e E B when we are given the
additional information that e E A.

Let’s look at what we should do from a frequency viewpoint. We can
approximate Pr by using frequencies as follows. Suppose we make a large
number N of observations and that the simple event 6 occurs Ne times. Then
Pr(e) % Ne/N. Suppose we are told that the only simple events that occur
are in A, but that otherwise everything is as expected. We can still use our
observations to estimate what the conditional probability ought to be—we
simply ignore all observations that are not in A. Suppose that e E A and NA
of the observations are in A. By the intuitive notion of probability and also
by the previous discussion, we should have Pr(e | A) % Ne/NA. But then

Ne _ Ne/N ~ Pr(e)

Here’s the formal definition.

Definition 7.6 Conditional Probability

Let (8, Pr) be a probability space and let A (_I 8 be such that Pr(A) 7b 0.
Define a new probability space (8, f) by

_ Pr(e)/ Pr(A), if e E A,
f(e)‘{0, ife¢A.

For any B (_I 8, Pr(B | A), the conditional probability ofB given A, equals
f(B). We say that the probabilities have been conditioned on A. Note
that, if A = 8, then Pr(e | 8) = Pr(e). This is as it should be because
knowing that e E A gives us no additional information in this case.

If Pr(A) = 0, define Pr(e IA) in any manner that is consistent with
its being a probability distribution on 8. (Its value will never actually be
used.)

The notion of conditional probability applies to random variables:
Given random variables X and Y, note that Pr(X : a | Y = b) merely
involves the compound events X “1(a) and Y"1(b). In accordance with
the convention for expressions like Pr(X), Pr(X | Y) is a function whose
domain is range(X) X range(Y).
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The definition claims that (8, f) is a probability space. This needs to be
proved, but the proof is very simple: f 2 0 and

Z f(e) = Z f(6) = Z Pr(e)/ Pr(A) = Pr(A)/ Pr(A) = 1.
e68 eeA eeA

Aside. Note that Pr is used in Pr(B I A), not f. In effect, Pr( I A) is merely another
notation for the function f( ); however, it has the advantages that it (a) explicitly
conveys the fact that we have conditioned Pr on A’s occurring and (b) explicitly
mentions the function Pr from which it was derived instead of some new function
f. Our mutable function Pr has acquired yet another meaning, which, as always, is
based on the original function for the probability space (E, Pr).

In some definitions of conditional probability, the new space is taken to be A.
This does not matter except for some notational issues since f(e) = 0 when 6 ¢ A.
In Example 7.7 we constructed a conditional probability and we took A to be our
new space. (See (7.9) and the preceding discussion.)

You should have no difficulty proving the following theorem. When C = 8 ,
we recover Theorem 7.1 from parts (b)—(e).

Theorem 7.2 Properties of Conditional Probability

Let (8, Pr) be a probability space. If C Q 8 has Pr(C) 75 0, then
Pr(A A C) _

(b) inBgE, thenOSPr(A|C)SPr(B|C)_<_1;
(c) if A,B (_Z 8, then

Pr(A/\BIC)+Pr(A/\-IBIC): Pr(AIC); (7.11)

(d) if A,B g 8, then

Pr(A V BIC): Pr(A | C) + Pr(B | C) — Pr(A /\ BIC); (7.12)

(e) ifA; g 8 for 132's n and AiflAj 2 (ll whenever 2' 761', then

Pr(A1VA2V"'VAn '0) (7.13)= Pr(A1 | C) + Pr(Ag | C) + - . . + Pr(A", lo).
(f) IfA<_I£, Bluu-uBn =8 and 3,713, =0Wheneveri7€j, then

Pr(A) = Pr(A | Bl)Pr(B1) + . - . + Pr(A | B") Pr(Bn). (7.14)
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Example 7.8 Conditional Probability versus Implication

In Example 7.4 (p. 262), we discussed the interpretation of compound events
in terms of propositional logic. Since it includes fl, V, and A, there are enough
connectives to build any proposition. Now we have a new connective in prob-
ability theory, namely A|B. It’s tempting to rewrite verbal expressions as
follows:

Pr(A | B) means the probability of “A given B”
which means the probability of “A if B”
which means the probability of “B —> A”
which means the probability of “B’ V A”

We would then incorrectly conclude that Pr(A | B) : Pr(B’ V A). See Exer-
cise 7.2.5 for the correct equation. The lesson here is

Don’t confuse conditional probability with logical implication.

Since this approach is wrong, how should AIB be interpreted in propositional
logic? It can’t be done. Why not?

A|B is not a subset of the event space 8 whereas logical connectives
applied to subsets of 8 produce subsets of 8. But how do we know that AIB
can’t be thought of as a subset of 6"? Not much can be done with logical
connectives—a function is determined by its truth table and it can be shown
that none of the 24 = 16 functions of two variables has the right behavior for
A|B.

It is possible to extend propositional logic to allow for conditionals. Here
are two ways we might approach the problem.

0 Recall the possible-worlds interpretation discussed in Example 7.4. We
have a problem with AIB when B is false in a possible world: There is
no contribution to Pr(A | B) in this case and yet we must assign a truth
value to AIB if it is to be a proposition. This difficulty could be overcome
with a multivalued logic by extending propositional logic to three truth
values, say “?,” “T,” and “F.” The truth value “?” could be assigned to
AIB when B is false.

0 The preceding idea sidesteps the fact that (AIB) ¢ 8. We could attack
this problem directly and define rules for manipulating pairs A|B. Propo-
sitional logic would be embedded in the larger structure by the mapping
A H AIE. This is similar to the way rational numbers are defined by con-
sidering pairs of integers. This approach has been pursued some in the AI
community. I

The next few examples illustrate reasoning with and about conditional
probabilities.
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Example 7.9 Two-Headed Coin

Care is needed in specifying a probability space. Consider the following prob-
lem:

I have two coins in my pocket. One is normal and the other has two.
heads. I pull out one coin and see a head on the side I’m looking at.
What is the probability that I took out the normal coin?

It’s not uncommon to answer “50%.” The reasoning for this answer goes
something like this. Since the coin is chosen at random, half the time the coin
will be normal. But this is wrong.

To solve this problem, we must construct a probability space that accu-
rately reflects the random aspect of the coin removal and then condition on
the fact that I saw a head. Here’s how it’s done.

Label the sides of the coin h and h’ such that the side labeled h contains a
head. We can define 5' = {n, t} x {h, h’ }, where n and t correspond to selecting
the normal and two-headed coin, respectively, and h and h’ correspond to the
side examined. Since everything is random, define Pr(e) = i for all e E 8.
Define the compound events

N = {(n, h), (n, h’ )}, selecting the normal coin,
H = {(n,h), (t,h),(t,h’)}, seeing a head.

We want to compute Pr(N | H). Since N n H = {(n, h)}, it follows from (a)
in the theorem that the probability is fi/g— = g I

Example 7.10 It’s a Girl!

Consider the following three problems.

1. My colleague Bob has two children. I don’t know their sexes. One day
in the supermarket I meet Bob with a child he identifies as his daughter.
What is the probability that both of Bob’s children are girls?

2. At a PTA meeting, the woman sitting next to me raises her hand when
the speaker asks how many people have two (but not three) children in the
school. She raises her hand again when the speaker asks how many have
a daughter in the school. What is the probability that both her children
in the school are girls?

3. My colleague Ken has two children, but I don’t know their sexes or ages.
My wife is friendly with Ken’s wife, Barbie, and knows about their chil-
dren. Today, my wife gave me some clothes our daughter had outgrown,
saying that Barbie should be able to use them. What is the probability
that both of Ken and Barbie’s children are girls?

In answering these questions, let’s assume that the sex of children is split
exactly 50:50 and that there is no biological tendency for some people to have
girls and others to have boys. These assumptions are not exactly biologically
correct—but this isn’t a biology text.
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The possible children are

8 = {(F,F), (F, M), (M,F), (M,M)},

where the method for choosing which child to list first is not yet specified.
With most methods of listing, the probability of each elementary event will
be %. We’re asked for the conditional probability of the elementary event
(F, F). The question becomes, what should we condition on?

First Problem: Without any probability space construction at all, the answer
to the first problem appears to be % since, having met one child, I don’t know
any more than I did before about the sex of the other.

Using 8, with the first child being the one who went to the store with
Bob, we should condition on C = {(F, F), (F, M)} This also gives a

Second Problem: We might think that the answer is the same as the previous
one, but that isn’t so. The information given is different. We can see the
difference by determining what compound event to condition on.

Use 8 and order the children by age. Since the only information is that
there is at least one girl, we condition on C = 8 — {(M, M)} The calculation
is straightforward and leads to a probability of % for both children’s being
girls.

What would happen in the first problem if the children were ordered by
age? In this case, 8 would be inadequate. We’d have to use something like

8 = {(EF). (F,M), (M,F), (M,M)} x {1, 2}
instead, where 1 and 2 indicate whether meeting the first or second child in
the supermarket. You should be able to work out that this still gives an answer
of % for the first problem.

Third Problem: This is trickier.

o It seems that the only information I have is that Ken and Barbie have at
least one daughter. This is just the second problem and the answer is g.

0 On the other hand, my Wife has implicitly told me that they have a
daughter who is slightly smaller than my daughter. Since this conveys no
information about their other child, it’s like the first problem. Thus the
answer is %.

Since the two approaches give different answers, at most one is correct? Which,
if either, is correct?

I can’t tell from the information provided, since it really depends on
what my wife knows about Barbie’s children. Knowing my wife, I believe
she wouldn’t give me the clothes unless she knew that they were likely to fit.
The previous paragraph indicates that the answer is then %. (It’s possible to
raise additional objections that cast doubt on this answer.) I
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The second problem in the previous example shows that it can be tricky
to apply probability theory even when a problem is unambiguous. The third
problem shows that unsuspected ambiguities can make the application even
more difficult. In most discussions, I’ll either remove or ignore such ambi-
guities. (Like most texts, this one presents a “sanitized” version of the real
world.)

Example 7.11 Medical Testing

Suppose that there is a disease that one person in 1,000 has. Suppose that
there is a screening test for the disease, that the test is always positive if the
person has the disease, and that it is also positive five percent of the time when
the person does not have the disease. (These are not unreasonable figures.) If
the test is adminstered to people at random, what is the probability that a
person who tests positive has the disease?

Let 8 be the set of people who are tested and let Pr(e) be uniform. A
uniform distribution is a probability function for which Pr(e) = 1/|£| for all
e E 8. (It is also called a flat distribution.)

Define the following subsets of 8:
the people who have the disease,
the people who do not have the disease,
the people who test positive for the disease,
the people who test negative for the disease.

Clearly DUH = PUN : 8 and DD H = P0 N = (0. The information we
are given can be stated as follows:

Z'Timb

Pr(D) = 0.001
Pr(P | D): 1
Pr(P | H) = 0.05.

We are asked to compute Pr(D | P). By (7.10),

Pr(D | P) = Pr(D A P)/ Pr(P).

We are not given either of the probabilities on the right-hand side, but we can
compute them as follows. First, by (7.10),

Pr(D A P): Pr(P | D) Pr(D) = 1 x 0.001: 0.001. (7.15)
Second, since D U H = 8 and D n H = 0, it follows from (7.14) that

Pr(P) = Pr(P | D) Pr(D) + Pr(P | H) Pr(H).
Finally, since Pr(P | H) Pr(H) = 0.05 x 0.999 = 0.04995, we have

Pr(P) = 0.001+ 0.04995 = 0.05005
and



7.2 Conditional Probability and Bayes’ Theorem 277

Pr(D /\ P) _ 0.001
P D P = _r( l ) Pr(P) 0.05005 3 0.02.

In other words, a positive test means that the person has a 2% chance of
having the disease. This sort of low figure is the reason doctors often say “I’d
like to do some additional tests.” I

*Example 7.12 The Car and the Goats

The following problem concerning a then popular TV game show received
considerable publicity in 1991 thanks to the column of Marilyn vos Savant in
the Parade magazine supplement to Sunday newspapers.

A TV game show host shows you three doors. He tells you that one
door hides a car and the other two doors hide goats, then asks you to
choose a door. You will win whatever is behind the door you choose.
You pick the first door. The host opens the third door, revealing a
goat, and asks you if you’d like to switch to the second door. What
should you do?

In order to analyze the situation, we will have to describe it in probability
theory terms.

We’ll let 8 = P x H, where P = {1,2,3} indicates the door that hides
the prize and H = {2, 3, N} indicates the door the host opens, given that you
have selected door 1. (N indicates that the host opens neither door.) Note
that we have built into 8 the assumption that you pick the first door. Let Xp
and XH be the projections onto the two coordinates. It seems reasonable to
assume that the car has been placed at random; that is, Pr(Xp : k) = % for
k = 1, 2, 3.

Since the host has opened the third door, we know that Xp at 3, so we
should condition on that compound event as well as XH = 3. Thus, we want
to determine

PI‘(Xp = 2|XH = 3AXP 7/53)
Pr(Xp =1|XH = 3AXp 753)

If this ratio equals 1, the car is equally likely to be behind either door, so
there is no reason to switch or not to switch doors. If it exceeds 1, the car is
more likely to be behind the second door, so you should switch doors. You
should be able to show that

Pr(Xp=k|XH=3/\Xp753)= Pr(XH=3|Xp=k/\Xp-‘/-'3)
Pr(Xp = k AXp 95 3)
Pr(XH = 3 AXp 7e 3)
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by using (7.10). We have (you give the reasons!)

Pr(XH=3IXp=k/\Xp7’:3) =Pr(XH=3|Xp=/c)
Pr(Xp=k/\Xp;£3) = Pr(Xp=/c)=%
Pr(XH=3/\Xp;£3) = Pr(XH=3A(Xp=1VXp=2))

= Pr(XH=3/\Xp:1)
+Pr(XH=3/\Xp=2)

:%(Pr(XH=3|Xp=1)
+Pr(XH = 3 | Xp = 2)).

Thus

Pr(Xp=k|XH=3/\Xp753)

_ Pr(XH =3|Xp = k)‘
Pr(XH=3|Xp=1)+Pr(XH:3|Xp:2)

andso
Pr(Xp=2IXH=3/\Xp=/-'3)_PI‘(XH=3|XP=2)
Pr(Xp=1|XH=3/\Xp7’:3)_Pr(XH=3|Xp=1)’ (7.16)

where we must remember that we have built into (8, Pr) the assumption that
you pick the first door.

Without knowing more about how the host acts, we cannot determine the
two probabilities that appear on the right side of (7.16). Some possibilities for
the host are as follows:

(a) He does not know the location of the car. If he reveals a car, he tells
the contestant that he/she has lost. If he reveals a goat, he offers the
contestant a chance to switch. In this case,

Pr(XH = a I Xp = k) = Pr(XH = a)

since the host’s choice is not influenced by the position of the car. Hence
(7.16) equals 1 and it does not matter if you switch dooors.

(b) He knows the location of the car and always opens a door with a goat.
In this case, the numerator of (7.16) is 1 and the denominator is at most
1. (Its exact value depends on how the host chooses when neither door
2 nor door 3 conceals a car.) Thus the ratio is at least 1 and you should
switch doors.

(c) We can add to the previous situation by assuming that the host sometimes
does not open a door and that the probability of not opening a door
depends on the location of the car. In this case, the numerator of (7.16)
may be less than 1 and we cannot say anything about the ratio without
further information. I
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Exercises

7.2.A. What does Pr(A | B) mean? How can it be computed from the probability

7.2.3.

7.2.1.

7.2.2.

7.2.3.

7.2.4.

7.2.5.

7.2.6.

of compound events?

Are Pr(A | B) and Pr(B —-> A) the same?

Prove Theorem 7.2.

Assuming that none of the probabilities involved is zero, show that

Pr(A A BIC): Pr(A | C) Pr(B I C)
if and only if

Pr(A | B A C) = Pr(A | C).

What probabilities can be zero without losing this result?

Fill in the reasons for the various steps in Example 7.12.

Show that the ratio in (7.16) can be greater than, equal to, and less than 1
for the host behavior described in (c). Do this by giving three specific rules
for the host’s behavior that lead to ratios that are greater than, equal to,
and less than 1, respectively.

Using rules of propositional logic, we have Pr(B —» A) = Pr(A V (-IB)).

(a) Show that, when Pr(B) > 0,

Pr(B —> A) = Pr(-IB) + Pr(A A B) = Pr(-|B) + Pr(B) Pr(A | B)

and thus 1 — Pr(B —» A): Pr(B)(1 — Pr(A | 3)).

(b) Conclude that Pr(A | B) s Pr(B —> A), with equality if and only if
Pr(B)=1 or Pr(A | B) = 1.

Simpson’s Paradox is the observation that it is possible for the three inequal-
ties

Pr(B I T) > Pr(B I -1T)
Pr(B | TA M) < Pr(B | (-.T) A M)

Pr(B | TA (-.M)) < Pr(B | (—‘T) A (—‘M))

to hold simultaneously. Explain why Example 5.2 (p. 193) is a special case
of Simpson’s Paradox.
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7.2.7. Adam, Bill, and Chuck, three convicts with similar records, apply for parole
and the board decides to grant parole to two of them. Adam learns of this,
but doesn’t know which of them are being released. Adam reasons that his
chance of release is 2/3. A friendly guard knows who is being paroled but
is not allowed to tell Adam if he is one of the lucky ones. He offers to tell
Adam the name of someone—Bill or Chuck—who is being paroled. Adam
thinks briefly and begs the guard not to tell him. He reasons as follows. If the
guard says “Bill,” then Chuck and I each have a 50/50 chance of release. If
the guard says “Chuck,” then Bill and I each have a 50/50 chance of release.
Thus, my chance of release will go down from 2/3 to 1/2!

(a) Construct a probability space like that in Example 7.12, with 5 = P x H
where P = {A,B,C} indicates the one not being paroled and H =
{3,0} indicates the one the guard would name. Assuming that each
prisoner is equally likely not to be paroled and that the guard chooses
randomly if both Bill and Chuck are to be paroled, what is the proba-
bility of the elementary events?

(b) Define a random variable X whose value indicates who is not being
paroled and another Y whose value indicates what the guard says. Com-
pute the probability that X = A when the guard says nothing, when
the guard says “Bill,” and when the guard says “Chuck.” Express all
your work in correct probability notation. Do the same for X = B and
X=C.

(c) Explain Adam’s error.

Bayesian Reasoning

What we’ve done in Examples 7.11 and 7.12 is to apply Bayes’ Theorem
together with Theorem 7.2 and some simple calculations. Various slightly
different (but equivalent) equations go by the name of Bayes’ Theorem:

Theorem 7.3 Bayes’ Theorem

Let (8, Pr) be a probability space and let A, H1, . . . ,Hk g 8 be compound
events, none of which has zero probability. Then

Pr(A I H5) Pr(Hg)Pr(H, |A) = Pr(A) (7.17)

If, in addition, Pr(H; A A) 75 0 for all 2', then

Pr(H; | A) _ Pr(Hg) Pr(A | Hg)
(7.18)Pr(Hj IA) ‘ Pr(Hj) x Pr(A | H,)'

If, in addition H1 U - - ' UH], = 8 and H,- nHJ- : (2) whenever igfi j, then
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Pr(Hi) Pr(A I Hi)
Pr(H1)Pr(A I H1) + -- ~+ Pr(Hk) Pr(A I Hk)

" Pr(H-) Pr(A|H-) '1= (2 Pr(Hi) x Prom—1)) (7'20)
(7.19)Pr(Hg IA):

The proof is simply a matter of manipulating the definitions with a bit of
algebra.

In applications, the Hg’S in Bayes’ Theorem are often competing hypothe—
ses which partition 8, as in (7.19). The event A can then be thought of as
evidence, which causes us to change from our prior probabilities Pr(Hi) for
the various hypotheses to the new probabilities Pr(H, I A) which take into ac-
count the evidence A. The usefulness of Bayes’ Theorem is based on the fact
that we often want information about the probability of a hypothesis given
some evidence, but the information available is usually the probability of the
hypothesis given the evidence. Bayes’ Theorem tells us how to convert one set
of probabilities into the other. A weakness in Bayes’ Theorem is the fact that
assessing prior odds can be difficult. Since Bayes’ Theorem uses evidence to
reach conclusions about hypotheses, it can be regarded as a form of statistical
reasoning—a subject we’ll discuss briefly in Chapter 12.

Example 7.13 Medical Testing Revisited
Let’s redo Example 7.11 using Bayes’ Theorem with H1 : D, H2 2 H, and
A = P. From (7.19),

Pr(D) Pr(P | D)
Pr(D) Pr(P I D) + Pr(H) Pr(P | H)

__ 0.001 x 1_
0.001 x 1+ 0.999 x 0.05

Pr(D I P):

z 0.02. I

Definition 7.7 Odds and Likelihood Ratios
Ratios such as

Pr(Hg)
and

Pr(Hg I A)

Pr(Hj) Pr(Hj I A)

are called odds. The first ratio is called the prior odds and the second the
posterior odds, or the odds given the evidence A.

Ratios such as Pr(A I H,)/ Pr(A | Hj) are called likelihood ratios. This
is because they are the ratios of the likelihoods (i.e., probabilities) of the
evidence A given various hypotheses H,- and Hj.

These terms are sometimes restricted to the case in which k = 2 and
H2 = “IHl.
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If we consider A as evidence that Bayes’ theorem uses to assess the prob-
ability of hypotheses, we could then ask, “What would be the eflect of further
evidence B?” In that case we apply (7.18) twice. First, we condition every-
thing on A and use (7.18) (with A in (7.18) replaced by B). Then we apply
(7.18) to one of the resulting ratios. Thus

Pr(H,- I BAA) _ Pr(H; I A) Pr(B I Hi AA)
Pr(H,- |B/\A) ‘ Pr(H,- IA) x Pr(B | H,- AA)

_ Pr(Hg) Pr(A I Hi) Pr(B I Hi AA)‘ Pr(Hj) x Pr(A | 11,-) x Pr(B | H, AA). (7.21)

The three factors in (7.21) have simple interpretations:

o The first factor is the prior odds. It reflects the lack of information.

o The second factor is a likelihood ratio. It reflects the information
obtained from the fact that A occurred.

0 The last factor is also a likelihood ratio. It reflects the information
from the fact that B occurred, given that A also occurred.

Ideally, we’d like to have Pr(B | Hk A A) = Pr(B | Hk) so that we could
eliminate A from the last factor in (7.21), thus uncoupling the effects of A
and B. This leads us to the notion of independence, which is discussed in the
next section.

Example 7.14 Soft Evidence

Sometimes evidence is not of the form “A has occurred.” Instead, we may
be 80% sure that A occurred and 20% sure that -:A occurred. This can be
handled in a straightforward manner.

Call this unsure evidence a—a Greek letter to distinguish it from com-
pound events. If A actually occurred, the correct probability of H would be
Pr(H | A), which can be computed from Bayes’ Theorem. Similarly, we have
Pr(H | fiA) if A did not occur. Looking at things from a frequency viewpoint,
you should be able to see that it’s reasonable to set

Pr(H | a) = Pr(A | a) Pr(H I A) + Pr(fiA | a) Pr(H | -IA), (7.22)
where Pr(A | a) is the probability we assign to A given the evidence a. (The
value is 0.8 for the case given in the previous paragraph.)

Can we prove (7.22)? To do so, we would need to define Pr(B | a). Looking
back at the definition for conditional probability, we can see that this requires
definitions for Pr(B A a) and Pr(a), which are not compound events. There
is a simpler approach. Let Pra be the probability we assign to events after
receiving the evidence 0:. Then

Pra(H) = Pra(A) Pra(H | A) + Pra(-IA) Pra(H | -IA) (7.23)
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follows from the fact that Pro, is a probability function. Now Pra(B) is just
what we said we wanted Pr(B | a) to mean. Hence, (7.22) will follow from
(7.23) if we can explain why we should have

Pra(H | A) = Pr(H | A) and Pro,(H|-1A)= Pr(H | —:A).
The first of these equations states that the evidence a does not alter our
assessment of the probability that H occurred given that A occurred. This
is quite reasonable. For example, if I told you that I was 80% sure that the
8:10 bus already came, my information shouldn’t alter your estimate of the
conditional probability that you’ll be late for class if you miss the 8:10 bus.
Thus, we’ve shown that (7.22) is correct under rather broad conditions. I

Exercises

720. State one form of Bayes’ theorem. Why is it useful?

7.2.D. What is a likelihood ratio?

7.2.8. Prove Bayes’ Theorem (Theorem 7.3).

7.2.9. A bag contains k fair coins and one two-headed coin. Without looking, I
select a coin at random and toss it n times. All 71. tosses are heads. What is
the probability that the coin I selected was fair?

7.2.10. Testem University offers admissions based on scores on an exam given by
National University Testing Service, which simply defines certain grades to
be “pass” and others to be “fail.” Of those applying to TU, 40% are capable
of obtaining a degree there. Of those who are capable, 80% will pass the
NUTS exam. Of those who are not capable, 30% will pass the NUTS exam.
What percentage of those offered admission to TU are capable?

7.2.11. Jack tells his professor that he forgot to bring his project to hand in. From
experience, the professor knows that students with finished projects forget
and tell her so about once in 100 times. She also knows that about half of
the students who haven’t finished their projects will tell her they forgot. She
thinks that about 90% of the students in this class completed their projects
on time. What is the probability that Jack’s excuse is valid?
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7.3 Independence

The basic idea behind independence is that knowing certain information gives
us no additional information about something else. For example, knowing the
weather today gives you no information about how you will do on the quiz
next week. Thus the random variable that gives your quiz score is indepen-
dent of the random variable that gives today’s weather. As a result, when you
attempt to assess how well you will do on the quiz, you can ignore today’s
weather. People must often make assumptions of independence; otherwise,
they would be unable to analyze a situation due to the lack of adequate data,
the amount of computation required, or both. Of course, assuming indepen-
dence doesn’t make it so. This leads to the difficult problem: How much does
assuming independence alter the results? There appear to be no useful results
on this problem. Nevertheless, you may have to assume independence in some
situations. In such cases, wave your arms and keep a good luck charm nearby.

Independence of Compound Events

Definition 7.8 Independence of Compound Events

Let (£,Pr) be a probability space and let A1, A2 g 8. If

Pr(A1 A A2) = Pr(A1)Pr(A2),

we say that Al and A2 are independent. More generally, if, for every subset
A = {Ai1,---,Aik} of {A1,...,An}, we have

Pr(A;1 A - - - /\ Agk | B) = Pr(A,1 | B) - ~ - Pr(Agk | B), (7.24)
then we say that the A,- are (mutually) independent events given B.

If Pr(B) 75 0, an equivalent formulation of the statement that A and B
are independent is Pr(A | B) = Pr(A). On the other hand, if Pr(B) = 0, then
Pr(A /\ B) = 0. In other words,

A and B independent 4:) Pr(A A B) = Pr(A) Pr(B)
4:) either Pr(B) = 0 or Pr(A | B) = Pr(A).

Intuitively, Pr(A | B) = Pr(A) says that knowing B occurred gives no
information about the occurrence of A. Since Pr(A A B) = Pr(A) Pr(B), is
symmetric, it follows that Pr(B I A) = Pr(B). This leads us to a simple fact:

Knowing A occurred gives no information about the occurrence of B
if and only if

knowing B occurred gives no information about the occurrence of A.
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It’s easy to overlook this fact in intuitive probability. For example, many
people might say that knowing Bill often wears blue jeans does not affect their
estimate of the probability that he is a college student, but that knowing Bill
is a college student does affect their estimate of the probability that he often
wears blue jeans.

The next theorem clarifies the effect of independent evidence, which we
alluded to after (7.21).

Theorem 7.4 Bayes Theorem with Independent Multiple Evidence

Suppose that A1, . . . ,An are independent given H1 and are also indepen-
dent given H2, then

PI‘(H1 I A1 /\ ' ° ' /\ An) _ PI'(H1) PI‘(A1 I H1)
.

PI'(An I H1) (7.25)Pr(H2 |A1 /\---/\An) ‘ Pr(H2) X Pr(A1 |H2) x "xPr(A,, |H2)'

Example 7.15 Further Medical Testing

Suppose we have the situation described in Example 7.11 (p. 276). The doctor
decides to perform an additional test because the first test was positive. The
second test gives a false positive only 0.5% of the time but gives a correct
positive only 80% of the time. Since these two tests check for very different
things, it’s reasonable to assume that the tests are independent, given D and
also given H.

i

We now want to know what the probability is that a person who tests
positive on both tests has the disease. Let H1 : D, H2 2 H, and let A,- be
the event that the ith test was positive. By (7.25)

Pr(D|A1/\A2) _ 0.001 x _1_ x 0.8 _ 8x10“4
Pr(H |A1AA2) ‘ 0.999 0.05 0.005 ‘ 2.4975 x 10-4

and so, by (7.20) (p.281),
1 ~ 9

1+ 2.4975/8 "’ 4'
Thus, about 3 out of 4 people who are positive for both tests have the disease.

What if the order of the tests had been reversed? The conclusions would
have been the same, but the doctor would have missed about 20% of the
people with the disease because a false negative would have led him to stop
testing. Missing people with the disease is very bad. Thus, it is important
that the number of false negatives on the first (screening) test be as low as
possible, even if there are some false positives. What should the doctor do if
the second test is negative? Perhaps he should order further testing, because
20% of the people with the disease will have a negative result on the second
test. I

PI‘(D I A1 /\ A2) =
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Example 7.16 Independence and Cartesian Products

Independence arises in a natural manner when the probability space arises
from products. Suppose that (Pro, 80), (Pr1,£1), and (Prg, 52) are probability
spaces. Let

8 = 80 x 81 x 82 and Pr(eo,el,eg) = Pr0(eo)Pr1(el) PI‘2(62).

Let S; be a subset of 8,- and define

AOZSOX81 X82, A1 =80X31 X82, and A2=£oX£1 X52.

(One example of this is coin tossing where the subscript 2' refers to the ith
toss.) It’s left as an exercise for you to prove that A1 and A2 are independent
given A0 for this Cartesian product construction. The generalization to more
than three A5’S should be fairly obvious. I

*Example 7.17 A Counterexample
Suppose that A1 and A2 are independent given B and are also independent
given C. It is natural to ask if they are independent given BVC and if they are
independent given BAC. To disprove such a statement, it suffices to construct
a probability space where it is false. We will deal with the first case and leave
the second as an exercise.

Here is an idea for constructing a counterexample given B V C. We could
make A1 0 B = (0 and A2 0 C = (0. Then the given independences are trivial
because the probabilities that must be equal are all zero. For example,

0 S PI‘(A1 AA2 I B) S PI‘(A1 l B) = 0 = PI‘(A1 I B) PI‘(A2 I B).

We also have Pr(A1 A A2 I B V C) = 0 because
(A1 nAz)n(BUC)=(AlnA2rlB)U(AlnAgnC)

(7.26)
E (A1 0 B) U (A2 DC),

and the last expression is the union of two empty sets. On the other hand,
Pr(A1 | B V C) and Pr(A2 | B V C) need not be zero. The left-hand side of
Figure 7.1 should clarify this.

You might object that the counterexample is rather specialized since it
requires that certain probabilities be zero. We can adjust the circles in Fig-
ure 7.1 to allow overlap, as shown on the right-hand side. Can this be made
into a counterexample?

We need to have

Pr(A1 /\ A2 | B): Pr(A1 I B) Pr(A2 | B),
PI‘(A1 /\ A2 I C) 2' PI‘(A1|C)PI‘(A2|C).

Suppose this is done so that Pr(A1 | B) and Pr(A2 | C) are small. The last
expression in (7.26) will correspond to an event with small probability. All we
need to do is keep Pr(A1 | C) and Pr(A2 | B) fairly large.

(7.27)
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A1

A2 A2

Figure 7.1 A counterexample for Example 7.17. The interior of a labeled circle
corresponds to the elements of 5 that lie in the compound event associated with the
label. The shaded area corresponds to B U C. On the left, A1 0 B = A2 0 C = 0.
The right-hand figure is the general case.

Let’s try to assign some numbers so that what we described in the previous
paragraph happens. To simplify calculations, we’ll assume that B NC = 0 and
that the situation is symmetric as shown in Figure 7.1. We begin with variables
instead of numbers, using 6 and c to suggest small numbers:

Pr(B) = Pr(C) = a3,
Pr(A1 A B): Pr(A2 A C) = 6,
Pr(A1 A C) = Pr(A2 A B): y,

and
Pr(A1 AA2 /\ B) = Pr(A1 A A2 A C) =3 6.

For these to make sense as probabilities, we need 6 < 6 and a: and y cannot
be too big. By the definition of conditional probability and the definition of
independence, the requirement that A1 and A2 be independent given B states
that (c/x) = (y/x)(6/a:). Thus (7.27) is equivalent to

= 6 x (y/m). (7.28)

This gives us 6 in terms of the other three parameters, at, y, and 6. Let D be
any compound event. Since B and C have no events in common,

Pr(D A (B v 0)) = Pr((D A B) v (D A 0)) = Pr(D A B) + Pr(D A C).
Setting D = 8, A;, and A1 A A2 in turn, we obtain

Pr(B V C) = 2x,
Pr(A, A (B v 0)) = 31+ 6,

and
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Pr((A1 /\ A2) /\ (B v 0)) = 2:.

In order not to have independence given A V B, we need only have

E y+6 2
2:: 2x

'

Using (7.28) to eliminate 6, we see that we need

3/6 (y+<5)2
E¢ 43:2 °

Multiplying by 41:2 and subtracting 43/6 results in 0 75 (y — (5)2. Thus we need
only require that y 96 6.

Putting all this together, and remembering that our numbers must be
probabilities, we see that we require

0<y<x<1, 3/966 and ezéy/x.

Numeric examples are now easily constructed; for example, a: = %, y = i,
6 2 §, and e = fi. You shOuld be able to assign probabilities to the various
shaded regions in the right-hand part of Figure 7.1. I

Exercises

7.3.A. What does it mean to say that the compound events A and B are independent
given C? Explain by an equation as well as intuitively.

7.3.B. How does independence simplify the use of Bayes’ Theorem?

7.3.1. Assuming that 0 < Pr(B) < 1, show that A and B are independent events
if and only if Pr(A | B) = Pr(A | -IB).

7.3.2. Suppose 72 people each toss a fair coin. What is the probability that all people
get the same result? that all but one person get the same result?
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Suppose that A1,A2, . . . , An are mutually independent given B.

(a) Prove that any subset of the Ag’s is mutually independent given B.
(b) Suppose that, for each i, 0,- equals A, or -IA,-. Prove that 01,02, . . . , 012.

are mutually independent given B.
Hint. Induct on the number of complemented Ai’s.

(c) Prove that A = {A1 U A2, A3, . . . , An} are mutually independent given

Hint. Use (7.12).

((1) Let ’1'1,T2,...,’I}c be disjoint subsets of A; that is, ’1; n 73 = 0 whenever
2° 96 j. Let T,- be the union of those Aj’s that are in 7;. Prove that
T1,. ..,Tk are independent given B.

(e) Let 1 S t < n be an integer. Define

D=A1r‘l---flAtflB.

Prove that At+1, . . . , An are mutually independent given D.
Hint. If it’s hard, try doing the case t = 1 first.

Prove Theorem 7.4.

This exercise refers to Example 7.16.

(a) Prove the claim that A1 and A2 are independent given A0.

(b) State and prove a claim where (Pro,£0) is missing and A2 and A3 are
independent.

(c) State an independence result for 6'0 x x (In that says A1, . . . , An are
mutually independent given A0.

((1) Prove the independence result stated in (c). Conceptually, the proof
is not hard, but all the sets and indices that are floating around may
make it difficult to write down a proof. Try to write a careful proof by
induction.

A petroleum geologist is exploring an area that has about one chance in
a thousand of yielding oil. She finds two independent pieces of geological
evidence favoring oil. Each piece has about a 20% chance of occurring if no
oil is present and about a 95% chance of occurring if oil is present. Given
this evidence, what is the probability that oil is present?

A doctor is checking a patient’s symptoms. Of a list of four symptoms for
the dreaded lurgy, the patient has three. Suppose that the symptoms are
independent for people who have the dreaded lurgy and are also independent
for people free of the disease. Suppose that a patient with dreaded lurgy has
a 3/4 chance of exhibiting each of the symptoms and that a random person
who does not have dreaded lurgy has 1 chance in 50 of exhibiting each of the
symptoms. If 1 person in 1,000 has dreaded lurgy, what is the probability
that the patient has dreaded lurgy?
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The doctor in the previous exercise consults a specialist. She tells him that
the figures he has for people who don’t have dreaded lurgy are not quite
right. There is a rare disease that only 1 person in 100,000 has. Patients with
this meta-lurgy should also be excluded when figuring the 1 in 50 chances
of exhibiting the symptoms. People with meta-lurgy always have the three
symptoms the current patient has, but, like people without dreaded lurgy,
have only 1 chance in 50 of having the symptom the patient does not have.
What is the probability that the patient has dreaded lurgy? has the rare
meta-lurgy? has neither?

Suppose you’re using two independent sensors to locate an object. The object
is in one of three regions, say R1, R2, and R3. From experience (or otherwise),
you have estimates of Pi,j,k: the probability that sensor 2' will report that the
object is in region RJ- when it is actually in region Rh. Based on the object’s
previous position, you believe the chance of its being in R2 is about 60%
and the chance of its being in each of the other regions is about 20%. Both
sensors report that the object is in R1. What are your new estimates for the
probability of the object’s being in each of the three regions?

Construct probability spaces to show that the following are FALSE in some
situations:

(a) Suppose that Pr(B A 0) ;£ 0. If A1 and A2 are mutually independent
given B and A1 and A2 are mutually independent given 0', then A1 and
A2 are mutually independent given B A C'.

(b) If A1 and A2 are mutually independent given B, A1 and A3 are mutually
independent given B, and A2 and A3 are mutually independent given
B, then A1, A2, and A3 are mutually independent given B.

Independence of Random Variables

At the end of Definition 7.6, we saw that Pr(X | Y) is a function from
range(X) x range(Y) to IR. This is a special case of a more general situa-
tion:

Whenever an equation involves probability functions whose argu-
ments contain random variables Y1,Y2, . . ., the equation stands for

(7 29)the entire set of equations obtained by replacing each Y,- by Yi"1(si) '

for all possible choices of s,- in the range of Y,.

For example, if X,- is either H or T, indicating the results of the ith toss of a
coin, then

Pr(X1 /\ X2) = Pr(X1)Pr(X2) (7.30)

is actually a set of four equations corresponding to the four values HH , HT,
TH, and TT that X1X2 can assume. Equation (7.30) is read “the probability
of X1 and X2 equals the probability of X1 times the probability of X2.”
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Definition 7.9 Notation

(a) To avoid having to write A so often, we shorten Pr(X1 A X2 /\ X3)
to Pr({X1,X2,X3}). We refer to this as the joint distribution of X1,
X2 and X3.

(b) We will always use script letters such as X to denote sets of random
variables.

(c) When we write a set of random variables as an index of summation,
we mean that the sum is to extend over all values in the ranges of
the random variables in the set.

There’s an unfortunate notational consequence of (a):

[Pr({X} u {Y}) = Pr({X,Y}) = Pr(X A Y) |
It is very important to distinguish U and H from V and /\ in probability
statements involving sets of random variables. With a little care, you can
keep this straight because

Inside Pr( ) we use set union only for sets of random variables and
we denote such sets by script letters such as X and y or by the set
notation {. . .}.

Note that, in this notation, Pr(X | y) = Pr(X U y)/ Pr(y).

Example 7.18 Manipulating Notation
Let X and y be disjoint sets of random variables. We’ll show that

Z Pr(X u y) = Pr(X). (7.31)
y

We need to show that each simple event that contributes to the right side
also contributes to the left side exactly once and vice versa. To see this, we
switch from random variables to compound events. This is done by looking
at the values that the random variables can take on. Let a,- (resp. b,-) be a
value for the ith random variable in X (resp. y). Let A be the compound
event in which X,- = a; for all X,- E X. Let k = |y| and let B(b1, . . . ,bk) be
the compound event in which Y,- = b,- for 1 g i S k. We can now rewrite the
claimed equality (7.31) as

Z Pr(A /\ B(b1, . . .,b,,)) = Pr(A).
(11,...,b;c

Each elementary event e E 8 belongs to exactly one of the sets B(b1, . . . , bk),
namely the one for which b,- : Yi(e) for all i. Equation (7.31) now follows from
(d) of Theorem 7.1 (p. 263) with the A’s equal to A n B(b1, . . . ,bk) because

U (AnB(b1,...,b,,))=An( U B(b1,...,bk))=An£=A.
bl)-")bk b1)"')bk
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Looking over this proof, you may be wondering where I used the fact that
X and y are disjoint. You’ll have to hunt a bit for that because I was careless
about one point. Try to find it.

* * * Stop and think about this! * * *

Here’s the answer. I selected some values for the Xg’s and fixed them at the
a,-’s. Then I allowed the Yj’s to vary over all possible values. I can’t do this if
one of the Xg’s is one of the Y]- ’s.

Note that I said “one of the Xg’s is one of the Y,- ’s”, not “one of the Xi’s
equals one of the Yj’s.” This is an important point. The convention (7.29)
requires that each random variable be assigned a value, but it does not require
two differently named random variables, say X and Y, to be assigned the same
value even if X (e) = Y(e) for all e E 8. Of course, if we assign them different
values, we’re likely to end up with a compound event that is the empty set.
For example, suppose that X and Y are random variables that take on the
values 3 and 4 and that X(e) = Y(e) for all e E 8. Then Pr(X|X) is a
function on {3,4} that is identically equal to 1, while Pr(XlY) is a function
on {3,4} x {3,4} whose value at (a,b) equals 1 when a = b and equals 0
otherwise. I

Now we’ll define independence for random variables (actually, for sets of
random variables). This definition is stronger than the definition of indepen-
dence for compound events (Definition 7.8): Since it involves a function whose
arguments take on all possible choices in the ranges of the random variables,
one independence statement for random variables becomes several indepen-
dence statements for compound events.

Definition 7.10 Independence of Sets of Random Variables

Let (8, Pr) be a probability space and let X1, . . . ,Xn and W be pairwise
disjoint sets of random variables on 8. We say that the (155’s are (mutually)
independent given W if

Pr(Xl u - . - o X, | W) = Pr(Xl | W) - . -Pr(/1’,, | W). (7.32)
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Example 7.19 A Simple Independence Example

Let’s return to our old friend, a sequence of n independent coin tosses with
8 : {H,T}”. Let Xi(e1, . . . , en) 2 65.1fy1,...,yk and W are disjoint subsets
of {X1, . . . , Xn}, then the yi’s are independent given W. This claim follows
from Exercise 7.3.5 (p.289). Decompose the coin-toss sequence space into
pieces where the ith piece 8,- contains those tosses that are referred to by
32,-. The disjointness of the yi’s ensures that the 85’s all refer to different
positions. Let 80 be the remaining tosses. Then a particular assignment of
values to y, will pick out values for the positions that 65 keeps track of. Since
W is disjoint from the 325s, an assignment to W will pick out values for some
of the positions that 80 keeps track of. The remaining details are left for you.

Let U}, be the number of heads on the first 1:: tosses and let V], be the
number of heads on the last 16 tosses. If k + j g n, then Uk and V,- are
independent. This follows from Exercise 7.3.5(b). Simply write 8 as a product
of two spaces, one that contains the first k tosses and one that contains the
remaining n — k tosses (and hence the last j since j g n — k). The details are
left for you. I

Independence was defined as one probability equalling a product of proba-
bilities. It can also be defined as one conditional probability equalling another.
For n = 2, this definition is X1 and X2 are independent given W if and only
if conditioning X1 on X2 U W gives the same values as conditioning it on just
W. In terms of equations, this is

PI‘(X1 |X2 U W) = PIC/1’1 IW).

You should be able to prove this using Exercise 7.2.2 (p. 279).
The following notation and properties of independence are sometimes use-

ful in studying Bayesian-based reasoning in expert systems.

Theorem 7.5 Independence Properties of Random Variables

Let W, my, Z be pairwise disjoint sets of random variables on a prob-
ability space. Let I(X,y,Z) indicate that X and Z are independent
given 3/; that is, Pr(X U Z | y) = Pr(X | y) Pr(Z | y) or, equivalently,
Pr(z1’ | y U Z): Pr(X | 3)). Then

(a) I(X,Z,y) implies I(y,Z,X);

(b) I(X,Z,yUW) implies I(X,Z,y);

(c) I(X,Z,yUW) implies I(X,ZUW,y);
(d) 1(x,z,y) and I(X,ZU.)),W) together imply I(X,Z,yUW).
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Proof: We will prove (c). The other parts are left as an exercise. First, I’ll
translate I notation into Pr notation: In conditional probability notation, we
must show that

Pr(X | (y u W) u z) = Pr(X | Z) (7.33)
implies

Pr(X |yu(ZUW)) = Pr(X | ZUW).
Since the left sides are equal, it suffices to show that (7.33) implies

Pr(X | Z) = Pr(X | Z U W);
which is equivalent to

Pr(X UZ) _ Pr(X UZUW)_ . 4Pr(Z) Pr(Z u W) (7 3 )
Similarly, (7.33) can be written as

Pr(XUyUWUZ) _ Pr(XUZ)
(735)my u w u Z)

_
Pr(Z)

If we can eliminate y from (7.35), the proof will be done. We can do this by
first clearing fractions and then summing over all possible values for y. To see
why this summation works and how it uses the fact that y and X U Z U W
are disjoint, see Example 7.18. I

Exercises

7.3.C. Explain the notation Pr({X} U {Y}) = Pr({X, Y}) = Pr(X A Y).

7.3.D. What does it mean for the random variables X and Y to be independent
given Z?

7.3.E. What does Pr(X) mean when X is a set of random variables?

7.3.F. What does it mean for the sets X and y of random variables to be indepen-
dent given Z?

7.3.G. Explain the notation 105,353).

7.3.11. Show that when X = 0 we should take Pr(X) = 1 to make equations work
out correctly. Do it in at least the following two distinct ways:

(a) Look at the corresponding compound event, using the fact that an in-
tersection of no sets is taken to be the “universe.”

(b) Look at 2)) Pr(X U y) = Pr(X) and evaluate the sum.

7.3.12. Let y,- Q X; for 1 S i g 12.. Show that if X1, . . . , Xn are independent given
W, then so are 371, . . .,.)7n. Following the idea in the previous exercise, use
Pr(X,- I W) = 1 when X,- = 0.
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7.3.13. Using independence terminology, express the four parts of Theorem 7.5 in
words.

7.3.14. Using conditional probability terminology, express the four parts of Theo-
rem 7.5 in words.

7.3.15. This exercise deals with breaking records as in sports and weather. Let
X1, X2, . . . be a sequence of measurements (e.g., annual rainfall). Thus Xj is
the measurement at time j. Although it is probably incorrect, assume that
the Xj ’s are mutually independent and have the same probability distribu-
tions. For simplicity also assume that Pr(Xg = Xj) = 0 whenever i aé j. This
can’t be correct for finite probability spaces, but it can be close to correct.

(a) Show that the probability that XJ- is the largest of X1, . . .,X¢ equals
1 /t.

(b) What is the probability that Xt is a new record?
(c) Show that the probability that Xt+k is a new record, given that X; was

the previous record, is u+oa+k—n'
7.3.16. Use I(X,y, Z) if and only if I(Z,y,X) to rearrange each of the 1’s in the

remaining three parts of Theorem 7.5. Then, using conditional terminology,
describe the new forms in words.

7.3.17. Complete the proof of Theorem 7.5.

Notes

There is what may seem a glaring omission in this chapter: Expectation and
variance are not discussed. Since these concepts aren’t really needed until
later, I’ve postponed them until Section 12.1, which you can read now if you
wish.

Neapolitan [12] discusses in some detail the controversy about relating
probability to the real world. Another discussion is given by Shafer [14]. A
more philosophical discussion is given by Cohen [1]. All give further references.

This chapter contains only the aspects of probability theory that are
needed for expert systems. Some other aspects of probability theory will be
discussed in a later chapter. In addition, there are many texts on the subject,
ranging from useful elementary introductions such as that by Gnedenko and
Khinchin [7] to highly mathematical texts. The classic mathematical intro-
duction is the two-volume work by Feller [5].

Unfortunately, there is little introductory material devoted to those as—
pects of probability theory that are relevant to design and study of expert
systems. The texts by Neapolitan [12], Pearl [13], and Kruse, Schwecke, and
Heinsohn [10] are possible sources. In addition, some important papers in the
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area have been collected by Shafer and Pearl [15], who have written introduc-
tory material for the various parts of the collection.

Further discussion of the car and the goats example can be found in [6]
and [11].

Various researchers have made proposals on how to incorporate AIB into
logic. The paper by Dubois and Prade [3] is a combination survey and research
article. See also [8]. More recently, a special journal issue has appeared on
conditional event algebras [2]. For further discussions of the relation between
implication and conditional probability, see [4].

Bayes’ Theorem plays an important role in some systems for uncertain
reasoning. My approach to it has been traditional: I began with the necessary
concepts and machinery from probability theory. It’s possible to approach
Bayes’ Theorem from a viewpoint that is somewhat more congenial to expert
systems: Start with a set of axioms that uncertain reasoning must obey and
deduce Bayes’ Theorem and probability theory as a consequence. Smith and
Erickson [17] discuss J aynes’s way of doing this.

A point not emphasized in this chapter is the fact that Bayes’ formula
is not connected with causality. For example, it makes sense to talk about
Pr(Y | X)

0 when X can cause Y,

0 when Y can cause X, and

0 when the relationship is more complicated as when X and Y have a
common cause.

J aynes [9] provides an interesting application of this lack of connection in the
theory of diffusion.

Researchers have been working on various ideas for combining concepts
from probability theory and logic. A couple of ideas related to conditional
probability were discussed in Example 7.8 (p.273). Another research topic
is the possibility of approaching nonmonotonic logic through probability. We
can cast ordinary logic in a probabilistic mode by using 0/1 valued probabil-
ities. If we attempt to formulate a nonmonotonic logic by allowing arbitrary
probabilities, many of the nice aspects of logic are lost. However, if we allow
probabilities to differ from 0 and 1 by at most infinitesimals, we can develop
an approach to nonmonotonic logic.
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Bayesian Networks

All science is concerned with the relationship of cause and efiect.
—Laurence J. Peter and Raymond Hull (1969)

Introduction

Causality is the boon of our existence and the bane of our mathematics. We
rely on causality in our interactions with reality, but we find it difficult to
capture in our abstractions.

Example 3.5 (p.97) discusses the impossibility of capturing causality in
the context of standard logic. Although implication is the obvious choice for
doing so, it can’t be used. One problem is directionality:

(a) Since causes precede effects in time, it’s essential to have a unidirec-
tional process to model causality. In other words, if A is a cause of
B, then B occurs later than A.

(b) In FOL, a —> fl is equivalent to (-1,6) ——> (fia), so there is no direc-
tionality to model causality.

This problem was overcome somewhat by rule systems for which the inter-
pretation of “if—then” statements is unidirectional; that is, “if oz then fl” does
not imply “if not fl then not 0:.” Semantic nets also incorporate directional-
ity by using a directed graph. This suggests that some sort of directed graph
structure might be useful for describing causality.

The concept of conditional probability is suggestive of causality, but as we
saw in the previous chapter, conditional probability and Bayes’ Theorem have
no direct connection with causality (p. 296). Overcoming this by imposing a
directed graph structure on the event space 8 is the idea behind Bayesian nets.

299
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Bayesian Nets

A Bayesian (or causal) network has a structural part reflecting causal rela-
tionships and a probability part reflecting the strengths of the relationships.
A user of a Bayesian network expert system specifies observations, each ob-
servation being information about the value of a random variable. The user
may then ask for the probability of another random variable. For example,
given certain geological observations (“instantiations” of random variables),
what is the probability that drilling for oil will bring in a well? A user might
ask other questions. For example, given some symptoms and medical test re-
sults, what are the most probable diagnoses and what are their probabilities?
Like everything in AI, Bayesian networks have pros (+) and cons (—):

— In the general case, the only known algorithms require prohibitive amounts
of data and calculation.

+ There is a solid theoretical base—probability theory and causality—rather
than an uncertain heuristic one.

— Bayesian networks may be the wrong tool for the problem. (See the next
chapter for some alternatives.)

+ Since results are given in terms of probabilities, they have a readily un-
derstood meaning.

— Numerical values give a false sense of accuracy since they are inevitably
based on an inaccurate knowledge base.

The first objection is circumvented by making assumptions that limit the
structure of the causal connections, the form of the probabilities, or both.

The last objection, regarding knowledge-base accuracy, would be weak-
ened considerably if we had a practical method for doing a sensitivity analysis
of a Bayesian network, that is, for estimating the effect changes in the values
of data will have on predictions. Of course, this could be done by conduct-
ing a huge number of experiments with the network. That’s seldom practical.
Some empirical results indicate that predictions are often rather insensitive
to numerical changes in the data. General theoretical results are needed.

In the next section, we get a first look at Bayesian networks. This intro-
duction provides enough background for a more detailed perspective. The first
application of Bayesian networks is to the “diagnosis problem” for some simple
networks. Then, two sections are devoted to singly connected networks. The
final application is a discussion of the limitations of certainty factors, using
an axiomatic approach as we did for fair elections in the Arrow Impossibility
Theorem (p. 194).

Note: You can read the discussions of the three applications—diagnosis,
singly connected networks and certainty factors—independently of
one another.
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Prerequisites: The concepts from probability theory introduced in Chap-
ter 7 are used throughout. Basic graph theory definitions from Section 2.1 are
also needed.

Used in: No chapters require this one; however, the introductory discussion
in Section 9.1 refers to the basic concepts introduced in Section 8.1. Although
it’s not necessary, you may want to read Section 8.1 before Chapter 9.

Exercises

8.A. What are the two major components of Bayesian networks?

8.B. Give at least one positive and one negative aspect of Bayesian networks.

8.1 Bayesian Networks

Mathematicians are like Frenchmen; whenever you say something
to them, they translate it into their own language, and at once it

is something entirely difierent.
—Johann Wolfgang Goethe (1829)

Human reasoning about reality appears to be qualitative and heavily depen-
dent on causality. AI reasoning methods can break down because they fail
to come to grips with causality. Human reasoning methods can break down
because they fail to come to grips with numerical aspects of uncertainty. A
computer-based system incorporating both causality and numerical uncer-
tainty might prove quite useful for dealing with situations where human rea-
soning has difficulty. Probability is the standard mathematical tool for dealing
with uncertainty. A tool for representing a collection of causally related events
is the directed acyclic graph—DAG. The combination of these concepts leads
to a Bayesian network. In it, conditional probability and independence are
linked with the notion of causality.

The goal of this section is to introduce the concept of a Bayesian network
and, in Theorem 8.2, to establish its most important property.

Is all this concern with causality really necessary? The next example shows
that there is a need for something like causality when we lack certainty.
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Example 8.1 Causality Is Needed

Imagine two rules

“If B then A.” and “If C then A.”

which are taken to be true with some probability. If we learn that A is more
likely to be true, then we might expect to increase the chances of both B
and C. This is quite reasonable when A can cause B and C'. It is also quite
reasonable if B and C could each cause A.

Now suppose that we learn that B is likely to be true. This is evidence for
A which is in turn evidence for C', so the probability of both A and C should
increase. Again, this is reasonable if A can cause B and C'. If B and C could
each cause A, it is no longer reasonable to expect C’s probability to increase,
as the following illustration shows.

As I look out the window it appears that (A) “the sidewalk outside
my front door is damp this morning,” but I can’t tell for sure because it
is still fairly dark out. My opinion is evidence E1 for A. This could have been
caused by (B) “rain last night,” (C) “the automatic lawn sprinkler system
was on,” or maybe something else. I might estimate Pr(A | E1), Pr(B | E1),
and Pr(C | E1). Now I get some evidence E2 for B: The radio announcer says
that we had rain showers last night. With this new evidence, Pr(B | E1 U E2)
and Pr(A I E1 U E2) should be larger than the probabilities conditioned on
just E1, but Pr(C I E1 U E2) should be less! I

We’ve just seen that the direction of causality in if—then rules may be im-
portant if we want to combine evidence from two or more rules. The easiest
way to keep track of this in a rule-based setting is to require that causes al-
ways be on the same side of rules. Another approach is to describe causality
with DAGs, which is the purpose of this section.

Directed Acyclic Graphs

At this time, you may wish to review the definition of directed graphs (di-
graphs) and cycles given in Section 2.1. Recall that:

Definition 8.1 Directed Graphs

Let V be a set. A directed graph, or digraph, is V together with a subset
E of V x V. We refer to V as the vertices of the digraph and to E as the
edges of the digraph. We denote the digraph by (V, E).
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C3130 CSl32

Ma150 Ma126

Ma2

v 1
CSS Ma]

(*1) (b)
Figure 8.1 Two directed acyclic graphs (DAGs): (a) Two representations of a
DAG which has V = {1,2,3,4} and has (am) 6 E whenever it < '0; (b) some de-
pendencies among imaginary mathematics and computer science courses, with an
edge from B to A if A is a prerequisite for B.

A digraph is represented pictorially as follows. The vertices v E V are in-
dicated by their names, possibly circled. An edge (u, v) E E is represented by
a line or a curve connecting the representations of u and v, with an arrowhead
indicating the direction from u to 1). We usually abuse terminology and refer
to such a representation as if it were the digraph. Since all that matters for a
digraph is V and E, the shapes and positioning of the representations of the
vertices as well as the shapes and crossings of the curves representing the edges
are irrelevant. Figure 8.1 contains pictorial representations of two digraphs.

Definition 8.2 Acyclic Digraphs and Related Concepts

Recall from Section 2.1 that a cycle is a list of distinct vertices v1, . . . , vn
such that (vmvo) and all the (12,-, 1234.1) are edges. A digraph without di-
rected cycles is called acyclic and is referred to as a directed acyclic graph
or a DA G.

Let (V, E) be a DAG and let '0 E V. We define

C(”)={U€V|(u,v)EE};
D01):{wEVIthereisapathfromvtow};
A(v):{xEV|x¢vandx¢C(v)u’D(v)}.

We refer to C(v) as the parents or causes of v and refer to ’D(v) as the de-
scendants of v. For any subset W of V, define C(W) (resp. ’D(W)) to be
the union of C(w) (resp. D(w)) over all to E W.
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Since a DAG has no cycles, C(v) 019(2)) 2 (0. Thus {1)}, A(v), C(22), and ’D(v)
are a partition of V—pairwise disjoint sets whose union is V.

Example 8.2 Notation

In Figure 8.1,

C(Ma2) = {Ma126, Ma150 };
D(Ma2) : {Mal};
A(Ma2) = {035, 03130, C8132 };

D(CSl32) = {085, Ma126, Mal }. I

With DAGs we have a potential tool for representing causality, which is
an important aspect of everday reasoning. The idea is that (u,v) will be an
edge if and only if u is an “immediate cause” of v. The digraph will be acyclic
because the time of a cause is always earlier than the times of its effects.
Unfortunately, the notion of an immediate cause is not immediately useful
because

0 It’s not entirely clear what the concept means.

0 Even if we knew what it meant, it’s not clear what its mathematical
implications are besides the DAG.

In other words, we have a somewhat vague, but apparently useful, con-
cept whose translation into mathematics is unclear. This type of situation
occurs often. How can it be handled? One approach begins by deciding what
the implications of the concept—immediate cause—are in the mathematical
framework we hope to use—probability theory. Next these mathematical con-
sequences are taken as the basis of a definition of a mathematical concept.
Finally, based on the original belief that the mathematical concept captures
relevant properties of reality, we should be able to translate back and forth
between reality and mathematics.

The idea in the previous paragraph has been the impetus for many areas of
mathematics: measuring the earth inspired geo-metry, physical ideas inspired
calculus, gambling inspired probability theory, and so forth.

Before formulating the mathematical consequences of immediate causes
and connecting them with probability spaces, let’s look at an example adapted
from some of J udea Pearl’s work.
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= alarm rang J = John’s call

B = burglary T = earth tremor

C’ = car alarm

Figure 8.2 The DAG for the burglar alarm example. Each edge connects an effect
to one of its immediate causes, with the arrowhead indicating the effect.

Example 8.3 A Burglar Alarm: Introduction

Sally’s home, which is south of San Francisco, is equipped with a burglar
alarm. Upon returning to her oflice, Sally finds a message that her neighor
John called five minutes ago to say that her burglar alarm was ringing. Unfor-
tunately, John is somewhat unreliable—he might have heard the neighbor’s
car alarm. Sally knows that her alarm can be triggered by a minor earth
tremor or a malfunction, as well as by burglars, but she thinks that tremors
don’t normally affect car alarms. Figure 8.2 shows the result of using a DAG
to represent direct causes. (I omitted alarm malfunctions for reasons that will
be discussed later.) Note that C(v) corresponds to the immediate causes of
v and ’D(v) corresponds to the events on which 1) has a, possibly indirect,
effect. I

The following simple theorem, which gives us the ability to order vertices
in a convenient manner, will be useful in proving a key theorem about Bayesian
networks.

Theorem 8.1
Let (V, E) be a DAG and let u E V be given. We may order the vertices,
say as v1,v2,...,vn so that

(a) for all 2) E V, all vertices in 13(1)) follow 1; in the list and
(b) a vertex follows u in the list if and only if it lies in ’D(u).

Proof: Let’s prove (a) by induction on the number of vertices. It is trivial
when there is only one vertex. Since WI 2 n is finite and (V, E) contains no
cycles, there must be some vertex 1),, E V such that there is no edge of the
form (vmv). Look at the DAG (V’, E') where

V’: V—{vn} and E’= Efl(V' X VI),

that is, all vertices except 1),, and all edges in E that don’t involve vn. By the
induction assumption, there is an ordering v1, . . .,vn_1 of V’ that satisfies
(a). Since there is no edge of the form (on, v), the ordering v1, . . . , on satisfies
(a). This proves (a).
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Now we can show that part (b) follows from (a). The set of vertices
in D(u) together with the edges joining them form a DAG and so have an
ordering d1, . . . , dk by (a). The set of vertices which are neither it nor in D(u)
together with the edges joining them form a DAG and so have an ordering
v1, . . . , vn_k_1 by (a). It is easily verified that

vl)"')vn—k—1)u)d1)'")dk

is a ordering of the desired type. I

Bayesian Networks

At last, it’s time to define a Bayesian network. The following definition is
more restrictive than necessary, but is quite adequate for many purposes.

Definition 8.3 Bayesian Network
Let (£,Pr) be a probability space with 8 = 81 x x 81,. Let X,- be
the projection onto 85. Let (X,E) be a DAG with X = {X1,...,X;c }.
We call (X, E,Pr) a Bayesian network (or net) if, for all X,- E V and all
W E A(X,-), X,- and W are independent given C(Xg). In the I notation
of Theorem 7.5 (p.293), I({X.-},C(X.~),W). In terms of Pr, if Pr(W U
C(Xg)) 76 0, then

Pr(X,- | w u C(Xa‘)) = Pr(X,- | C(X,)). (8.1)
Somewhat imprecisely in prose, if we know about the causes of X1;, nothing
other than X,- itself or its descendants can give us any more information
about X;. A Bayesian network may also be referred to as a causal network,
as a belief network, or as an influence diagram. I prefer “Bayesian” to
“causal” because it alludes to the nature of the probabilistic reasoning
associated with the network. “Belief” is unfortunate terminology because
“belief functions” are a different, but related, topic.

There is no need to mention 8 in (X , E, Pr) because

8 = range(X1) x x range(Xk). (8.2)

Since an assignment of values to X1, . . .,Xk gives a compound event that
consists of just one elementary event, (e1, . . . ,ek), we know Pr completely
when we know Pr(X). Thus, the probability space in the definition is given
completely by (8.2) and (8.1).

As discussed earlier, although the concept of causality is not defined math-
ematically, one of its important consequences is defined instead. This defini-
tion is equation (8.1). It expresses the idea that only immediate causes are
relevant in determining the nature of an effect. Since immediate causation
is represented by a DAG, (8.1) merges the qualitative representation (the
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DAG) with the numerical consequences (independence). In doing this, we’ve
dismissed causality from mathematical consideration.

Causality plays a role only by providing the means for translating a real-
world situation into a Bayesian net. In fact, it’s possible to create a Bayesian
network whenever (8.2) holds—causality doesn’t enter into it at all. (See Ex—
ercise 8.1.2.) Have we lost too much by reducing causality to (8.1)? Perhaps.
Does this mathematical representation lead to useful tools? Perhaps. These
sorts of issues were discussed in connection with FOL and Prolog, and we’ll
discuss them briefly for Bayesian nets later in this chapter.

Example 8.4 A Burglar Alarm: A Possible Bayesian Network
We can think of the burglar alarm situation introduced in Example 8.3 in
terms of a Bayesian network by interpreting each of the vertices as a random
variable. We can do this simply by using the corresponding letter to stand for
a random variable that takes on the value 31 or n, for “yes” and “no.” In these
terms, we’re interested in Pr(T = y | J = 3}).

At this time, look at each vertex in Figure 8.2, find the three sets C, D,
and A, and check for yourself that it is reasonable to believe that the figure
would indeed represent a Bayesian network if accurate probabilities could
be assigned to the various combinations of events; that is, verify that the
conditions in Definition 8.3 seem likely to hold in the real world.

* * * Stop and think about this! * * *

We cannot expect to prove that the figure represents a Bayesian network
because it is incomplete—there are no probabilities. Nevertheless, we can rea-
sonably argue to ourselves that certain independencies would hold. For ex-
ample, the chances that the car alarm went off are not affected by whether
the burglar alarm went off or the house was burgled or an earth tremor oc-
curred. (You might object to the last independency, but we’re using Sally’s
perception and she thinks-it doesn’t matter.) We have just argued that

Pr(C I W) = Pr(C) whenever W Q {A,B,T}. I

A direct verification that a probability space for the last example makes
the DAG in Figure 8.2 into a Bayesian network could require a fair bit of hand
calculation. We would have to be given the values for Pr({ A, B,C,J,T}).
Then we would have to check many independencies to verify the conditions
in Definition 8.3. This can be avoided by the following procedure.

First argue that (8, E) should be the DAG of a Bayesian network
by considering what causes what. Then estimate Pr by estimating
Pr(X | C(X)). By Theorem 8.2, the only necessary constraints are
that 0 g Pr(X | C(X)) g lfor all X and that EX Pr(X | C(X)) = 1
for all X.
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This procedure has three benefits. First, it reduces the amount of information
that must be obtained and stored. Second, it greatly reduces the number of
tests that must be performed on the information. Third, the numerical infor-
mation is all local—conditional probabilities relating an effect to its immediate
causes.

Theorem 8.2 Bayesian Network Probabilities

For the purposes of this theorem, call a function f a random variable
function if

(i) its arguments are (sets of) random variables, but the domain is the
values the random variables can assume and

(ii) its range is the nonnegative real numbers.
In other words, f behaves like Pr on its arguments.

Let X = {X1, . . . ,Xk} be a set of functions, each of which has a finite
range.
(a) If (X, E, Pr) is a Bayesian network, then

Pr(X) = H Pr(X | C(X)), (8.3)
XEXPr(C(X))¢0

where the notation in the product indicates that the product is taken
over all X E X for which Pr(C(X)) 76 O.

(b) Conversely, if (X,E) is a DAG, and if f(X | C(X)) is a random
variable function such that EX f(X | C(X)) = 1, then

8 = range(X1) x x range(Xk)

m) = H f(X |C(X)) (84)
XEX

defines a probability space for which (X , E, Pr) is a Bayesian network.
Furthermore, Pr(X | C(X)) is either 0 or f(X | C(X)).

It’s tempting to read through the theorem quickly and continue on. Don’t do
that! You should be able to say what a theorem means. Can you do it?

* * * Stop and think about this! * * *

Since Pr(X) determines (£,Pr), the products in (a) and (b) completely de-
termine (8, Pr). From (a), we see that probabilities in any Bayesian network
can be obtained from a knowledge of the values of the conditional probabil-
ities Pr(X.- | C(Xg» simply by multiplying them together almost like inde-
pendence. If we really had independence, we’d have Pr(X) = HXGX Pr(X).
Instead, we have to condition X on its immediate causes. From (b), we see
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that the only constraint that needs to be imposed on the conditional prob-
abilities is that, for each 2', the resulting numbers make sense as conditional
probabilities.

From the theorem, it suffices to estimate the conditional probability of
each X,- given its causes. Usually, this is more natural than estimating Pr(X)
directly and involves the determination of fewer numbers. For example, the
theorem tells us that Figure 8.2 requires the estimation of

Pr(J I {A,C’}), Pr(A I {B,T}), Pr(B), Pr(C), and Pr(T).

When we take into account the fact that

Pr(X:n|W)=1—Pr(X=yIW),

this is a total of 4+ 4+ 1+ 1+ 1 = 11 numbers. The direct approach requires
25 — 1 = 31 numbers to estimate Pr(X) directly, followed by a verification
that these estimates satisfy Definition 8.3. (Of course, they would only satisfy
it approximately since they are estimates, so we would be faced with the
question of how close is close enough.)

Example 8.5 A Burglar Alarm: A Bayesian Network
Let’s finally make the burglar alarm example into a Bayesian network and,
in the process, show that M can be eliminated. Sally estimated the following
probabilities:

Pr(A:y|B=y/\T=y)=0.99, Pr(JzyIA:y/\C'=y)=0.6,
Pr(A:y|B=y/\T=n)=0.99, Pr(JzylAzyAC=n)=0.6,
Pr(A:y|B=n/\T=y)=0.l5, Pr(J:y|A=n/\C=y)=0.6,
Pr(A=y|B=n/\T:n):46, Pr(J:y|A=n/\C=n)=0,

Pr(B:y)=0.16, Pr(C=y)=126, Pr(T=y)=36,
where 6 is some very small number. Sally doesn’t know what value to assign
to 6. How did Sally get these values and what is 6‘? For those probabilities
without 6, she thought about past experience and her expectations. The others
presented a bit of a problem. Sally thought that her burglar alarm went off
for no apparent reason about 4 times a year, but she needed the probability
that it would go off in some much shorter time period. How long a time
period should she allow? 5 minutes? 30 minutes? She couldn’t decide, but she
reasoned it would be some small fraction 6 of a year. In a similar fashion, she
set Pr(B = y) = 0.16 because she thought that people were burgled about
once every 10 years in her neighborhood.

After you think about the situation a bit, you should be able to convince
yourself that, in the real world, the value of 6 shouldn’t matter. What happens
in the Bayesian network model? When the calculations are carried out, which
we won’t do, it turns out that the value of 6 is unimportant as long as it is
quite small. I
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We can imagine building a Bayesian network by consulting an expert.
First we discover (or invent) the relevant random variables for the network
and determine which are direct causes of which others. Having constructed
the DAG, we elicit the conditional probabilities that Theorem 8.2 requires.

Exercises

8.1.A.

8.1.B.

8.1.C.

8.1.D.

8.1.1.

What does DAG stand for? Define a DAG.

Define a Bayesian network. What do A(X), C(X), and D(X) denote?

How does a Bayesian network encompass the notion of causality? (The an-
swer involves both the graphical structure and the probabilistic structure.)

What is the content and importance of Theorem 8.2?

For each vertex in Figure 8.2, find the three sets C, ’D, and A. Interpreting
the vertices in the figure as suggested in Example 8.5, give a commonsense
argument that the requirements for a Bayesian network are satisfied in the
case of T and every subset W of A(T).

Let X = {X1, . . .,Xk} be random variables on a probability space (8, Pr)
for which

(I = range(X1) x X range(Xk).

Let E: {(X;,Xj) I] S i < j S k}. Prove that (X,E, Pr) is a Bayesian
network.

. In Example 8.4, we argued for the condition in Definition 8.3 when X,- = 0.
Do this for the four other random variables: A, B, J, and T.

. Two types of causes are necessary causes and sufficient causes. Let Z _C_ C(X)
We say

(i) Z is a necessary cause of X if, whenever X occurs, we know that
Z must have occurred to (help) produce X and

(ii) Z is a sufficient cause of X if, whenever Z occurs it must produce
X.

(a) Show that (i) is equivalent to

(Pr(X=T|C(X)) >0) => (Z=TforallZEZ).

(b) State and prove a similar result for (ii).
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8.1.5. We want to represent the following situation with a Bayesian network. If I
have enough money, I will probably buy a car or a boat, but not both. Here
is a proposed DAG. There is a random variable M that indicates whether I
have enough money. It is connected by an edge to B and by an edge to C,
which are random variables indicating whether or not I buy a boat or a car.

(a) Explain why this Bayesian network is incorrect.
(b) Construct a correct network.

Proof of Theorem 8.2

To prove the theorem we must complete the following four steps:
1. Verify that the definition of a Bayesian network implies (8.3).
2. Verify that the function Pr defined in (8.4) does in fact give a prob-

ability space.

3. Verify the equality of the conditional probabilities and f.
4. Verify that (X, E, Pr) defined in (b) is a Bayesian network.

From now on, we’ll assume that X1, . . . , XI, have been ordered according
to Theorem 8.1 where X, plays the role of u and the subscripts on the Xi’s
reflect this ordering. Let X0 = (D and X,- : {XJ- |jg 2'} for i > 0. Since
Pr(2c’o) is the probability of the compound event in which no constraints are
imposed on the random variables, we have Pr(Xo) = 1.

Step 1: Suppose that Pr(X,-) 76 0. Using the definition of conditional proba-
bility, it is easily shown that

PI‘(X,') : HPI‘(XJ' lXj-1)° (8.5)

2'9
By the ordering of the vertices, D(Xj) (1 213- = (D; and so, from Definition 8.3
(p.306), Pr(Xj | $3-1) = Pr(Xj |C(Xj )). Using this in (8.5), we obtain

Pr(X,-) = H Pr(X,- | C(X,)).
J'Si

If Pr(X) 75 0, we set 2' = k to prove (8.3). Otherwise, there is an 2' such that
Pr(2c’,') = 0 and Pr(X,-_1) 7t 0. This implies that Pr(X,- | C(Xi)) = 0, from
which it follows that both sides of (8.3) are zero. This completes Step 1.

Step 2: Since the function defined in (8.4) takes on only nonnegative real
values, all that is needed for Step 2 is to show that summing the function over
8 gives 1. Define

9011') = Hf(Xj |C(Xj))- (8-6)
J'Si
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Note that X0 = Q) and so g(Xo) is the empty product, which equals 1 by
standard mathematical convention. Since X3- appears only in the j = 2' term
in the product in (8.6),

29(X)=(11f(X.-(.-)ICX))ZflX-IaX»
J<3

Since the last summation is l by assumption, we’ve shown that

g(Xo) : 1 and 29((1’3) : g(X3-_1) ifz' > 0. (8.7)
Xi

It follows by induction on i that ZXI,...,X.- g(X3-) = 1 for all 2'. Since X1, = X,
setting 2' = k completes Step 2; that is, we have a probability space.

A Summation: We now study a summation that arises in Steps 3 and 4. From
the previous paragraph, g(?c'k) = Pr(X). Summing over X3-+1,. . . ,Xk gives

g(X3-) = Pr(X3-). (8.8)

Suppose that y g X34 and that y 0 C(Xi) = (0. Using (8.8) and some
definitions, we have

2 Pr(X.) = Egon) = [Him I cm»
3’ y 3’ 19'

= f(Xi |C(Xi)) ZHf(Xj |C(Xj))
y j<i

= f(X,- | C(X.))Zg(X.-_1).
3’

Thus
Zia-(xi) = f(X.- |C(X,:)) gram--1). (8.9)
y 3)

Step 3: Let y = «11-1 — C(Xi), that is, those Xj for which j < i and Xj ¢
C(Xi). If PI‘(C(X3')) 9’: 0, then

23) Pr(X3- )
:XZ 2yPTO“)

First, interchange the sums in the denominator and evaluate the sum over X3,
then apply (8.9) to the numerator to obtain

Xj C Xj PI‘ X3- 1f( I
2(3)» 1333522)

( )2 “(X |C(Xj ))

X-| C(X-))

Pr(X3- I C(X3))

This completes Step 3.
Step 4: To verify that we have a Bayesian network, we’ll take 2' = t. (Recall
that X3 equals the u of Theorem 8.1.) We must show that if W Q A(Xt), then

Pr(Xt | C(X.) u w) = Pr(X3 |C(X.)).
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We can easily see that A(X¢) C X¢_1 and so W C Xt. Let y consist of all X,-
with j < i that are not in C(Xt) U W. Then

Pr({Xt} u C(X.) u W) = Z Pr(Xt).
3’

Since 3) _C_ Xt_1 and Xt ¢ Xt_1, it follows that

Z Pr(X,) = f(X, WOW) 2: Pr(X,_1)
y y

by (8.9), and so

2; 2y:
Pr(Xt) =

(;
for. | cm»)

(23):
Pr(x._1)).

Combining these with the definition of conditional probability, we have

Pr({Xt} U C(Xt) U W)
EX, Pr({X,} U C(Xt) U W)

_ f(Xt |C(Xt)) 2y Pr(Xt—l)—
(Ex. f (X: | COM» (232 Pr(Xt—ID

_ f(Xt |C(Xt))—
Ex, f(Xt IC(Xt))’

which equals Pr(X, |C(Xt)) since f(Xt I C(Xt)) = Pr(X: |C(X¢)). I

Pr(X; | C(Xt) u w) =

Exercises

8.1.6. Prove (8.5). Remember to treat the case when probabilities are zero.

8.1.7. Fill in the steps leading to (8.9) more carefully.

8.1.8. The purpose of this exercise is to show that if the vertices of a Bayesian net-
work can be divided into two sets that have no edges connecting them, we
can regard it as two separate causal networks.
Let (X,E) and (y, F) be DAGs.
(a) Prove that (X U y, EUF) is a DAG and show how to construct a picture

of it from the pictures of the DAGs (X, E) and (y, F).
(b) Let (X, E, Pm) and (y, F, Prg) be Bayesian networks with X {'1 y = 9’.

Define Pr(X U37) = Pr1 (X) Pr2(y). Prove that (X uy, E U F, Pr) is a
Bayesian network.
Hint. The most involved part is verifying (8.1). It can be done with
summation arguments or by clever use of Theorem 7.5 starting with
I(y, “X) and the separate Bayesian network (8.1).

(c) Let (X U y, E U F, Pr) be a Bayesian network. Prove that

Pr(X U y) = Pr(X) Pr(y)

and that (X, E, Pr) and (y, F, Pr) are Bayesian networks.
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8.2 Some Types of Bayesian Networks

The chief drawback with using probability theory is the complexity
that sometimes results, and the need to assess an often

surprisingly large number of conditional probabilities.
—Stephen R. Watson

In this section we’ll take a first look at the three types of Bayesian networks
that are explored in this chapter and indicate the nature of the principal
results. First, a bit of terminology.

Definition 8.4 Notation

0 Similar to C(X), the immediate causes of X, define the immediate
results of X by

’R(X) = {Y I (X,Y) is an edge}.

e A random variable is said to be instantiated if it has been assigned
a value.

0 A set of random variables with the superscript asterisk (or star),
as in X“, will indicate that each of the random variables is to be
instantiated. If U E 21’“, we’ll usually denote the value by u*; that is,
we’ll be setting U = u* which is the compound event U"1(u").

e A set of random variables with the superscript plus, as in 26+, will
indicate that each of the random variables in the set is to be instan-
tiated to T (true).

0 A set of random variables with the superscript minus, as in X‘,
will indicate that each of the random variables in the set is to be
instantiated to F (false).

For example, if (15+ = {X2}, (1" = {X1,X4}, and ’R+ = {R3,R5}, then
the notation P1'(’R+ | X+ A RC") means

Pr((R3 = T) A (R5 = T) (X2 = T)/\(X1= F) A (X4 = F)).
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We’ll usually make the following compromise It’s not always necessary,
but it simplifies the text:

Compromise: Assume that the only information provided by the user
is the instantiation of certain random variables.

Recall that two sets are called disjoint if their intersection is empty. The
problem for the expert system can now be phrased somewhat vaguely as
follows:

Problem: Given a Bayesian network and disjoint sets 32* and Z
(8 10)of random variables, “study” Pr(Z | 32*). '

The situation is still too complicated. N0 reasonable algorithms are available
in the general case. Nor is any likely to be found because the general problem
is NP-hard. (See [4].) As a result,

Compromise: To obtain a reasonable worst—time algorithm, we restrict
the structure of the DAG in some manner.

Bipartite Multiple-Diagnosis Problems

In some situations there may be many causes that could produce any
given result; for example, in medical diagnosis many diseases could cause
a particular symptom. Furthermore, there may be more than one underlying
cause that is producing the observed results. Here’s a definition of the problem.

Definition 8.5 Diagnosis Problem and Abductive Inference

Given a Bayesian network (A? , E, Pr) in which the range of each variable
is {T,F}, let

C={X€X|C(X)=0}
’R={XEX|D(X)=0}.

Let 72+ and ’R,‘ be disjoint subsets of ’R. The diagnosis problem is to
partition C into (3+ and C" so that Pr(C+ A C' I 76+ A R") is as large as
possible. The process of looking for probable causes based on their effects
is referred to as abductive inference.
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In the medical arena, we may think of ’R as the set of possible symptoms.
By observation and tests, it has been determined that that patient has those
symptoms in 73+ and does not have those in 72‘. Symptoms in ’R that are in
neither 76+ nor 7?? have not been examined for this patient. The set C consists
of the causes (diseases) that could produce the symptoms. The solution to
the diagnosis problem is the most probable explanation for the symptoms.
Obviously, we may also wish to find a second best explanation, third best,
and so on.

There are three major difficulities with general diagnosis:

0 No reasonable algorithms are available for Bayesian networks with arbi-
trary DAGs. This problem will be overcome by restricting attention to
“bipartite” DAGs.

o If IC(X)| = n, the values of Pr(X | C(X)) are 2" parameters that must be
estimated. The available data often makes such estimates impossible even
when n is only 4 or 5. This problem will be overcome by using “noisy-OR”
functions, thereby reducing the number of parameters from 2” to n.

0 Instead of a specific probability, we want to find those sets of diseases
that are most likely to produce the observed symptoms. A pm'orz', this
means looking at all 2" subsets of the set of d diseases that are being
built into the expert system—too large a number even for fairly small d.
The previously mentioned restrictions plus a minor compromise will make
this problem more tractable.

What’s a noisy-OR? Let X = {X1, . . . , Xk} be a set of independent ran-
dom variables. If Y is a random variable that equals T when any X,- = T and
that equals F otherwise, then Y is the OR of the X,- ’s. You can think of X as
the possible causes for Y, any of which can cause Y. In this case, the proba-
bility that Y occurs (i.e., Y = T), given that X,; occurs, is 1. If this probability
can be less than 1 and if the Xg’s act independently as causes of Y, the result
is a noisy-OR.

Definition 8.6 Noisy-OR

Let X be a set of random variables with range(X) = {T,F} for each
X E X. The random variable Y is called the noisy- OR of X if range(Y) =
{T,F} and

1—Pr(Y=T|X*) = H (l—Ax), (8.11)
Xex‘
X=T

where 0 < AX S 1.
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The definition may seem a bit mysterious at first. But the idea is fairly simple
when looked at correctly. Think of AX as the probability that Y = T, given
that X = T and all other variables in X equal F. If the random variables
independently try to make Y = T, what is the probability that Y = F?
Since Y is supposed to mimic an OR, Pr(Y = F) is just the product of the
probabilities that each of the X’s independently fails to make Y = T. When
X = F, it can never cause Y = T, so the probability is 1 in this case and hence
can be ignored in the product. When X = T, the probability that it forces
Y = T is just AX, and so the probability that it fails is 1 — Ax. You should
be able to combine these observations to produce (8.11).

Note that the number of factors in the product (8.11) depends on the
instantiation of X—one factor for each instantiation to T. When all instanti-
ations are F, the product is empty and so equals 1 by the usual mathematical
convention.

Definition 8.7 Bipartite Diagnosis Problem

Consider a Bayesian network (X U y, E, Pr) such that

(a) The range of each Z 6 X U3) is {T,F}.

(b) For each X 6 X, Pr(X = T) is much less than in

(c) E g X x y.

(d) Each Y E y is the noisy-OR of C(Y); that is, for each (X,Y) E E
there exists Pr(X—+Y) > 0, known as the probability that X causes
Y, such that

1— Pr(Y = T | C(Y)) = H (1 — Pr(X—>Y)). (8.12)
xecu')

X=T

Call the diagnosis problem for this type of Bayesian network the bipartite
diagnosis problem; that is,

Given disjoint subsets ’R,+ and ’R‘ of y, find dis-
joint sets X+ and X” such that X+ UX’ := X and (8.13)
Pr(X+ A X' |R+ AR‘) is as large as possible.

We can now state the assumptions we’ll make so that the multiple-
diagnosis problem becomes computationally feasible.

Compromises: The DAG is bipartite, X is the noisy-OR of C(X),
and the prior probability of each cause is not large.
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Singly Connected DAGs

There is another approach to limiting the structure of the DAG. Instead of
insisting that there be no intermediate causes (the bipartite case), we could
assume that the interconnections are rather sparse:

Definition 8.8 (Singly) Connected DAGs

A DAG (V, E) is connected if, between every two vertices, there is at least
one undirected path. It is singly connected if, between every two vertices
there is exactly one undirected path. A singly connected DAG is also
called a polytree.

We’ll make the following assumptions so that we can obtain a reasonable
algorithm without assuming bipartiteness and noisy-ORs.

Compromises: The DAG is singly connected and Z in (8.10)
(8 14)contains only a single variable.

°

There are methods for converting a general DAG into a singly connected one.
Unfortunately, those methods tend to be computationally prohibitive. Noth-
ing is lost in assuming that the network is connected because Exercise 8.1.8
(p. 313) tells us we may as well assume that it is. This is what you should ex-
pect intuitively, for if there is no path between certain sets of vertices, then
they cannot exert any influence over one another.

MYCIN and Certainty Factors

Certainty factors were introduced as an ad hoc device by Shortliffe and
Buchanan [16] in their medical diagnosis program MYCIN. Since that time,
certainty factors have been misunderstood, misused, redefined, and employed
in some form in a variety of expert system shells. The ad hoc nature of cer-
tainty factors and the misuse of expert shells based on them may have resulted
in poor expert systems.

Certainty factors have also been investigated from an axiomatic view-
point. As a result of this mathematical investigation, they have been put on
a clear probabilistic foundation and their meaning and limitations have been
elucidated. This investigation is a “textbook example” of the importance of
taking a rigorous mathematical approach whenever feasible.
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Deduction, Abduction, and Induction

In FOL, deduction in its simplest form is the process of starting with
VX (p(X) —> q(X)) and p(a) and concluding q(a). If the assumptions are true,
so is the conclusion. In contrast, abduction starts with VX (p(X) -—> q(X)) and
q(a) and concludes p(a)—a conclusion that need not be true even if the as-
sumptions are true. Some defeasible rules V_X (q(X) .... p(X)) arise in this
manner. (Note the reversal of p and q.) Since an abductive conclusion need
not be valid and since there are competing abductive conclusions, we need
some method for choosing amongst them. In the context of Bayesian nets,
Definition 8.5 (p. 315) provides such a criterion.

Inductive reasoning is a process in which we extrapolate from a va-
riety of specific examples p(a,-) —> q(ag) either to the FOL generalization
VX (p(X) ——> q(X)) or to the defeasible generalization VX (p(X) ---> q(X)).
This is not the same as a mathematical proof by induction. In a mathemati-
cal proof by induction, the conclusion is valid, whereas in inductive reasoning,
the generalization need not be valid. We can think of inductive reasoning as
a form of learning; The inductively derived generalization is a hypothesis put
forward by the learner and will be tested against the knowledge base or future
experience or both. Inductive reasoning is also called inductive inference.

Another form of learning is analogical reasoning. If there is some transfor-
mation that maps p to p’ and q to q’ and if we believe 1) —> q, then we expect
19’ -—> q’ to be true as well.

Exercises

8.2.A. What does it mean for a random variable to be instantiated? Explain the
notations r1", X+, and X'".

8.2.B. Define and explain a noisy-OR.

8.2.C. What is the (multiple) diagnosis problem? What is abductive inference?
What is the bipartite diagnosis problem?

8.2.1. Suppose that Y is a noisy-OR of U and V. Write out Pr(Y = F | {U, V}) in
tabular form. (There should be four rows, one for each possible instantiation
of {U, V}, and they will involve AU and AV.)

8.2.2. Define a noisy-AND that is like the noisy-OR
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8.2.3. Let (V, E) be a DAG. We want to determine how many parameters must be
specified to make the DAG into a Bayesian network in which the range of
every random variable is {T, F}.

(a) Using Theorem 8.2 and Pr(X = T | A) + Pr(X = F | A) = 1, show that
we must specify

2:
2|C(X)l

XEV

probabilities. Recall that [Al is the number of elements in the set A.

(b) Suppose that each X E V for which C(X) 7’: 0 is a noisy-OR of C(X).
Show that fewer than |V| + |E| parameters are required and determine
the exact number.

(c) Suppose that V is a union of two disjoint sets X and y, each of which
has n elements, that E Q X x y, and that |C(Y)| = k for all Y E y.
Show that the ratio of the result in (a) to that in (b) is (2" + 1)/(k + 1)
and tabulate it for 2 S k _<_ 7. What does this show?

8.3 Multiple Diagnosis in Bipartite Networks

Although we know that doctors do so, we do not understand just
how they weigh the evidence that favors and that opposes various

hypotheses or courses of action; this is an important unsolved
problem for both AI and cognitive psychology.

——Peter Szolovits and Stephen C. Pauker (1978)

Make three correct guesses consecutively and
you will establish a reputation as an expert

—Laurence J. Peter (1969)

Some aspects of our formulation the bipartite diagnosis problem in Defini-
tion 8.7 (p. 317) deserve a bit more consideration.

0 The limitation of the ranges to {T, F} is quite reasonable since many prob-
lems fall into this category, with T indicating that something is present
and F indicating that it is absent.

0 The assumption that the prior probability of X is small is often reason-
able. It merely states that the prior probability of X is small. In the
medical diagnosis case, this means that a person visiting a doctor is not,
a priori, likely to have any specific disease.

0 The assumption that E g X x y means that we can think of X as the
possible causes and y as the possible effects (or results). It rules out the
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possibility of intermediate-level causes. The assumption can be eliminated
at the cost of more computation.

o The “real-world” content of (8.12) is that each cause X E X that is
present (i.e., X = T) acts independently of other causes to produce an
effect. In other words, there are no synergistic or inhibiting interactions.
This independence assumption is a reasonable approximation in many
cases, but is sometimes unreasonable.

0 Asking for the set of causes that give the largest probability may not be
what we want to do. Some causes are much more dangerous than others
and should not be ruled out unless they give an extremely low probability.

0 In terms of conditional probability, Pr(X—>Y) equals

Pr(Y = T l X : TA (X’ = F for all other X’ E C(Y))). (8.15)

Some researchers have suggested that an attempt to elicit the condi-
tional probability Pr(Y = T | X = T) from an expert is likely to produce
Pr(X—>Y) instead. Thus Pr(X—>Y) would be a more natural parameter
than Pr(Y = T | X = T).

Example 8.6

Imagine a medical diagnosis situation. We let y be a list of possible symptoms
and let X be a list of possible causes. We observe the presence or absence of
various symptoms in y and want to select the probable cause or causes from
among the diseases in X. When the diseases act independently of one another
to produce the symptoms, we have (8.12). In some medical situations, there
can be several diseases acting to produce the observed symptoms; however,
a doctor will not normally propose more causes than are needed to produce
the observed symptoms. “Irredundant covers” will provide the tool for finding
such sets of causes.

In a typical diagnosis situation, the presence or absence of all possible
symptoms is not known at the beginning of the diagnosis. Rather, such in-
formation is elicited stepwise through questioning, observation, and medical
tests. Thus, it is important to have an approach that can incorporate further
information about the symptoms 32 without starting the calculations over.
The algorithm for finding irredundant covers is just such an incremental pro—
cess.

This formulation of the diagnosis problem does not allow for the possibility
that a disease X may suppress a symptom Y. An ad hoc fix can be made
within the system: Introduce a new symptom 7, say, and a new probability
Pr(X—+7). This solution is not entirely satisfactory because we now have some
diseases acting to produce Y and others acting independently to produce 7. I
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Now let’s see what can be said about the bipartite diagnosis problem. A
simple way to visualize the problem is to imagine we’ve observed that a pa-
tient has certain symptoms and does not have certain others (the information
about R). We want to know what combination of diseases provides the most
probable explanation for the symptoms (which X’s should equal T). The fol-
lowing theorem, whose proof is left as an exercise, provides the connection
between (8.13) and the graph theory concept of “covers.”

Theorem 8.3
Let C+(Y) = C(Y) 0 26+ and

X1 = {X E X lPr(X—>R‘)=1for'some R‘” E ’R." }.

In words, X1 are those causes X which, if present, must produce some
result in R"; that is, a result we know has not occurred. Every solution
to (8.13) satisfies

951 Q 96", A” 9 603+), (8-16)
and

for each Y E ’Rf", C+(Y) 76 (0. (8.17)

(C(W) = UwewC(W) was defined in Definition 8.2 (p.303).)

We’ll conclude the probabilistic studies of the simple diagnosis model by
developing a useful formula for computing PI‘(X+ A X“ I 72"“ AR“). Using
Bayes’ Theorem and the properties of Bayesian networks, we have

Pr(2(+/\X'|’R+A’R')= WPr(’R+/\’R,“|X+/\X)
12—— PrX=T PrX=F

Pr(7?."'/\’R")X]E-—;[Y+ ( )Xg_ ( )

x H Pr(Y=T|X+/\X') H Pr(Y:F|X+/\X')
Ye’R-l' Ye’R-

Rearranging a bit and using (8.12) to expand the last two products, we have

Pr(X+ AX“ |7a+ A’R') (Pr(7a+ A’R“) H ;)
XeX Pr(X :2 F)

Pr(X-______T_)
:H+—_Pr(X-_ F)X“ (8.18)

x H (1— H (1 — Pr(X—>Y)))
Y6’R+ xec+(v)

x H( H (1—Pr(X—>Y))).
YER- X6C+(Y)
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The second factor on the left side of (8.18) depends only on X , 72+, and 72',
which are constant in the search for 26+ and A". Thus, we can locate the
maximum of Pr(/Y+ A X“ |R+ AR‘) by locating the maximum of (8.18).
The right side of (8.18) has the nice feature that it involves only those X
which are in 26+.

lrredundant Covers

A naive approach to applying Theorem 8.3 requires a considerable amount of
computation: If |C(’R.+)| : m, we’d have to check out all 2’" —1 nonempty sub-
sets of C(R+). This may be a large number in problems of practical interest.
We’ll avoid this problem as follows:

0 First, we look at the related problem of finding “irredundant covers.”

0 Then we assume that the solution to our bipartite diagnosis problem is
among the solutions of the irredundant covering problem.

0 Finally, we evaluate (8.18) for the various irredundant covers.

Definition 8.9 Covers

Let P and Q be disjoint sets, V = PUQ, and E (_I P x Q. A cover of the
DAG (V, E) is a subset C of P such that ’D(C') = Q. In other words, for
every q E Q, there is a p E C such that (p, q) E E. If no proper subset of
C is a cover, we call C an irredundant cover. It is also called a minimal
cover.

To use covers, we form a sub-DAG of the one for the one in the bipartite
diagnosis problem (Definition 8.7):

Theorem 8.4

Let (26 U y, E, Pr) be a bipartite network. Define a DAG (V’, E’) by

V’ = X’UR+ and E’ = (X’ x R+)nE,

where A.” is set of all elements of C(R+) that are not in X1. It follows that
any set 26+ satisfying (8.13) lies in X’ and is a cover of the DAG (V’, E’).
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The proof is left as an exercise.

Limit your attention to irredundant covers. While there’s no guarantee
that the solution to (8.13) is an irredundant cover, the solutions to many
real-world problems are irredundant covers. Why is this?

We have a possible “explanation” for the given sets 73+ and ’R,‘ if and
only if we have a cover (13+. Saying that (15+ is an irredundant cover is the
same as saying that X+ and A" provide an “explanation” and no smaller
choice for X+ does. In many cases, it’s reasonable to look for solutions among
the irredundant covers. That’s Ockham’s Razor (also spelled Occam’s Razor):

Do not multiply entities beyond what is strictly necessary to explain
phenomena. —William of Ockham

For example, in medical diagnosis, physicians don’t normally propose that the
patient has more conditions (X'l') than are needed to explain the symptoms
(73+, 72’). Of course, if the model is accurate and irredundant covers are
the right choice, then the highest scoring explanation must be an irredundant
cover. This should follow from (8.18). See Exercise 8.3.7 for more discussion.

Let’s recapitulate. We’ve seen that it’s often reasonable to look for solu-
tions to (8.13) among the irredundant covers of (V’ , E’) and we have a formula
(8.18) for computing the probability of the observations given a particular
cover. Since the use of (8.18) is straightforward and not computationally ex-
pensive, all that’s missing is a reasonable algorithm for finding irredundant
covers. We now develop such an algorithm.

Let (V, E) be the DAG for which we want irredundant covers, where

V: PUQ, E(_I PX Q, and Q: {q1,...,q,,}.

Define Dk = (V1,,Ek) by

Vk = PUQk and E1, = Efl(P x Qk) where Q], = {q1,...,qk}.

The idea of the algorithm is to produce irredundant covers for D}, from those
for Dk_1. Since 1),, = (V, E), we are done when k = n. The key is the following.

Lemma

Suppose that S is an irredundant cover for ’Dk. Then either

0 S is an irredundant cover for Dk_1 or

o 5' contains exactly one element in C(qk) and removal of this element
gives an irredundant cover for D134.
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Proof: Suppose that S' is not an irredundant cover for Dk_1. Since it is a cover
for ’Dk_1, it follows that we must be able to remove at least one element of S
and still have a cover. Let a: E S be such that S— {x} is a cover for Dk_1. Since
5' is an irredundant cover for Dk, S — {:0} cannot be a cover for Dk. It follows
that no element of S — {m} “causes” qk; that is, (S — {3}) fl C(qk) 2 (ll. Hence
we must have a: E C(qk) and we can’t have y E C(qk) for any 31 E (S — {m}).
We’ve just shown that

0 any element of 5' whose removal leaves a cover for Dk_1 must be in C(qk)
and

0 there is no other element of S that is in C(qk).

It follows that there is just one element that can be removed from S and still
leave a cover for ’Dk_1. This says that no other elements can be removed from
S — {:13}, which means it must be an irredundant cover for ’Dk_1. I

The importance of this lemma is that we can turn it around: Every irre-
dundant cover for ’Dk is either an irredundant cover for Dk_1 or is obtained
from an irredundant cover for Dbl by adding an element of C(qk). This form
of the lemma is the key idea behind the following incremental algorithm given
by Peng and Reggia [14]. [[Bracketed comments help in proving correctness.]|

Algorithm 8.1 Irredundant Covers

Given a digraph (PU Q,E) where E g P x Q and Q = {q1, . . .,q,,}, the
following algorithm produces the irredundant covers of {(11, . . . , qk} in Bk.

1. Initialize: Set 20 = {(0} and k = 1.

2. Split 2: Set Ak to {S 6 215-1 I SflC(qk) = (I) }. Set 22, :2 Ek_1—Ak.
[21, consists of all irredundant covers in 213-1 that are irredundant
covers for ’Dk and Ah consists of those that are not.]]

3. Adjoin C(qk): Set A}; to be the set of all sets of the form 8 U {p}
where S E Ale and p E C(qk). [We add a unique element of C(qk).]]

4. Create new 2: Set 2k to 2;: together with all sets in A; that do not
contain any set of 2;. |[The lemma is the key to the fact that this
gives us the irredundant covers]

5. Test Loop: If k = n, stop; otherwise, increment k and go to Step 2.
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‘3)?
Figure 8.3 The digraph for Example 8.7. To avoid congestion in the figure, arrow-
heads have been omitted. They all point downward from {a, b, c, d, e} to {1, 2, 3, 4}.

1

The incremental nature of Algorithm 8.1 is quite important for applications.
Frequently, we gradually increment 72+ (and 72’) by acquiring additional
information. Each time we add an element to 72+, we are essentially just
going from ’Dn to Dn+1. Thus the algorithm allows us to produce irredundant
covers without the need to start over. Another aspect of the algorithm that
can be useful is the fact that an irredundant cover at one step never gives
a smaller cover at a later step. As a result, we can design the algorithm to
produce only those irredundant covers that do not exceed some predetermined
cardinality.

How long does the algorithm take? If the number of diseases that can
produce each symptom is not too large and if we also limit our search to
irredundant covers of small cardinality, the algorithm can be quite efficient. On
the other hand, with no restrictions the worst-case behavior can be prohibitive.

Example 8.7 Using the Algorithm

Let’s apply the algorithm to find the irredundant covers in the digraph given
by P : {a,b,c,d,e}, Q = {1,2,3,4}, and the “causes”

C(1): {a,b}, 6(2) 2 {b,c,d}, C(3) = {a,c,d,e}, C(4) = {0,6}.

The DAG is shown in Figure 8.3. Here are the steps in the algorithm.
Step 1. 20 = {0} and k :1.
Step 2. A1 = {(0} and 2’1 2 0.
Step 3. A’l : {{a}, {b}}.
Step 4. 21 = {{a}, {b}}.
Step 5. k = 2.
Step 2. A2 = {{a}} and E; = {{b}}.
Step 3. A’2 2 {{a,b}, {a,c}, {a,d}}.
Step 4. 22 = {{b}, {a,c}, {a,d}}.
Step 5. k = 3.
Step 2. A3 = {{b}} and 2’ : {{a,c} {a,d}}.
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Step 3. g: {{b,a}, {b,c}, {b,d}, {b,e}}.

Step 4. )33 2 {{a,b}, {a,c}, {a,d}, {b,c}, {b, d}, {b,e}}.
Step 5. k = 4.

Step 2. A4 2 {{a,b}, {a,d}, {b,d}} and 211: {{a,c}, {b,c}, {b,e}}.

Step 3. f1: {{a,b,c}, {a,b,e}, {a,d,c}, {a,d,e}, {b,d,c}, {b,d,e}}.

Step 4. E4 = {{a,c}, {b,c}, {b,e}, {a,d,e}}.
Step 5. Stop.

We now have the irredundant covers in 24. If the probabilistic part of the net-
work were given, we could use (8.18) (p.322) to determine which irredundant
cover was the most probable explanation for the observed effects, which were
so imaginatively called 1, 2, 3, and 4. I

Further Remarks

Splitting the bipartite diagnosis problem into a structural part (irredundant
cover algorithm) and a numerical part (probability calculations using (8.18))
has important repercussions:

+ We might replace (8.12) because it doesn’t reflect reality; for example, we
might allow one disease to interfere with another in producing a symptom.
This means that (8.18) would no longer be valid; however, the irredun-
dant cover algorithm would be unchanged. As long as the replacement for
(8.18) was computationally practical, we could proceed to evaluate the
irredundant covers numerically.

+ We might use the irredundant covers as the basis of a qualitative expert
system by replacing Pr(X—>Y) with statements such as “always” and “low
likelihood”—a much more feasible goal than obtaining accurate estimates.
(KMS.HT, an expert system shell implementing this idea, is discussed
briefly in [14].)

— A negative consequence of this separation is avoidable work, especially
when 73+ and ’R,‘ are built up by instantiating elements of 7?, one by
one. The algorithm for finding irredundant covers has no mechanism for
rejecting those covers in Dk that will lead only to covers in ’19,, with low
probabilities. (An approach to this problem is discussed in [14].)

How are the values of Pr(X——>Y) to be determined? One possibility is
to consult experts—but their values would probably be quite crude. Another
possiblity is to examine data. Equation (8.15) suggests that we must look for
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situations in which only one disease is present, but this is not the case. Taking
logarithms in (8.12), we have

log (Pr(Y = F | C(Y))) = Z log(1— Pr(X—>Y)).
xecof)

X=T

Estimates of the left-hand side can be obtained by examining known situa-
tions. Statistical methods can then be used to estimate the logarithms on the
right-hand side.

Exercises

8.3.A. What is a cover? an irredundant cover?

8.3.B. Explain how irredundant covers help in the bipartite diagnosis problem.

830. What is the key idea behind the algorithm for finding irredundant covers?

8.3.1. The last paragraph of Example 8.6 suggests a method for incorporating sup-
pression of symptoms.

(a) Describe a plausible situation in which this method could lead to erro-
neous results.

(b) Suggest general guidelines for deciding when the method proposed in
the example is likely to be acceptable.

8.3.2. Prove Theorem 8.3 and provide a verbal interpretation of (8.16) and (8.17).
(A start on interpreting (8.16) was made in the text by explaining X1.)

8.3.3. Prove Theorem 8.4.

8.3.4. Prove that the algorithm for producing all irredundant covers is correct.

8.3.5. Reverse the order of 1—4 in Figure 8.3. Use the algorithm to compute the ir-
redundant covers with the reversed ordering. (Of course, you should get the
same answer as that arrived at in the text, but the intermediate steps will
differ.)

8.3.6. Draw a picture of the Bayesian network whose nonempty C’s are given below.
Apply the algorithm to find all of its irredundant covers.

C(1)={a,c,d,z'} C(2)={a,d,e} C(3)={d,f:h:i}
C(4)={b,€,g} C(5)={b,f,g,h} C(6)={0,d,6}o
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8.3.7. Let «15+ U X. U {X0} be a partition of X such that «13+ = (1’4. is a possible
explanation for the observations 71+ and 71".

(a) Compute (8.18) with (13+ = «13+ U {X0} and divide it by the same prod-
uct with X1" = .34.. Explain why the highest probability covers will be
irredundant if this ratio is always less than 1. Also, show that the ratio
equals
——1§:§§Z2 3 MEMO) (1 - “(X40

1 — (1 — Pr(Xo—>Y)) ”meme (1 — Pr(X—>Y))
Yen+n1z(xo) 1 " HX6C+(Y) (1 — Plf(ix—’30)

,

where c+(Y) is calculated using 33"" = (13+.
(b) This is a rather open-ended question: What sorts of conditions are likely

to make the ratio less than 1? You might consider things such as the
size of Pr(Xo = T), the bounds on Pr(X—>Y), and lRi n ’R.(Xo)|.

8.4 An Algorithm for Singly Connected Networks

[presume that to the uninitiated the formulae will appear cold
and cheerless.

—Benjamin Peirce (1882)

Unlike the preceding section, this section includes some rather complicated
formulas involving probabilities. The fact is, you may have some difficulty
understanding this section if you concentrate on the formulas. To simplify
matters, I’ve postponed all proofs until the next section. In addition, I sug-
gest that on your first reading you ignore the expressions that are given for
the various A’s and 7r’s and focus on understanding the general structure of
the algorithm and the way in which information is propagating through the
network. To help you ignore the expressions, I’ll not give the probabilistic
meanings of the /\’s and 7r’s until page 340.

Let (X,E,Pr) be a singly connected Bayesian network. At each vertex
and at each edge we have two real-valued functions, 3. 7r and a A:

0 at the vertex X E X, the functions AX and «X, both with domain
range(X);

e at the edge (X,W), the functions Ax,w and ax,w, both with domain
range(X).

Of course, such a function can be thought of as a vector of real numbers where
the length of the vector is the size of the function’s domain, namely |range(X)|
for AX, 7rx, Ax,w, and 1rx,w.
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This presentation of Kim and Pearl’s [8] algorithm for singly connected
Bayesian networks has two parts. The first part consists of the algorithm and
the second part consists of a subalgorithm for propagating “activation.” A
vertex will be referred to as being “active” or “inactive.” When all vertices
are inactive, we’ll say that the network is inactive.

In the following, remember that when a random variable appears as an
index of summation, it means that we have to sum over all allowed instanti-
ations of the variable. Also, remember the notation

’R(X)={YEX l (X,Y)EE}.
[Bracketed comments will later help in proving correctness]

Algorithm 8.2 Singly Connected Bayesian Networks

These are the steps that must be taken to trigger the propagation rules
so that the network will calculate the desired probabilities. They begin
by getting the network to compute probabilities with no instantiations
(W* = (0); then, in the penultimate step, instantiations are introduced.

1. Initialize A: Set all 7r’s to “unknown” and all A’s to 1. [Since nothing
is instantiated, the values of /\’s are all correct ]]

2. Initialize 7r: For each X with C(X) 2 (ll, activate X, telling it that it
has received a new 7r. When the network is inactive, go to the next
step. [Since C(X) = (0, 7rx will be computed. The remaining values
of the 7r’s will be properly computed throughout the network since
they propagate downward. No /\ messages will be sent since the A’s
are constant.]]

3. lnstantiate W“: For each X E W", do the following:

e Let a:* be the value to which it is to be instantiated and set

Ax(b):
1 lsx,

0 otherwise.

0 Activate X, telling it that it has received a new 7r and wait until
the network is inactive

When done with W“, proceed to the next step.

4. Compute Answers: For whatever X ¢ W“ you wish, calculate
Pr(X I W“) using

* _ AX7l'XPr(XIW )—
ZXAXWX'
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After Step 4, the expert system may decide to request additional information
to distinguish between competing alternatives. The new information provides
newly instantiated variables. We need not start at the beginning but can sim-
ply add these new instantiations by going back to Step 3 as if we hadn’t
finished with 14”“.

Now come the messy formulas—the propagation rules. In using the fol-
lowing formulas, remember that the value of a product over an empty set is 1.

Algorithm 8.3 Propagation Rules
A vertex becomes active either through outside intervention or automati-
cally by receiving a “message” from another vertex. An active vertex per-
forms some computations, sends messages, then becomes inactive. The fol-
lowing describes the action vertex X takes when active. The appropriate
action is assumed to be automatically carried out when activation occurs.

1. If some fly for Y 6 C(X) is unknown, become inactive and stop
calculation. Otherwise do the following.

2. Compute 7rx = Z: Pr(X |C(X))H7rU,X.
C(X) U6C(X)

3. If X is uninstantiated, compute AX using AX = H Aggy.
YE’R(X)

4. Send, to each Y E 7?.(X) that did not activate X, a message as fol-
lows. [[If Y activated X, then the value of flx’y does not change. The
proof is left as an exercise.]]

0 If X is uninstantiated, send

7TX,Y = 77X H Ax,z / ;(7rx H Axe)
267200 ZER(X)

Z¢Y Z¢Y

o If X is instantiated, send

_ 1 if b = m“, the instantiated value of X,
WX)Y (b)

— '
0 otherWISe.

5. If AX was the constant function both before and after its recalcu-
lation in Step 3, become inactive and stop calculation. Otherwise,
send, to each U E C(X) such that U did not cause the activation of
X, the message

Aux = Z(/\X Z Pr(X|C(X))H7rz)

x C(X)—{U} ZeC(X)
z¢U

to U. [[If U caused the activation of X, then AUX is unchanged. If
AX is constant, then AU} 2 AX. The proofs are left as an exercise.]]

6. Become inactive and stop calculation.
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7r 7r
7r

Wilt

Figure 8.4 All DAG arrows are presumed to be directed downward along the
edges. The arrows in the DAGs show the propagation of messages through the
Bayesian network as a result of initializing 7r or instantiating W* at the marked
vertex. Downward messages are 7r’s and upward messages are A’s. The first three
DAGs show the results of propagations caused by initializing 7r in Step 2 and the
last shows the results of a single instantiation in Step 3.

Now for a brief pause, brought to you by a subtle notational point about
sums indexed by random variables. Recall that when random variables appear
as an index of summation, it means we should sum over all possible instanti-
ations of the random variables. What, then, is the meaning of an expression
like 23 f(X) when Z = 0? An empty sum is interpreted to be 0; however,

if Z = (D, then 22 f(.«1’) = f(X). (8.19)

Why is this? A sum over Z = {Z1, . . . , 21,} is really a shorthand notation for
k nested sums, the ith sum ranging over all possible values for Zi. In other
words, |Z| determines the number of summations and the ranges of the Zi’s
determine the ranges on the sums. For example,

2 we): 2 ( 2: mo).
{Z1,Zg} zIErange(Z1) zQErange(Zg)

If Z = (0, then there are no summations present in 22 f(26)—it’s just as if
we’d written f(X) This is relevant to Steps 2 and 5 in the previous algorithm.

Example 8.8 Propagation in the Algorithm

How do the algorithms cause calculations to be propagated through a net-
work? Figure 8.4 shows a Bayesian network. All edges in the DAG are directed
downward, but I’ve omitted them because I want to use arrows to show how
computations propagate. This is shown by heavy edges with arrows. The ver-
tex to which a rule is applied is labeled with the rule. I
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Plant Expansion 0 50%

80%

Better Job 9 Aunt e 30%

80%

Son 6

Figure 8.5 The nodes in this Bayesian network correspond to (1) plant expanding,
(2) uncle’s getting a better job, (3) aunt’s getting better, (4) my mom’s getting news
and (5) my cousin’s getting news. See the text for further details.

Example 8.9 Calculations with the Algorithm

My aunt needs an operation and my uncle is trying to find a better job.
The surgeon says that there is about a 30% chance that the operation

will lead to improvement this week. If it’s good news, my aunt will probably
call my mom. If it’s bad, she won’t want to call anyone. In the same week the
biggest employer in town is making a major decision on plant expansion. My
guess is there’s a 50% chance the plant’ll expand. Mom said that my uncle
told her he thought there was an 80% chance of a better job if the expansion
occurs and that he’d know right away. If he has good news he’ll probably call
my mom and maybe even call his son, my cousin—the one he’s fighting with.
My estimates of the three phone calls’ probabilities are shown on the edges of
the DAG in Figure 8.5.

With vertices 1—5, we’ll associate random variables Vl—V5 but we’ll often
simply refer to them by number. Each random variable will have range {T, F},
where true means good news. We’ll frequently be writing vectors of numbers.
The first component will correspond to T and the second to F. For example,
Pr(5 | 2 = T) = (0.3, 0.7) tells us that Pr(V5 = T | V2 2 T) = 0.3.

We need to compute Pr(X | C(X )) The two job possibilities were treated
like a noisy-OR, as were the two sources of good news for Mom. Here are the
results:

Pr(l) = (0.5,0.5),
Pr(3) = (0.3,0.7),

Pr(2|1= T) = (08,02), Pr(2 | 1 = F) = (0,1),
Pr(5 I 2 = T) = (0.3,0.7), Pr(5 I 2 = F) = (0,1),

Pr(4 | 2 2 TA 3 = T) : (1 — next component,0.5 X 0.2) = (09,01),
Pr(4 | 2 = F/\ 3 = T) = (08,02),
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Pr(4 | 2 = T/\ 3 = F) = (0.5,0.5),
Pr(4 | 2=FA3= F) = (0,1).

Now let’s apply the two algorithms to the networks. A number like SCl
refers to the first step in the singly connected network algorithm, while PR3
refers to the third step in the propagation rules. We begin at SCZ with X 2
V1:

PRl—3. We have X 2 V1, so 7T1 = Pr(Vl) = (0.5, 0.5) since the empty product
equals 1. Lambda does not change.

PR4. Activate 2 by setting 7r1,2 = 7n = (0.5,0.5).
PR1—3. We have X 2 V2, so

«2 = Z Pr(2 | 1m.) = (0.8, 0.2) x 0.5 +(0, 1) x 0.5 = (04,06).
1=T,F

Lambda does not change.
PR4. Activate 4 and 5 by setting «2,4 = 7T2 and 02,5 2 fig.
PR1. We have X = V4, so we stop because V3 6 C(X).

PR1—3. We have X = V5, so

«5 = Z Pr(5 | 2m, = (03,07) x 04+ (01) x 0.6 = (012,088).
2=T,F

We now return to SCZ and set X 2 V3:
PR1—4. Since X : V3, it follows that «3 = Pr(V3) = (0.3,0.7), /\3 does not

change, and «3,4 = 7r3.
PR1—3. Since X 2 V4,

7,, = Z Pr(4 | 2 /\ 3)7r2,47rs,4
2,3

= ((000.1) x 0.3 + (05,05) x 0.7) x 0.4
+ ((08,02) x 0.3 + (0.010) x 0.7) x 0.6

= (0392,0608).
This completes the initialization. If there are no instantiations, we can pro—
ceed directly to SC4 with W* = (0. Since all lambdas are 1, it turns out that
Pr(V,-) = 7r,- for all i. For example, the probability that Mom received good
news is 0.392. Of course, with the rough guesses that were made on the num-
bers in the network, we’d better not claim anything more accurate than about
a 40% chance of receiving good news.

Now let’s see what happens when we make some instantiations. Here’s a
typical example: After spending the weekend with my cousin, who received
no news, there is a call on my answering machine, “This is Mom on Saturday
morning. I just got some good news.” What are the new probabilities? To
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find out we’d have to instantiate V5 2 F and V4 2 T and do a good deal more
calculation. Let’s not do this beyond indicating how lambda calculations work
when V5 : F is instantiated by doing SC3 with X = 5. Then A5 = (0,1) and
propagation gives

PR1—4. We have X : V5. Nothing changes and 72(5) 2 (D.
PR5. Since A5 = (0,1), it is not the constant function. We have

A25 = Z A5Pr(5 | 2) = (0.7,1.0).
5=T,F

PR1—3. We have X 2 V2. 7r2 is unchanged but A2 = (0.7,1.0).
PR4. We activate 4 and set

7T2,4 = 7T2/\2’5/C = (0.4 X 0.7,0.6 X 1.0)/C = (0.28, 0.6)/C,

where C = 0.28+0.6 = 0.88. Thus «2,4 = (0.318, 0.682) to the nearest
0.001. The remaining calculations are similar to what we’ve already
done. I

Exercises

There are some exercises concerned with modifications of the algorithm. Since these
exercises require material in the next section, they have been placed there, starting
with Exercise 8.5.8 (p. 344).

8.4.1. Which rules in the algorithm have summations that might involve summing
over an empty set of random variables? (There are two.) Write out those
equations in that case.

8.4.2. Prove the bracketed claims in Steps 4 and 5 of the Propagation Rules. (You
may find it easier to do this exercise after the experience of studying the
next section.)
Hint. For the case of AX constant, interchange the order of summation.

8.4.3. In this exercise, consider the amount of work in propagating the information
throughout the Bayesian network during initialization. You may wish to look
at Exercise 8.2.3 (p. 320).

(a) Roughly how does the total amount of work change if the network dou-
bles in size?

(b) Roughly how does the amount of work change on a 7r (resp. /\) propa-
gation through X if the network is changed so that C(X) is doubled?

(c) Roughly how does the amount of work change on a 7r (resp. A) propa-
gation through X if the ranges of X and all vertices adjacent to it are
doubled?
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*8.4.4. Suppose that
o a singly connected network has ncr + 1 vertices,
o |range(X)| = t for all X,
o |C(X)| = c for nr vertices and |C(X)| = 0 for the rest and
o |’R(X)| = r for nc vertices and |R(X)| = 0 for the rest.

(a) Obtain the best upper and lower bounds you can for the number of
times 1r information is transmitted in Step 4 of Algorithm 8.3 when
the network is initialized. Also obtain bounds on the amount of work
involved, that is the number of additions and multiplications that are
needed. You may wish to look at Exercise 8.2.3 (p. 320).

(b) Obtain bounds for A information similar to those obtained in (a) for 7r
information.

*8.5 Some Theorems and Proofs

Victory at all costs, victory in spite of all terror, victory however
long and hard the road may be; for without victory there is no

survival.
—Winston Churchill (1940)

We’ll begin with two theorems for Bayesian networks. The first is for general
Bayesian networks and the second for singly connected ones. Next, the theo-
rems will be used to derive the formulas in the previous section and to prove
the correctness of the algorithm. The first theorem is also needed briefly in
the discussion of certainty factors.

Two Theorems

Theorem 8.5 Independence in Bayesian Networks

Let (X, E, Pr) be a Bayesian network and let S, T, and V be three disjoint
sets whose union is X. Assume that

E; ((SUV) x (sum) u (v x 7) u (T x 7'),
that 8’ Q 8U V, and that ’T’ Q T U V. Then

Pr(8' U ’1" I V) = Pr(8’ I V) Pr(T’ | V). (8.20)
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Figure 8.6 The left-hand picture illustrates the possible types of edges between the
three sets 5, T, and V in Theorem 8.5. (Any edges are allowed within the sets, with
the restriction that the result must be a DAG.) The right-hand picture illustrates
the locations of the various vertices in Theorem 8.6.

Figure 8.6 illustrates the assumptions made about edges in this theorem and
in the next one.

Proof: It suffices to limit 8’ and T’ to subsets of S and T, respectively. It
also suffices to prove (8.20) for S' = S and T’ = T because we can then apply
Theorem 7.5 (p. 293) to obtain the general case. The proof of this special case
of (8.20) is simply a matter of summing

Pr(X) = H Pr(X |C(X)) = H Pr(X | C(X)) H Pr(X |C(X))
XEX XET X¢T

judiciously. In doing so, we use

X ¢ T implies C(X) 0T 2 (D.
After some steps which are left as an exercise,

(Es 1]n Pr(X IC(X))) HXeT Pr(X IC(X))

(2. HM Pr(X |C(X))) (27 um Pr(x |C(X)))
Hm Pr(X |C(X))= 27 um Pr(X |C(X))'

The same final expression is also obtained for Pr(T | S U V). This proves
(8.20) for S’ = S and T’ : T, subject to your filling in the steps I left for
you. I

Pr(T I V) =

The key to dealing with singly connected Bayesian networks is provided
by the following theorem. It will be convenient to have a notation for the
“results” of X:

’R(X):{Y€X|(X,Y)EE}.
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Theorem 8.6

Let (X,E, Pr) be a singly connected Bayesian network, let W“ C X, let
C(V) 2 {U1, . . .,U; }, and let ’R(V) = {1/1, . . . ,Yk }. Define

y: = { W E W* the undirected path from V to W contains Y,- },

L1,?" = { W E W* the undirected path from V to W contains Uz- },

11* =Uf‘ U~~UU,*, and y* = W* —U*. Then

Pr(W'“ I V) = Pr(Ll’“ I V) Pr(y’“ | V) (8.21)
k

H Pr(V: I V). if V 95 w*.
Pr(V I V) = i=1 k (8.22)

Pr(V’“ | V) HMO); | V), if V e W*,

and
_

l

Pr(C(V) |u*) = H Pr(U, mg“). (8.23)

In the above equations we make an exception to the usual rule that all 0c-
currences of a variable must be set to the same value: A variable need not
be set to the value it is assigned in a starred set. In particular, Pr(V* I V)
means Pr(V : v* | V = '0) which is 1 when 1) = 22* and 0 otherwise.

Proof: Consider (8.21) and (8.22) when V E W*. If V is not equal to
its instantiated value, then both sides of these equations are zero and so
equality holds. On the other hand, when V equals its instantiated value,
Pr(V* | V) :1 and V“ can be removed from W“ and y* without chang-
ing the probabilities containing them. In other words, when V = V*, we can
reduce it to the uninstantiated case. We now prove (8.21) and (8.22) when
V ¢ W“.

Let V = {V}, let T be all X E X such that a path from X to V passes
through some Y), and let S be the rest of X. Then U“ Q S and y* g T, and
so (8.21) follows from (8.20).

To prove (8.22), remove one factor Pr(yg" | V) at a time. Let V = {V},
let T by all X E X such that a path from X to V passes through Y,- and let
8 be the rest of X. Then 3):“ U - - - U3); g S and y: g T. Applying (8.20)
with z' = 1,. . . ,k — 1 successively, we have

Pr(n---UyzIV)=Pr(3’f|V)Pr(3’§U-~U3’£IV)
=-~-=Pr(yrIV)---Pr(;vzlv>.
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Suppose that U,- ¢ 11,-“ for all i. A similar argument with V = 11*, 5’ =
{Ui+1, . . .,U1}, and ’T’ 2 {U2} yields

I

Pr(C(V) W) = H Pr(U,~ |u*).
i=1

(You should provide 8 and T for this.) Finally, with Z equal to the part of
C(Ui) that is not in 11*,

Pr(U,- |u*) = Z Pr(Uz- W“ U Z) Pr(Z)
Z

= ZPr(U,- |C(U,~))Pr(Z), by (8.1) (p.306),
2’

= PI‘(U5 '11:).

This proves (8.23) when no U, is being conditioned. Suppose that some Ui’s
are in (1*. If they are not equal to their instantiated values, both sides of (8.23)
equal zero. On the other hand, if they equal their instantiated values, then
the left side is unchanged if they are removed from C(V) and the right side is
unchanged if those Pr(U,- |Ui*) are removed. Then the previous argument for
the uninstantiated case applies. I

Exercises

8.5.1. Express the theorems verbally using words like “cause,” “effect,” and “ind-
pendent.” Then argue that the conclusions of the theorems follow from our
“commonsense” understanding of your statements. (Of course, this does not
obviate the need for a mathematical proof; however, it makes it reasonable to
expect one to be forthcoming if the mathematical definitions have captured
the relevant aspects of cause and independence.)

8.5.2. Fill in the details in the proof of (8.20).

8.5.3. Fill in the details of the proof of (8.23).
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The Algorithm for Singly Connected Networks

Let av and av,w be some unspecified nonzero constants that depend on the
state of the network. The subscripts are used merely to distinguish between
constants associated with different vertices of the DAG. In the notation of
Theorem 8.6, we make the following definitions. (See the right-hand side of
Figure 8.6 (p.337).)

0 7w 2 Pr(V III“), that is, the probability of V given u*——those random
variables in W* that are reached from V by an undirected path through
C ( V).

o ”U;,V : Pr(Uz- | U33“), that is, the probability of Uz- given Uf—those random
variables in W“ that are reached from V by an undirected path through
U5.

0 AV 2 av Pr(y’“ I V), that is, some unspecified nonzero constant times the
probability, given V, of y*—those random variables in W* that are not
reached from V by an undirected path through C(V). (The A notation is
used because of the connection with “likelihood ratios”)

0 AV,“ : (Ivy, Pr(yg" | V), that is, some unspecified nonzero constant times
the probability, given V, of yf—those random variables in W* that are
reached from V by an undirected path beginning with the edge (V, Yi).

In fact, these 7r’s and /\’s are just precisely the 7r’s and /\’s that appeared in
the algorithm. Now that we have their definitions and have just proved the
necessary tools, we’ll be able to derive the formulas involving A’s and 7r’s that
appeared in the algorithms.

Suppose that V is not instantiated; that is, V ¢ W". According to (8.22),
we may take

k

Av = H Am, (824)
i=1

and then av : H 01v,}’,- Applying Bayes’ Theorem to (8.21), we have

Pr(V l W*) = ($1427) Avfl'v.

Since Ev Pr(V | W"‘) = 1, we can determine the parenthesized factor and
eliminate it:

Pr(V | W") — Ayn-V when V ¢ W". (8.25)—
Ev AVW

It follows from (8.24) and (8.25) that, once we determine how to compute
/\v,yi and fly, we’ll have the algorithm for noninstantiated variables. It will
turn out that 7w will be computed from 7r values at C(V) and that AV,Y.-
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will be computed at Y5. These values will be “passed” to V from the various
vertices that generate them.

Formulas for 7r and A

Let’s begin with 71v. By summing over disjoint events and then using Bayes’
Theorem, we have

«V = Pr(V |u*) = Z Pr(VUC(V) lat“)
C(V)

-_— Z Pr(V | C(V) uu’“) Pr(C(V) |u*)
C(V)

= Z Pr(V | C(V))Pr(C(V) |u*), by (8.1) (p.306),
C(V)

I

= Z Pr(V | C(V))_HP1~(U, mg), by (8.23),
C(V)

= Z Pr(V | cm) Hum, by definition.
C(V) xecw)

Thus, if each vertex 5' sends to each vertex T for which (5', T) E E the value
7r3,T, we can compute the 7r’s using

«V = Z Pr(V | C(V))H7rx,v (8.26)
C(V) xecw)

As a refresher on notation, let’s see what this is computing. The result is
a function whose domain is range(V). The summation extends over all val-
ues in the ranges of C(V). In other words, if C(V) = {U1,...,U1}, then the
summation is over all I—tuples

range(Ul) X x range(Uz).

For each particular I—tuple (111,. . .,u1), Pr(V | C(V)) is a function whose do-
main is range(V) because C(V) has been instantiated to (u1,...,u1) and V
has not been instantiated. The product on the right side of (8.26) is a number;
in fact, it equals ”i=1 WU,,X(ui).

The formula for 7Tv’y'. is given by

7rv,Y.- = 7W H /\V,Y,- / 2 (7w H AVA/j), (8-27)
m V #2‘

the proof of which is left as an exercise.
Now let’s consider the /\ value that V will pass to U,, that is, /\U.-,V- Let

(7: be the union of all the UJT’S except for 11;". We’re going to have a long
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series of equations to compute Pr(y’“ U17: | Ug), hence the A’s. The plan is
to separate 32* and E: using (8.21) and then separate the various (1,- ’s in U:
using (8.23). In the process, we’ll be using Bayes’ Theorem in two ways:

Pr(A | B) Pr(B) = Pr(B I A) Pr(A)
and

Pr(A/\B I C) : Pr(A | BAC)Pr(B | C').

By Bayes’ Theorem and summing over disjoint events, we have

my u 273‘ | U,) Pr(Ui)
= Pr(y“ u L7: u {U,}) = )3 Error“ u L7: u C(V) u {V})

v coo-{w
= Z ZPr(y* u L7: UC(V) | V) Pr(V)

v C(V)-{U.-}
= 2: Error“ IV) Pr(fiZ‘ UC(V) I V) Pr(V),

V C(V)—{Ui}

by (8.21) with V“ taken to be the present 17: U C(V),

_—Pr(L_l*)Z(Pr(y | V) ZPr(V |L7;f‘ UC(V))Pr(C(V) |L7;f‘)),
C(V)- {U}

by Bayes’ Theorem,

=Pr—(——u)Z(,\V Z Pr(V | C(V))Pr(C(V) |L7"‘,))
C(V)- {U}

by the definition (8.1) of a Bayesian network (p. 306),

_pr(L7,*v,):(,VZpr(1/|C(V)))P(Ur )Hvru)
C(V)- {U} #5

by (8.23) with (1* replaced with (7,- . Putting the start and finish together, you
should see that we can define aghv = Pr(Ui)av/Pr(17:) and

AW, 2 2 (AV 2 Pr(V | C(V)) H m). (8.28)
V C(V)-{Ui} 1'?“

Now that we’ve discussed the necessary calculations for an uninstantiated
vertex, how do we handle instantiation? The answer is fairly simple. Suppose
that X E W* is to be instantiated to 3:“. Only a few of the earlier calculations
are incorrect.

0 Equation (8.25) may be invalid because its derivation involves factors of
Pr(V), which could be zero. On the other hand, there is no reason to use
(8.25) if we have assigned a value to V by instantiation.
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o The derivations of 7rxy (b) and Ax(b) are incorrect, but they are easily
derived directly from their definitions: They will be one or zero depending
on whether I) = :c“ or not.

We can now prove that the algorithm is correct. There are two keys to
the proof:

0 The A’s are initialized correctly for the case of no instantiation.
0 Information need not be sent backward: If X activates Y, the values Y

would send back to X are simply the values of 7rxy and Axy that X
already possesses.

These observations were made as bracketed notes in the algorithms.
As a result of the A’s being correctly initialized, the 7r’s will be correct

after Step 2 in the main algorithm. Thus we need only analyze the effect of
instantiation. Since information never needs to be sent backward, as the acti-
vation due to an instantiation moves outward from its start, it leaves behind
correct values of the WX,Y,S and the Axy’s. Thus, after each instantiation’s
calculations are complete, all values are correct.

Exercises

8.5.4. Write down (8.26) when C(V) = 0.
8.5.5. Write down (8.27) when ’R.(V) = {Y1}.
8.5.6. Write down (8.28) when C(V) = {U1}.
8.5.7. Prove (8.27).

Further Remarks

The independence result (8.20) is not the most general. Pearl’s approach uses
“d—separation.” Had I introduced it, the derivation of (8.28) would have been
slightly shorter, but I think that (8.20) is more easily understood than d-
separation.

It would have involved less calculation to restrict the ranges of X E W’“
to {33*} on page 330 and leave the rest of the Bayesian network unchanged.
Why was this not done? It gives an incorrect model! The assertion that X
is instantiated to 1:“ leads to conditioning on X = a:"‘, which can affect the
probabilities of the various instantiations of C(X). On the other hand, the
suggestion made at the beginning of the paragraph leads to a situation in
which the probabilities for C(X) are unaffected since Pr(X = m’“ | C(X)) = 1,
regardless of the instantiation of C(X ) in that probability function.
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Exercises

8.5.8. The purpose of this exercise is to allow more parallelism in the algorithm.

(a) How can the algorithm be modified to allow a vertex to receive more
than one message at the same time?

(b) Illustrate the modification on the DAG in Figure 8.4 when all the 7r’s
are started simultaneously and all the A’s are started simultaneously
after the 7r’s have finished. Make the assumption that, at a single time
step, each active vertex sends out all the messages it can and becomes
inactive. To make it clear what is going on, you should draw a separate
picture for each time step, in contrast to the pictures in Figure 8.4 where
all the time steps for a single Outside Action have been shown on one
DAG.

(c) Illustrate the modification on the DAG in Figure 8.4 when all the 1r’s
and all the A’s are started at the same time. Make the assumption that,
at a single time step, each active vertex sends out all the messages it
can and becomes inactive. To make it clear what is going on, you should
draw a separate picture for each time step.

8.5.9. Suppose that we’ve applied the algorithm to a network. Now we want to
change the function Pr(X) in the light of new evidence.

(a) Suppose that C(X) = 0. Describe a method for doing this without
restarting the algorithm from the beginning.

*(b) Prove your result.

*(c) Can you find an algorithm when C(X) 7E 0?

8.6 Certainty Factors

There is only one thing certain and that is that nothing is certain.
—G. K. Chesterton (1874—1936)

In this section we partially develop D. Heckerman’s approach [6] to cer-
tainty factors: First we’ll list desiderata (properties I—and, I hope, you—
want them to have). Next we’ll deduce information about certainty factors
from the desiderata. In more mathematical terms, the desiderata would be
called axioms.
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What Are Certainty Factors?

Certainty factors are used in a diagnosis situation. Thus we (a) have a Bayesian
network, (b) are given information about certain vertices (random variables),
and (c) want to “push” the information back up the network. In other words,
information about Y is used in obtaining information about C(Y) but not
vice versa. Because the direction information is being moved is always to-
ward causes, people working with certainty factors usually reverse the direc-
tion of the edges in the DAG from the normal Bayesian network usage. (In
fairness, I should note that certainty factors entered AI before Bayesian net-
works.)

Since a certainty factor concerning some hypothesis (vertex of a DAG)
should provide some measure of the certainty of our belief in the hypothesis,
we have the first desideratum:

Desideratum 1: A certainty factor is a function whose range is the
interval [—1,+1]. The certainty factor CF(H, E) is intended to mea-
sure the change in belief in H given the evidence E with 0 indicating
no change, +1 indicating that H is certain, and —1 indicating that
-1H is certain. As CF(H,E) increases, so does the change in belief
in H given E. The value of CF(H,E) does not depend on the prior
belief in H.

From our viewpoint, H is a random variable and E is a set of random vari-
ables all of which are being instantiated. It’s known that, if certainty factors
conform to the usual rules of probability, then |range(H)| : 2. We won’t prove
this; instead, we’ll assume that

All random variables discussed here have the same range, namely
{T,F}. (See [6] for a proof.)

We’ll temporarily make another assumption: All evidence consists of instan-
tiation of random variables. In keeping with previous notation, we’ll use the
notation CF(X+,y*) and CF(X‘ ,y*) for certainty factors.

The idea that evidence for X = T is the same as evidence against X = F
leads to our second desideratum:

Desideratum 2: CF(X+,y*) = —CF(X',y*).
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An Interpretation of Certainty Factors

Since certainty factors measure changes in belief, we can think of them in
terms of conditional probability and so have the key desideratum:

Desideratum 3: It should be possible to somehow compute Pr(X | y*)
from Pr(X) and CF(X+,y*)

How can this be translated into something usable? First, we should determine
what’s needed to compute the conditional probability. Then we must insist
that the certainty factor and Pr(X) provide that information. Finally, we can
examine the impact of the two desiderata on this. The results are summarized
in the following theorem.

Theorem 8.7 Nature of Certainty Factors

Let /\(X+,y*) be the likelihood ratio Pr(y“ | X+) / Pro)“ | X"). If CF
is a certainty factor, then

CF(X+,y*) = F(A(X+,y*)), (8.29)
where F in an increasing function from [0,00] to [—1,1] such that
F(0) = —1 and F(1/:c) : —F(a:). It follows that F(oo) = 1 and
F(1) :0.

Proof: By the usual manipulation of conditional probabilities, we have

Pr(X+ |y*) _ Pr(X+) Pr(y* |X+) _ Pr(X+)
Pr(X“ |y*) ‘ Pr(X“) Pr(y* |X-) ‘ Pr(X“) A(X+,y*). (8.30)

The ratio on the left-hand side is a probabilistic measure of belief given
y*, and the ratio on the right-hand side is a probabilistic measure of prior
belief—the prior odds. The last sentence in Desideratum 1 asserts that since
CF measures change in belief, it does depend on prior information. In other
words, the contribution of CF(X+,;V*) to the right side of (8.30) must not
change as Pr(X+)/ Pr(X') varies. Since the likelihood ratio does not change
as we vary the prior odds, the likelihood ratio is a function of the cer-
tainty factor but not of the prior odds. Thus, A = f(CF) for some func-
tion f. Applying f’1 to both sides and calling it F, we obtain (8.29).
Since the range of /\ is [0,00] and the range of CF is [—1,+1], the do-
main and range of F must be as stated in the theorem. The penultimate
sentence of Desideratum 1 tells us that F is an increasing function. Since
Pr(X+ IV“) = 0 requires that A = 0, Desideratum 1 gives us F(0) = —1.
Since interchanging the roles of X+ and X ' changes /\ to its reciprocal,
Desideratum 2 tells us that F(1/x) : —F(a:). The last two results now
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follow from these results: F(1) = F(1/1) = —F(1) and so F(1) = 0.
F(OO) = F(1/0) = —F(0) = 1. They could also have been deduced from
Desideratum 1. I

Are there restrictions on F besides those in the theorem? No. If we de-
scribe how to combine certainty factors, and if that method of combining is
consistent with the rules for combining A, then F would be determined. Al-
ternatively, we could start with a definition of certainty factors and derive the
rules for combining them.

The details of this paragraph are left as an exercise. To illustrate the
previous ideas, let’s define

“(X 'y )_ “(X ) , if Pr(X* IV) 2 Pr(X*),Pr(X* |y*)(1- Prue»
CF(X*,y*) : (8.31)

Pr(X* Iy*)—Pr(X*) . * * *
PF(X*)(1—Pr(X*|y*))’ lfPr(X llV )_<_Pr(X )-

Then it can be shown that

, if a: Z 1,
F(:c) = a: (8.32)

22—1, ifmgl.

Suppose that 32* and Z“ are independent pieces of evidence that bear on X.
In this case, it can be shown that

A(X+,y* u 2*) = A(X+,y*)A(X+, 2*). (8.33)

(Remembering that evidence means effects, you should be able to derive
(8.33) from (8.20) (p.336).) This leads to a rule, depending on F, for com-
bining certainty factors. For the case of (8.32), with y = CF(X+,y*) and
z : CF(X+,Z*), we have

y+z—yz, ifyZOandzZO,

CF(X+,y* u 2*) 2 9+ Z , if W S 0, (8.34)
1-mm(lyl,IZI)
y+z+yz ifyfiOansO.

This is just the combining function given in MYCIN; however, (8.31) dif-
fers slightly from that in MYCIN because MYCIN’s definition of CF is not
consistent with (8.34).



348 Chapter 8 Bayesian Networks

Limits on Certainty Factor Validity

We noted earlier that Heckerman proved certainty factors cannot be defined
in a consistent fashion if the random variables have ranges that contain more
than two elements. Now let’s look for other limitations on using certainty
factors.

Let (X,E,Pr) be the Bayesian network associated with the problem.
Suppose that we have the situation shown on the left-hand side of Fig-
ure 8.7. The formula for parallel combination (8.34) provides a method for
combining the evidence 3); and y; and applying it to U1. Unfortunately,
we have no mechanism for applying y; to U2. This is needed since, if y;
makes U1 more probable, then the competing explanation U2 for X2 will
be less probable. We cannot simply take the evidence 3); and apply it to
U2 because we need to know how it interacts with U1 and how this inter-
action affects X2. This was done in the algorithm on page 330 for singly
connected Bayesian networks, but it cannot be done with certainty factors
because they only move evidence upward. (Actually we do not even need
X1 since the evidence could be {Uf } instead of CW.) We’ve shown that each
X E X can have at most one cause if certainty factors are to work cor-
rectly.

From the result in the previous paragraph, it can be shown that a con-
nected Bayesian network in which certainty factors can be used is singly con-
nected and has precisely one X with C(X) 2 (ll. (Details are left as an exer-
cise.)

Even in networks that are this limited, we haven’t dealt fully with the
propagation of certainty factors. You can think of (8.34) as a method for
combining certainty factors when parallel, independent evidence is available
for X. (See the center diagram in Figure 8.7.) What happens if we have evi-
dence 32* for X and if X, in turn, is evidence for U as shown in the right-hand
side of Figure 8.7? First, how do we express the fact that X is evidence for
U numerically, and second, how do we move from this and CF(X+,,)/*) to
CF(U+, 32*)? The answer to the first question is “Via likelihood ratios” since
that’s what certainty factors are related to. Using a Bayesian approach as in
(8.30), we have

Pr(y"‘ IU'l') __ Pr(U") Pr({U+}Uy*)
Pr(y* | U‘)

_
Pr(U+) Pr({U‘}Uy*)

_ PF(U‘) Ex PI‘({U+,X}U3’*)—
PP(U+) 2x Pr({U‘,X}U3’*)

_ Pr(U") 2X Pr(U+)Pr(X | U+)Pr(y* | {U+,X})_
PI(U+) Ex PT(U‘)P1‘(X l U")PI‘(3’* |{U“,X})

A(Ill-lui3fll) =
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U1 U2 U
X

M X
Figure 8.7 Pieces of various Bayesian networks.

2 2,. PM I U+)Pr(y* IX)
2X Pr(X I v->Pr(;v* IX)’

where the last equality follows from (8.20) (p. 336) with T = 3"“, V = {X},
and S = {U} because we have a Bayesian network. The details are left as an
exercise. You should then be able to show that

Pr(X+ | U+))\(X+,y*)+1— Pr(X+ |U+)
Pr(X+ I U’)A(X+,y*) + 1 — Pr(X+ I U"). (8.35)A(1.1+a3')*):

Certainty factors are directly related to likelihood ratios, not probabilities.
Therefore, in order to convert to certainty factors, we need to somehow re-
place the probabilities in (8.35) with likelihood ratios. This can be done using
the two equations

I‘
_ +/\+ ;: A(U+,X+) :W

(8 36)
_ _ 1—Pr X+ U+

.
A ;:/\(U+,X ):1_PrEX+llU-;

as follows. Clear denominators to obtain two linear equations in the Pr’s,
solve for the Pr’s in terms of the /\’s, and substitute into (8.35) to ob-
tain

/\+(1— A')A(X+,y*) — A‘(1 — /\+)
(1— A-)A(X+,y*)— (1-— M (8'37)A(U+,y*) =

To summarize, certainty factors can be used in a causal network only if
the following hold:

0 Each random variable has {T, F} as range.
0 The network is singly connected with |C(X)| g 1 for all X. (Such a

network is called a “rooted tree” and the root U has C(U) = (0.)
o The goal is to determine Pr(X) for some X given information about some

random variables in D(X)—the vertices in the network “below” X. (Note
that the only information discussed here was instantiation. We can allow
probabilistic information, too.)
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As part of the network information, we must be given the certainty factor in-
formation defined in (8.36). Heckerman [6] derives these restrictions on the
use of certainty factors starting with different assumptions. In fact, he de-
rives the Bayesian network properties, which I assumed. His assumptions are
preferable to mine since they assume less, but my approach is shorter and
still illustrates the power of reasoning from the properties of a function to
restrictions on the nature and applicability of the function.

Exercises

8.6.A. Describe the idea of a certainty factor.

8.6.B.

8.6.0.

8.6.1.

8.6.2.

8.6.3.

8.6.4.

Explain: “Under reasonable assumptions, certainty factors are essentially
likelihood ratios.” (This is the content of Theorem 8.7.)

For what sorts of Bayesian nets do certainty factors provide a valid means
of Bayesian inference?

After the definition (8.31) and up through (8.34), a considerable amount of
detail has been omitted. Fill it in.

Derive results like those from (8.31) to (8.34) for the simpler function

F(:c) = . (8.38)

Show that a connected Bayesian network in which certainty factors can be
used is singly connected and has precisely one X with C (X) = 0.

Fill in the details of the derivation of (8.37) and use it to derive certainty
function equations for the certainty factor defined in the text and for the
certainty factor defined by (8.38).
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Notes

I’ve tried to adhere reasonably closely to the notation that appears in the lit-
erature, but have made some changes in the interests of clarity and notational
consistency in the text.

A broader definition of Bayesian networks can be found in Neapolitan’s
text [10, p.158]. He uses the notion of “propositional variables,” which are a
type of random variables that are more general than the projections I used.
The texts by Neapolitan [10] and Pearl [13] discuss many topics more thor-
oughly than I did. They also discuss the diagnosis problem from somewhat
different viewpoints. Kruse et al. [9] provide another point of view. There has
been quite a bit of literature on certainty factors. A partial bibliography can
be found in [6]. Shafer and Pearl [15] reprint a variety of articles related to
this chapter. The journal Statistical Science is a forum for discussion of issues
related to statistics. This is done by having one or more papers presenting
viewpoints on or surveys of a subject. Other researchers then comment on the
papers and the authors reply. The subject of graphical models of dependency
is treated in the August 1993 issue (8 204—283).

My discussion of the bipartite diagnosis problem is based largely on the
book by Peng and Reggia [14], where the algorithm for irredundant covers
appears. This book and Neapolitan’s [10] discuss abduction (the diagnosis
problem) for more general DAGs. Hobbs et a1. [7] discuss another method for
carrying out abductive inference. It lacks the firm foundation that probabil-
ity theory provides for Bayesian nets. On the other hand, it can be used in
reasoning situations where the data and computational demands of Bayesian
nets preclude their use.

Charniak [3] gives a nontechnical introduction to Bayesian nets. For fur-
ther discussion of Bayesian nets, see the texts [10] and [13]. They both discuss
techniques for extending the algorithm to cases where the DAG is multiply
connected. One method eliminates edges by considering all instantiations of
carefully selected variables. Another eliminates edges by merging vertices that
share causes and/or effects. A different approach, which leads to an undirected
graph called the “moral graph,” has been developed by Spiegelhalter and Lau-
ritzen. See [10, Ch. 7] for information. Kim and Pearl [8] have implemented
some singly connected Bayesian networks in CONVINCE. Less restrictive
Bayesian networks are used in the expert system shell HUGIN by Andersen
et a1. [1].

Further research needs to be done on Bayesian networks. One problem
is to find more efficient algorithms for handling complicated networks. Ap-
proximate methods are also being studied. Bonissone [2] lists methods for
dealing with Bayesian networks and provides some references. In a sense, this
research is doomed to failure because it is NP-hard to find even crude approx-
imations [5]. In another sense, success is possible because researchers may find
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algorithms that make many commonly encountered situations computation-
ally tractable. This is no different from any other area of AI: All the big
problems from nonmonotonic reasoning (Chapter 6) to neural nets (Chap-
ter 11) are NP-hard, but researchers still look for better and/or more general
algorithms.

In addition to approximate methods for solving networks, there’s the dif-
ficulty of obtaining accurate estimates for Pr(X | C(X)), which I mentioned
earlier. Available estimates for these probabilities are likely to be crude. When
approximations are involved, it is useful to have empirical or, if possible, the-
oretical results on the extent to which the approximations cause the answers
to deviate from their correct values—this is called sensitivity analysis. Sensi-
tivity analysis provides estimates on how much conclusions change when the
problem is changed slightly. It’s a standard aspect of numerical analysis. Sen-
sitive problems—those in which slight changes in data produce large changes
in answers—are called ill-conditioned. Practically nothing is known about the
sensitivity of AI techniques.

Fault-tree analysis, which is usually considered to be outside AI, is related
to Bayesian network theory. In this case, there is just one vertex, “system
failure,” with R(X) = (D and there are many causes that are combined with
noisy-OBS and noisy-ANDs. The Bayesian network is, in fact, usually not
singly connected (and hence not a tree). For an introduction, see Page and
Perry [11, 12].

I defined abductive inference in a probabilistic setting in Definition 8.5
(p. 315). The nonprobabilistic form is the process of concluding “A” from “B”
and “If A then B.” Of course, this in not a valid deduction in the propositional
calculus. If the abduction is usually true, it could be stated as a defeasible
rule in a nonmontonic reasoning system.

Biographical Sketch

Judea Pearl (1936-)
Born in Tel Aviv, he received a bachelor’s degree in electrical engineering
from Technion, a master’s degree in physics from Rutgers, and a doctorate in
electrical engineering from the Polytechnic Institute of Brooklyn. Pearl is a
professor of computer science at UCLA and Director of the Cognitive Systems
Laboratory there.

His focus has been the use of probabilistic methods in reasoning. This in-
cludes work in heuristic search, Bayesian nets, and approaches to nonstandard
logics using infinitesimal probabilities. Thanks to his work on algorithms for
Bayesian nets, probabilistic reasoning in networks is on a secure theoretical
foundation, something that the certainty factor approach lacked. As a result,
researchers have become more interested in exploring such methods.



References 353

References

1.

7.

8.

10.

11.

12.

1.3.

14.

15.

S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen, HUGIN—A
shell for building Bayesian belief universes for expert systems. In Proceed-
ings of the Eleventh International Joint Conference on Artificial Intelli-
gence (IJCAI-89), Morgan Kaufmann, San Mateo, CA (1989) 1080—1085.
Reprinted in [15], 332—337.
P. P. Bonissone, Approximate reasoning systems: A personal perspective.
In AAAI-91, Vol. 2, 923—929, MIT Press, Cambridge, MA (1991). (AAAI
is also known as the National Conference on Artificial Intelligence.)
E. Charniak, Bayesian networks without tears, AI Magazine 12 (1991)
50—63.
G. F. Cooper, The computational complexity of probabilistic inference
using Bayesian belief networks, Artificial Intelligence 42 (1990) 393—405.
P. Dagum and M. Luby, Approximating probabilistic inference in Bayesian
belief networks is NP-hard, Artificial Intelligence 60 (1993) 141—153.
D. Heckerman, Probabilistic interpretations for MYCIN’s certainty fac-
tors. In L. N. Kanal and J. F. Lemmer (eds.), Uncertainty in Artificial In-
telligence, North-Holland, Amsterdam (1986) 167—196. Reprinted in [15],
298—312.
J. R. Hobbs, M. E. Stickel, D. E. Appelt, and P. Martin, Interpretation
as abduction, Artificial Intelligence 63 (1993) 69—142.
J. H. Kim and J. Pearl, CONVINCE: A conversational inference consoli-
dation engine, IEEE Trans. on Systems, Man and Cybernetics 17 (1987)
120—132.
R. Kruse, E. Schwecke, and J. Heinsohn, Uncertainty and Vagueness in
Knowledge Based Systems, Springer-Verlag, Berlin (1991).
R. E. Neapolitan, Probabilistic Reasoning in Expert Systems: Theory and
Algorithms, John Wiley and Sons, New York (1990).
L. B. Page and J. E. Perry, Reliability, recursion and risk, Americam
Mathematical Monthly 98 (1991) 937—946.
L. B. Page and J. E. Perry, Direct-evaluation algorithms for fault-tree
probabilities, Computers Chem. Engng. 15 (1991) 157—169.
J. Pearl, Probabilisitic Reasoning in Intelligent Systems, Morgan Kauf-
mann, San Mateo, CA (1988).
Y. Peng and J. A. Reggia, Abductive Inference Models for Diagnostic
Problem-Solving, Springer-Verlag, Berlin (1990).
G. Shafer and J. Pearl (eds.), Readings in Uncertain Reasoning, Morgan
Kaufmann, San Mateo, CA (1990).



354 Chapter 8 Bayesian Networks

16. E. H. Shortlifi'e and B. G. Buchanan, A model of inexact reasoning in
medicine, Math. Biosciences 23 (1975) 351—379. A shortened version is
reprinted in [15], 259—273.



Fuzziness and
Belief Theory

It works! And brutally pragmatic as this point of view is, no
better substitute has been found.

—Mark Kac (1959)

What we do not understand we do not possess.
—Johann Wolfgang Goethe (ca 1810)

Introduction

Randomness and uncertain judgment were once thought to require different
mathematical formalisms. Since inanimate objects do not exercise judgment,
the emergence of physical science fostered the development of a probabil-
ity theory based on randomness. Applications of probability theory achieved
some spectacular successes, such as the statistical theory of gases. Interest
in theories based on uncertain judgment waned. When the sciences of hu-
man behavior—economics, sociology, and psychology—sought to incorporate
uncertainty, they looked to probability theory since it was the only avail-
able mathematical tool. (AI is another science related to human behavior.)
Some researchers have questioned the appropriateness of probability theory
and proposed other alternatives.

In this chapter, we’ll examine some objections to probability theory and
introduce two alternative choices—fuzzy reasoning and belief theory (also
called evidential reasoning) . Fuzzy methods, belief theory, Bayesian nets, and
certainty factors are the four main methods currently used for quantitative
uncertain reasoning. With this chapter, we come to the end of our exploration
of uncertain reasoning, which we began in Chapter 5; thus we conclude the

355
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chapter with a brief assessment of the strengths and weaknesses of some of
the qualitative and quantitative methods we’ve explored. In the next chap—
ter, we begin a discussion of expert systems that are not based on reasoning
methods.

Since the sections of this chapter are practically independent of one an-
other, you can pick and choose among them.

Prerequisites: Section 7.1 is needed. The concepts of conditional prob-
ability, Bayes’ Theorem, and independence, which are found elsewhere in
Chapter 7, are needed to follow some of the discussions; however, those
concepts are not needed to understand or apply belief and fuzzy meth-
ods. The notation and terminology used for rule systems are also used in
fuzzy reasoning, but reading about rule systems in Section 6.4 isn’t essen-
tial.

Used in: No chapters require this material.

9.1 Is Probability the Right Choice?

It seems unfair to crow about the successes of a theory and to
sweep all its failures under the rug.

—Richard Brauer (1963)

Probability theory was formulated to deal with uncertainty of occurrence. Is
probability theory also appropriate for situations involving vagueness, ambi—
guity, and so forth? This is the same issue that was raised for first—order logic
(FOL) beginning on page 175. The ideas discussed there relate to (a) abil-
ity to represent information, (b) ease of use, and (c) computational adequacy.
Probability applied to expert system design leads to Bayesian nets and ap-
proximations such as certainty factors. In the previous chapter, Bayesian nets
received mixed reviews for ease of use and computational adequacy. Now let’s
explore probability theory’s representational ability; that is, is probability
theory adequate for representing the situation we want to study?

Some researchers claim that probability is inappropriate for represent-
ing important forms of quantitative uncertainty. They champion alternative
methods as more appropriate. Other researchers attack these alternatives and
defend probability theory. To avoid choking on the dust clouds thus raised,
we need a clear view of what probability theory does and doesn’t do. Then
we can look at the world and see how well probability fits.

How can we obtain an understanding of probability theory’s capabilities
and limitations? Careful, deep study is one approach. Debate is another. The
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former is time-consuming and the latter often fails because unexpressed pre-
conceptions obscure the situation. The axiomatic method provides a third
approach. You’ve seen it in action before:

0 In Chapter 5, the axiomatic approach was used to show that fair elections
are impossible. Axioms were given for fair elections and we showed that
they were inconsistent.

o In Chapter 8, the axiomatic approach was used to explore the nature and
limitations of certainty factors. Desired properties—essentially axioms—
were given and their consequences were explored.

We can approach probability theory in a similar manner—list a set of axioms
and prove they imply we must use probability theory. What does this gain
us? The idea is to choose reasonable axioms for measuring, as we did for
fair elections. Of course, these axioms relate to a measure of “uncertainty”
or “plausibility”—not fair elections. Next we prove that the only measure
satisfying the axioms obeys the laws of probability. It follows that we must
either accept probability theory as the appropriate tool or reject at least one
of the axioms. Thus, the axioms provide a clear focus for debate and/or study.
We’ll state some axioms that imply probability theory, but will omit the proof.

We’ll work with propositions as in propositional logic and assign a mea-
sure of “plausibility” to propositions, conditioned on the truth (occurrence)
of other propositions. The restriction to propositional logic is merely for
simplicity—we could use predicate logic. Here are the assumptions.

Axiom 1: Our universe (or domain) 11 consists of a set of basic propositions
and formulas that can be built from them using the connectives -I,
V, and /\ of propositional logic.

Axiom 2: There is a function f :11 XL! —> IR, written f(a | fl). We should think
of this as the plausibility of a when we know that H is true.

Axiom 3: If a and a’ are logically equivalent and likewise fl and fl’, then
flat I fl) = f(0/ | W)-

Axiom 4: If f(a l 7) < f(fi I 7), then f(na l 7) > f(—'fl | 7)-
Axiom 5: There is some function 9 such that

f((a Am I 7) = g(f(a | 7), m I (a A7»).
These assumptions imply that f is “essentially” a conditional probability,
that is, there is an increasing function (,13 such that ¢(f(a | ,6)) is a conditional
probability.

It follows that we must either accept the use of probability or reject one or
more of the axioms. Which axiom, if any, is most open to intelligent attack?
Since the later axioms are less controversial, let’s begin with Axiom 5 and
work backward.
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Axiom 5:
This axiom arises from thinking about a and fl sequentially—first a and then
3. (This does not mean that there has to be some sense of time—it’s our
thoughts that are sequential, not the events.) Suppose that 7 is true. The
axiom says that if you know how plausible a is and how plausible fl is given
a, you should be able to compute the plausibility of a A fl—a reasonable
assumption.

Axiom 4:
This axiom is based on the idea that if fl is more plausible than a when 7 is
true, then not having fl should be less plausible than not having a—another
reasonable assumption.

Axiom 3:
This axiom claims that equivalent descriptions (e.g., a and a’) can be sub-
stituted for one another. “Equivalent” here refers to propositional logic, not
the real world. For example, “Monday” and “the day after Sunday” are not
equivalent in propositional logic, but are in the real world. We might object
to the computational problem of determining equivalence, but that is not an
objection to the idea of Axiom 3.

Axiom 2:
This axiom contains overt and hidden assumptions.

First, the overt assumption. Since the values of f must be real, Axiom 2
claims that the plausibility of a statement can be measured by a single real
number. Is this reasonable? We might say that plausibility is a measure—
and aren’t measures, after all, real numbers? No. The use of only one real
number implies a simple linear ordering and some things aren’t that simple.
For example, position is measured by three real numbers. An example closer
to AI is “intelligence.” We could circularly and uselessly define intelligence
to be that which is measured by IQ. A more fruitful approach is to begin
by admitting that there are too many aspects to intelligence for one number
such as IQ to provide a meaningful overall measure. Perhaps the same is true
of our concept of plausibility. Although this is a cogent objection, we won’t
pursue it.

The hidden assumption in Axiom 2 is the requirement that we can assign
a plausibility to every statement. Consider the following scenario:

I haven’t seen Jim for a while because he’s been busy in the lab. On
Friday the 9th there’s a message from him on my answering machine:
“I should be free of the lab soon. How about getting together next ( )
Sunday for a game of squash?”

Knowing Jim, I may be willing to assign a probability of % that he’ll be free as
predicted. Unfortunately “next” Sunday might be the 11th or the 18th. Thus,
I may be willing to assign a plausibility of E’- to the statement “Jim will be
able to get together with me on either the 11th or the 18th.” In other words,
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f(J11 V J13) = %, where the notation should be obvious. However, I may be
unwilling to assign any plausibility to either J11 or J13. A. P. Dempster and
Glenn Shafer developed belief theory in response to such problems.

Axiom 1:
First, a spurious objection: Since Chapter 6 was devoted to a discussion of
logics that overcome some limitations of FOL, isn’t it a major step backward
to limit attention to propositional logic? No. Most of the ideas in Chapter 6
built on FOL, adding ways of assigning truth values other than “certainly
true” and “certainly false.” Here we’re concerned with assigning plausibility
to FOL formulas, which is another way of going beyond certainly true and
certainly false.

Actually, this idea is closely related to a serious problem. Inherent in the
combination of Axioms 1 and 3 is a hidden assumption about the nature of
the world. For example, suppose you have never met Marcel and wonder if
he is bright. Let M be the statement that Marcel is bright. A mutual friend
says that Marcel is reasonably bright, but he also points out that, in some
ways, Marcel isn’t particularly bright. It appears that both M and —1M are
plausible and so M /\ (fiM) has some degree of plausibility. This vagueness
wreaks havoc with ordinary true/false logic where 0: /\ (pa) is always false.

The major objections we’ve raised to probability can be characterized
by looking at the types of ambiguities that can occur. Using this approach,
we can distinguish among the three main quantitative tools for dealing with
ambiguity:

0 Probability: Probability theory deals with clearly defined events (i.e.,
true/false events) whose plausibility it makes sense to discuss. The source
of ambiguity is occurrence: we’re uncertain what event will occur (or has
occurred but isn’t yet known).

0 Belief Theory: We may object to the idea of assigning plausibility to
some events, thereby introducing a further level ambiguity. Belief theory
is designed to deal with evidence that points only to sets of events and
does not allow us to directly assess the likelihood of individual events
within a set. Instead of treating events directly, it focuses on evidence.

0 Fuzzy Methods: The ambiguity may lie in the nature of the event rather
than its occurrence: We may object that a concept is ambiguous and so
cannot be described and manipulated using FOL. Many everyday concepts
are like this; e.g., intelligent, ripe, fast. Fuzzy methods are designed for
situations in which the events, rather than their occurrence, are the source
of ambiguity.

In this chapter, we’ll briefly explore the two alternatives to probability the-
ory. How are they defined and used? What are their foundations? Are these
newcomers viable alternatives when probability theory seems inapplicable?
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Exercises

9.1.A. What is the objection to the axioms for probability that leads to belief
theory?

9.1.B. What is the objection to the axioms for probability that leads to fuzzy the-
cries?

9.1.C. What is the difference between the ambiguities treated by probability, belief
theory, and fuzzy methods?

9.1.D. It has been said that probability describes ambiguity about what event will
occur and fuzziness describes ambiguity about what the event is. Explain
why this is or is not a reasonably accurate characterization.

9.2 Fuzziness

Because of its unorthodory, it has been controversial . . . .
Eventually, though, the theory offuzzy sets is likely to be

recognized as a natural development in the evolution of scientific
thinking, and the skepticism about its usefulness will be viewed,

in retrospect, as a manifestation of the human attachment to
tradition and resistance to innovation.

—Abraham Kandel and Mordechay Schneider (1989)

Great is a word of great vagueness.
—Martin Gardner (1983)

FOL and set theory are closely related—we can identify a predicate with the
set of arguments for which it is true. For example, the predicate “less than”
can be identified with { (1:, y) I (at, y 6 1R) A (a: < y) }. You can see this idea in
action in Chapter 7, where we often treated a compound event A as a predicate
that was true for those elementary events 6 E A. Here’s another approach for
propositional logic. Let X be the set of all possible interpretations of the
propositional letters; that is, X corresponds to all possible worlds. The subset
of X corresponding to a formula contains those interpretations for which the
formula is true. As before, X corresponds to a tautology.

Since logic and set theory are closely related, developing the notion of
fuzzy sets can help pave the way for a fuzzy approach to logic. Fuzzy logic
has been most useful when restricted to reasoning analogous to rule systems.
In this section we’ll briefly explore the notion of fuzzy sets and fuzzy rule
systems.
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The Fuzzy Set Concept

A central concept in fuzzy reasoning is the notion of a “fuzzy set.” Let X
be the set of all objects under consideration. There’s a natural correspon-
dence between ordinary sets A C X and functions XA : X —+ {0,1}; namely,
XA(2:) = 1 whenever a: E A and XA(a3) = 0 whenever .1: ¢ A. (The function
XA is called the characteristic function of the set A.) Membership in ordinary
sets is “crisp”—a yes or no affair. Membership in fuzzy sets is vague. That
leads to the following definition.

Definition 9.1 Fuzzy Sets are Membership Functions
Let X be the set of all objects under consideration. A fuzzy set A is a
function pA : X -—+ [0,1]. We say that two fuzzy sets A and B are equal
if and only if ,uA(a:) : [13(3) for all a: E X. We call ,uA the membership
function of A. The fuzzy set whose membership function is identically
zero is called the empty set.

An ordinary set A is defined as a collection of objects and the characteristic
function XA is then defined in terms of A. In contrast, the fuzzy set A has no
such independent definition: ILA is its definition. Nevertheless, we still use no-
tation like A D B. This is simply the name of a fuzzy set given by the as yet
undefined function nAn B-

If ,uA(X) = {0, 1}, then A can be thought of as an ordinary set. If there is
some a: E X with 0 < MACE) < 1, then A cannot be thought of as an ordinary
set because a: has a degree of membership in A that is neither 0% nor 100%.

In Chapter 7, we came to some understanding of what probability meant
before launching into the subject. We need to do the same for fuzzy sets.

To reach such an understanding, let’s take an often cited example. The
universe X consists of people and the fuzzy set A consists of tall people.
Young children are not in A and so MACE) = 0 when a: is a young child. Many
basketball stars are certainly in A and so have ,uA(:c) : 1. We might have
[1A(p) = 0.7 for a person 19 who is somewhat tall. What does the value 0.7
mean? How is it determined or estimated?

It’s tempting to take a frequentist approach, as was done for probabil—
ity theory. In that case we’d say that ,uA (p) = 0.7 because 70% of the people
(whoever they are) would agree that p is tall and 30% would disagree. This
tempting approach must be resisted. Here are some reasons.

(a) If we accept this approach, the study of fuzzy sets is reduced to probabil-
ity theory. In that case, there would be nothing more to say except “Go
back to Chapters 7 and 8.”

(b) There is something inherently vague in the notion of tall. Thus, it’s unnat-
ural to force a person to either completely agree or completely disagree
with the statement that p is tall. This forcing is required for the 70%
versus 30% survey.
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(c) The probability approach misses the point—it’s the concept that’s vague
or uncertain, not people’s responses. In other words, even if these peo-
ple whose opinions I sought did not exist, I personally would consider the
concept of tallness to be vague.

(d) The probability approach distorts the situation—I’m concerned with my
reaction to a particular person’s tallness, not some frequency information.

The first objection merely states that the approach is pointless. The second,
that it is unnatural. However, (c) and (d) contain the germ of an alternative
approach.

Since I perceive the vagueness of a concept, I should be the one to deter-
mine degree of membership; that is, I determine ,uA (p). Howls of protest can
be heard from those who advocate an objective approach. They righteously
proclaim “Probability theory, which is based on a solid objective foundation,
is vastly superior to a method based on subjective opinion.” Apparently they
didn’t read (or didn’t accept) the first part of Section 7.1, especially (7.2)
(p. 259). In many situations, empirical determination of a probability is im-
possible and so a subjective estimate is used. Thus, a subjective approach to
fuzzy sets shouldn’t be rejected out of hand. Instead, I can take the same ap—
proach I did with probability theory: Assuming an understanding of the basic
notion, I’ll determine the properties it should have. The problem of estimating
membership functions can be postponed until I face the question of design-
ing an actual fuzzy rule system. At that time, you’ll see that the conceptual
aspects are largely ignored in favor of an empirical approach.

Example 9.1 Temperature, Youth, and Age
Figure 9.1 shows some commonly used examples of fuzzy sets.

The graph on the left is my membership function for room temperature
(degrees Fahrenheit) in the set “warm.” It might be obtained by my reaction
when the temperature of a room is at various values. When the tempera-
ture is too high or too low, I would not characterize it as warm. What about
intermediate temperatures? Sometimes I might say something like

It’s warm. Actually, it’s somewhat more than warm, so I couldn’t say
that it’s simply 100% warm. Since you insist on a number, I estimate
80% warm.

As already noted, I won’t ask how the 80% was arrived at.
There’s an important discrepancy between my description and my use of

the set “warm.” Can you spot the problem?
* * * Stop and think about this! * * *

The fuzzy set I claimed to be talking about contains numbers that mea-
sure temperature. My discussion involved deciding about particular situations,
where the answer could be influenced by relative humidity, time of year, and
many other factors.

This distinction may be more evident in the graphs on the right side of
Figure 9.1. There, an age—not a person—is being described as young, ma-
ture, or old. In fact, I might consider one twenty-year old to be very mature
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Figure 9.1 Some examples of fuzzy sets. The vertical axes measure u and the hor-
izontal axes list the elements of the set, which are real numbers here. The left-hand
graph pictures a warm temperature and the right-hand graph pictures various age
categories. See Example 9.1 for a discussion.

and another to quite immature. Thus, maturity depends on more than age.
“Young” and “old” may also depend on more than age. In that case, what
does it mean to say a twenty-year old has about 0.6 membership in the set
“young”? I’ll continue this discussion in the next example. I

Exercises

9.2.A.

9.2.B.

9.2.C.

9.2.D.

9.2.1.

What real-world aspect of membership is not captured by ordinary sets but
is captured by fuzzy sets?

Explain the statement “a fuzzy set is a membership function” and define a
membership function.

Why does a probabilistic approach to fuzzy sets miss the point? In particu-
lar, what is wrong with saying ”youngUane) = 0.3 because 30% of the people
consider Jane to be young?

How do the uncertainties represented by fuzzy logic and probability theory
differ?

Which of the following set descriptions require the notion of a fuzzy set?
Justify your positive and negative answers.

(a) daytime (b) blue-colored (c) sunny day
(d) beautiful (e) healthy (f) deceased
(g) A-student (h) old person (i) teenager

This is probably best done by a quick class discussion.
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Properties of Fuzzy Sets

What are the basic properties of fuzzy sets? When do they agree with the
corresponding concepts for ordinary sets? When do they differ? Basic notions
for ordinary sets are subset, union, intersection, and complement. If we can
describe these basic notions in terms of characteristic functions, we have a de-
scription that might be applied to fuzzy sets by replacing the characteristic
function X with the membership function u. As a start, you should be able to
easily prove the following theorem about ordinary sets.

Theorem 9.1 Characteristic Functions of Sets

Let A and B be sets with characteristic functions XA and XB.

(a) A g B if and only if XA(:I:) 3 963(2)) for all :13.
(b) The characteristic function of the complement of A is

XAI(:B):1— XA(:L‘).

(c) The characteristic functions of the intersection and union of A and
B are

0 XAnB(:c) = min(XA(:c),XB(:z:)) and

o XAUB(a:) : max(XA(x),XB(:c)).
(d) The characteristic functions of the intersection and union of A and

B are also computable by

0 XAnB(a:) : XA(.’L’)XB(1L‘) and
O XAU3(.’B) = XA($) + XA(b) — XA(:B)XB(:L').

The two formulas for union and intersection are paired in a natural fashion.
Recall that one of de Morgan’s laws states that

AUB = (A’ nB’)’,
which you should be able to prove easily. Using this law, (b), and the first
formula in (c), we have

XAuB = X(A’nB’)’ = 1 - XA'nB' = 1- min(XA', 963')
=1— min(1— XA,1-— x3) = 1 — 1+ max(XA,XB)
= max(XA,XB),

the second formula in (c). If min is replaced by product in this derivation, the
second formula in (d) is obtained from the first formula in (d).

Should (c) or (d) be used as the basis of a definition for fuzzy sets? There
are pros and cons to either choice. (Exercise 9.2.6 presents one argument.)
The min and max of (c) are usually used. We’ll use them, too.
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Definition 9.2 Operations on Fuzzy Sets

Let [M and [13 be the membership functions for two fuzzy sets.

(a) We say A is a subset of B whenever pA(a:) g ,uB(a:) for all m.

(b) The fuzzy complement of A is defined by [JAI($) : 1 — ,uA(a:).

(c) Fuzzy intersection is defined by pAnB(a:) = min (pA(a:),pB(:c)).

((1) Fuzzy union is defined by pAUB(a:) = max(,uA(a:), pB(m)).

Is this definition reasonable? This means, does it fit with our everyday inter-
pretation of the concepts?

(80

(b)

(C)

(d)

If the notion of subset is understood in the sense of “less than,” the
definition is quite reasonable: It says that every :1: has at least as much
membership in B as it has in A.

We claim that the definition of complement is reasonable: It certainly
agrees when ,uA(:c) is 0 or 1. For intermediate values, it reflects the idea
that the more something has the property described by A, the less it
has the property described by A’. What about the particular choice of
l — [44(3) rather than, say 1 — ,uA(a:)2? It has the nice property that
”A" = M4, just as A” = A for ordinary sets. We can describe these
properties in terms of a decreasing function g on [0, 1] with 9(0) = 1 and
g(g(t)) = t: For any fuzzy set A, ,uA:(a:) : g(,uA(a:)). It can be shown that
g(t) = 1 —t is the only g with these properties.

Think of A and B as describing two properties and ,uA(a:) and [13(32) as
measuring the extent to which :1: possesses each of the properties. To what
extent does a: possess both properties? If ,uA(a:) = ,uB (m), then it seems
reasonable that this number measures the extent to which :1: possesses both
properties. What if ,uA(:c) 7’: [13(22)? In this case, it seems reasonable that
the smaller number should measure the extent to which :1: possesses both
properties.

A similar argument can be used to defend the definition of A U B.

Another way of assessing the definition is to ask how many of the usual
properties of complementation, intersection, and union it preserves. The fol-
lowing theorem partially answers this question.
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Theorem 9.2 Properties of Fuzzy Set Operations

For all fuzzy sets A, B, and C, we have the following properties, just as
for ordinary sets.

(a) A”=A;
(b) (AUB)’ = (A’) n (B’) and (AflB)’ = (A’) U (B’);
(c) A H B (_I A with equality if and only if A C_: B;
(d) A U B I_) A with equality if and only if A 2 B;
(e) ifBgC, then B’QC’,AUB§AUC, andAflBQAflC;
(f) AU(BflC') = (AflB)U(AflC') and Afl(BUC') = (AUB)fl(AUC').

Two important formulas that do not carry over from ordinary sets are
A n (A’) = (l) (the empty set) and A U (A’) = X (the set of everything).

The proof is left as an exercise. The formula A n A’ = (2) corresponds to the
law of the excluded middle in propositional logic—a statement cannot be both
true and false. In fuzzy reasoning, statements are often both somewhat true
and somewhat false.

Example 9.2 Youth and Age (continued)
In Example 9.1, we concluded by asking what it means to say a twenty-year
old has about 0.6 membership in the set “young.”

One possible interpretation is that what is represented in Figure 9.1
(p.363) is precisely what was intended: “Young” is a concept that depends
only on age and not on aspects of an individual’s personality.

What if we reject this and say that “young” depends on more than age?
Then the membership function ”youngQO) must represent an average over
twenty-year-old individuals. It seems reasonable to agree that the fuzzy sets
represented in Figure 9.1 are obtained from other fuzzy sets this way. We’ll
soon see that this leads to problems—operations on the resulting sets don’t
quite fit Definition 9.2. Is this important? Yes and no.

0 If we want a solid mathematical foundation whose concepts mirror the
interpretations we have in mind, then we must be very careful in calling
something a fuzzy set.

0 If we’re interested in rule systems for automatic control—the major ap-
plication of fuzziness—.-then pragmatic considerations are more important
than theoretical ones. In that case, we may be perfectly willing to ignore
inconsistencies in our usage of fuzzy concepts and tools as long as the
final result works.

We’ll conclude this example with a demonstration that averaging usually
destroys fuzziness.

We have one universe whose set elements are individual people. Call it 8.
We have another universe X whose set elements are ages in years. Finally, we
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have an obvious function “age” from 8 to X. Let A(:L') (_Z 8 be those people
whose age is x. If B is a fuzzy set in the 8 universe, define B“ to be the fuzzy
set in the X universe by letting [13.(31) be the average of [13(6) over all 6 E B*.
For example ”young: (20) is the average of pyoungcc) over all a: E A(20). We’ll
denote this averaging by the notation

#341?) = Ewe) I age<e> = as). (9.2)
(This notation is used in probability theory to denote an average that is called
“expected value” and is studied in Chapter 12.)

Let B, C, and D = B n C be three fuzzy sets based on 8. It’s natu-
ral and desirable to identify the fuzzy set B* 00* with the fuzzy set D"‘.
Unfortunately, they’re usually different sets and all that can be said is that
(B H C)* Q (B*) n (0*). Let’s prove this. Fix some a: E X. Without loss of
generality, we may suppose that [13-(rc) g [10-(x). We have

#B'nC' (cc) 2 [13(3) by Definition 9.2

2.
1 .

IA(3;)| eggs”) m1n(#B(6),luC(e))

:L 2 [13nc(6) by Definition 9.2
|A($’)I 664(3)

:
”(Bf-10):.-

(:8).

This proves that (B*) n (0*) 2 (B n C')*. Furthermore, we have equality
throughout the previous chain of equalities and inequalities if and only if
[13(6) 3 [10(6) for all 6 E A(a:). In other words, (B*)fl(C*) : (300)“ if and
only if whenever [13(6) is less (resp. greater) than [10(6), the same is true for
all 6’ that have the same age as 6. This is unlikely to hold. For example, some
twenty-year olds may be more young than they are mature and others may
be more mature than they are young. In other words, we have

Hyoung(e) > Mmature(e) and Hyoung(el) < llmature(el)

fOI‘ SOme C and 6’ in A(20) and SO #young‘fimature‘ (20) > ”(youngnmature)‘ (20)- I

In probability theory, our probability spaces were often Cartesian prod-
ucts with

PI‘((61,.. .,8n)) = PI‘1(61)"'Prn(en):
a probability function that made the various components behave indepen-
dently of one another. The following example looks at a similar situation for
fuzzy sets.
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Example 9.3 Cartesian Products and Projections

The concepts of Cartesian product and projection are closely related. Recall
that the Cartesian product of 1:: sets is defined by

A1 X---xAk:{(a1,...,ak)|a16A1,...,ak€Ak}.

If S g A1 x x Ak, its projection onto the ith coordinate is given by

proji(S) : {p I p = m,- for some (3:1,...,a:k) E S}. (9.3)

How can these ideas be extended to fuzzy sets?
Let’s discuss one approach. Suppose that Al g X1 and A2 <_: X2. Notice

that
A1 X A2 = (A1 X X2) 0 (X1 X A2). (9.4)

This generalizes to the Cartesian product of 1c sets. Since we know how to form
a fuzzy intersection, all we need do is decide what the fuzzy Cartesian product
A1 x X2 means. Since 26,- contains everything that can be in the ith component
of a Cartesian product, it’s reasonable to have the degree of membership of
(x1, $2) in A1 X X2 depend only on the membership of :81 in A1; that is,

MAlxx2((ar1,:c2)) = #111061) and similarly HXl2(($l; 322)) = M42032).
Using (9.4) for fuzzy sets, we now have

#Al2(($1:$2)) = min(u...xx.<(w.,x2>>. #xl2(($1a$2)))
= min(#A1($1), #142032»-

The extension to an arbitrary length product is obvious: The fuzzy Cartesian
product of A1, . . .,Ak is defined by

IuAlXH-XAk (($11 ' ' ' a $13)) : Inln(/JA1((L'1), ° ' ' )flAk(mk)) ' (95)

The fuzzy projection is given by

”proj,(S)(p) : maxi #5 ((31: ° ' ' ; 3k» l $1”: 17 }’ (9'6)

that is, the maximum of the membership function of all 5’s whose ith compo-
nent is p. (Actually, since the set of it"s can be infinite, the maximum should
really be a supremum—a technicality that doesn’t matter here.) You should
prove that (9.5) and (9.6) agree with the definitions for ordinary sets when p is
replaced by X. We may write projection differently; for example, if S Q X x y,
we may write projx instead of projl. For so called “normal” fuzzy sets, the
projection of A1 X -- - x A], onto the ith component is Ag. See Exercise 9.2.8
for details. I
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Fuzzy Predicates

We’re now ready to look at fuzzy predicates. As indicated at the start of the
section, this will be done through the use of fuzzy sets. In fact, you can think
of the fuzzy sets in previous examples as if they were predicates. For example,
“young” is a predicate that takes a single argument, either an age or a person,
depending on which version of “young” we’re thinking of. Let’s be a little
more precise, beginning with correspondence between ordinary predicates and
ordinary sets.

Let C,- be set of possible values for the ith argument of a predicate p that
takes k arguments. We can associate a subset P of X = C1 x x Ck with p
in a simple way, namely

P={€€X|p(é') is true}.

Conversely, any subset Q g X determines a predicate q by the rule that
q(é) is true if and only if 6' E Q. Suppose we have two predicates and we
want to combine them; for example, p(:'i:', 37) A (1(3),?) Note that the predicates
share some arguments but not others (53' and 2'). Thus p is associated with
P Q X x y and q is associated with Q g y x Z. We associate p(:i", 37) /\ q(37, 2')
with the set (P x Z) n (X x Q). One way to think of this is by extending p
and q to predicates whose arguments lie in X x y x Z. The truth of p is
independent of the components in Z and the truth of q is independent of
the components in X. The sets associated with p and q are then P x Z and
X x Q, respectively. Here’s a restatement of this with formulas for two other
connectives:

p(i:',37) /\ q(37,§') is associated with (P x Z) 0 (X X Q),
p(:fi',37) V q(37,2') is associated with (P x Z) U (X x Q), (9.7)

-1p(:i", 37) is associated with (X x y) — P.
Because of the close relationship between sets and predicates, we’ll frequently
denote a predicate and the associated set with the same symbol.

The set operations can be extended to the fuzzy case by using fuzzy sets.
This gives us a fuzzy logic. However, the logic is not uniquely determined
by this procedure. The fuzzy interpretation of p —> q is open to debate. Re-
searchers have advocated a variety of fuzzy versions of p -—> q. Why not simply
rewrite it using the connectives o, A, and V and use Definition 9.2 (p. 365)?
One way to rewrite it is (--:p) Vq. Another way of rewriting it is (q A p) V (-p).
While these formulas are equivalent in propositional logic, they don’t nec-
essarily describe the same fuzzy sets. Thus we’re faced with the problem of
which rewrite to choose. Another approach is to develop the idea that p —> q
is a tautology if and only if P _C_ Q. As you’ll see later, there’s a fairly natural
interpretation of “if p then q” for fuzzy controllers.

The problem with p —) q is just one of the difficulties that arise in devel-
oping a fuzzy logic. The words “not,” “or,” and “and” bear a heavy burden of
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meaning based on everyday usage. FOL was formulated to provide a precise
mathematical formulation of that meaning (the semantics of FOL) so that
we could manipulate some aspects of language using the syntax. It’s natu-
ral to assume that the fuzzy meanings will carry forward this program. This
mistake has led to considerable misunderstanding. A fuzzy logic must have its
own semantics that differs from that for FOL. To begin with, the notion of
truth must be changed since set membership takes on values other than 0 and
1 (corresponding to false and true in FOL). Thus a fuzzy logic is some sort
of “multiple-valued” logic. As in the case of nonmonotonic logics, there is no
consensus on what the multiple-valued logic or the fuzzy logic should be.

We must also be careful when manipulating fuzzy logic formulas because
not all the rules of ordinary set theory hold for fuzzy sets—see the last part
of Theorem 9.2 (p. 366) and Exercise 9.2.5. As the following example shows,
there are also problems interpreting the results of fuzzy manipulations.

Example 9.4 Interpreting Combined Predicates
Given that Mary is young (denoted by y below) and that John is much older
than Mary (denoted by mo), what can we say about John’s age (denoted
by J a)? It seems reasonable to simply project the conjunction onto the co-
ordinate associated with John’s age. Using :n to indicate John’s age and t to
indicate Mary’s and using formulas (9.7) and (9.3), we have

mace) = mpx(min(py(t), ,umo(:c,t))). (9.8)

Although this is a simple application of preceding formulas, the result is
counterintuitive. Since ,ay is a decreasing function of its argument and arm, is
a decreasing functionof its second argument, the maximum will be achieved
when Mary is as young as possible. Presumably this is 0 (newborn), which is
certainly a young age (,uy(0) = 1). Thus ,uJa(a:) = pmo(:c,0). We claim that
even a toddler is certainly much older than a newborn so that amo(:c, 0) = 1
even for small values of 2:. Hence the membership value for John’s being a
toddler would be 1, which is the same as that for an octogenarianl

Although we’ve shown that (9.8) contains practically no information on
John’s age, the example’s opening sentence gives us the impression that John
is more likely to be older than younger. What happened?

This impression may come from thinking in somewhat probabilistic
terms—Mary could be any age, not just newborn. What do we have instead of
(9.8) if we’re dealing with probability? There are several changes. We would
probably obtain something like

Pr(J = as) = Z Pr(M = t) Pr (J = a: l (M = t) A (J is much older than M)),
t

where J stands for John and J = a: means his age is :13. Some thought is
required for estimating the conditional probability because of its “much older”
condition.
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Fuzzy memberships are not probabilities, so we must avoid thinking in
probabilistic terms. Since not thinking is also a poor strategy, how might we
think about this example? The projection (maximum) causes us to look for
the choice of t that makes things as large as possible. In other words, “How
possible is it that John’s age is m?”—not “How probable is it?” I

Exercises

9.2.E.

9.2.F.

9.2.G.

9.2.2.

9.2.3.

9.2.4.

9.2.5.

9.2.6.

How are fuzzy union, intersection, and complement computed?

Assuming that Figure 9.1 represents fuzzy sets, indicate the intersection of
young and mature in the figure. What age maximizes “young and mature”?
Indicate the union of young and mature. What age minimizes “young or
mature”?

How can a. predicate be interpreted as a fuzzy set? Give an example.

Prove Theorem 9.1.

Defend I‘AUB($) = max(uA(a:),uB(:c)). This is probably best done in dis-
cussion.

Prove Theorem 9.2, including the fact that two important formulas do not
carry over to fuzzy sets.

Prove that all the following are valid for ordinary sets. Which are valid for
fuzzy sets? Give a proof or counterexample in each case.

(a) P'UQ = (QnP)U(P')
(b) (AUB)n(A’uB) g B
(c) (AuB)n(A’uB) Q B

This is one way of justifying the definition of fuzzy intersection. When you
work this problem, do not assume Definition 9.2(c); however, you may as-
sume (a).
(a) Explain why each of the following is a reasonable requirement to place

on fuzzy intersection.
(i) 3014:1403.

(iii) Whenever B I_) C, we have A03 2 ADC.
(b) Define a fuzzy set D by uD(a:) = min(p.A(a:),uB(a:)). Using (i)-(ii),

show that

#003) Z I-‘AnB(93) 2 #AnDU’) Z #DnD($) = MD($)
and then conclude that I‘AnB($) = min(p.A(:v), 113(3))-
Hint. With u3(m) = 1 for all as, use (iii) to prove A 2 ADC.
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9.2.7.

9.2.8.

9.2.9.

9.2.10.

Chapter 9 Fuzziness and Belief Theory

For the fuzzy set S Q X x y and a: E X, define the set 5(3) Q y by
p.3(3)(y) = u5((z,y)). Prove that proj2(S) = Uxex 5(3).

A fuzzy set S is called normal if there is an a: E S with “3(3) = 1.

(a) Suppose that A1, . . . ,Ak are normal fuzzy sets. Prove that
A; = projz-(Al X ° - - X Ak).

(b) Show by means of a counterexample that the previous result requires
the normality assumption. (Do not give the trivial example in which one
of the A.- = 0.)

Suppose that f : X —> y. Let A Q X be a set. The set f(A) is defined by

f(A):{yEy|f(:c)=yforsome:vEA}.

The corresponding definition for fuzzy sets is called the extension principle.
The purpose of this exercise is to formulate it.

(a) Let A be an ordinary set and let A'" = { (9:, f(rc) I a: E A}. Prove that
f(A) = Pr0j2(A*)-

(b) Let A be a fuzzy set and define A" by

I‘A($)i “3’ = f(x),
“A‘ 1:) y = .“ )) {m uy¢fey

Prove that this agrees with the previous definition when A is an ordinary
set; that is, ”A only takes on the values 0 and 1.

(c) If A is a fuzzy set, define f(A) = proj2(A*). Prove that ”f(A)(y) equals
the maximum of uA(a:) over all a: for which f(z) = y and equals 0 if
there are no such 1:.

You may have noticed that I didn’t offer a fuzzy analog for the FOL formula
or —> fl. In fact, several analogs have been proposed—another reason to
beware of using a fuzzy analog of FOL. You’ll look at two in this exercise.

(a) Show that the FOL formulas or —-> [3 and ([3 V -:a) are equivalent; i.e.,
one is true if and only if the other is. What fuzzy definition does this
suggest for a —> ,6; this is, what is the value of MAfiBCC)?

(b) IfA (resp. B) is the set of X for which a(X) (resp. fl(X)) is TRUE, show
that VX(a(X) —> fl(X)) is equivalent to A Q B. Use this to propose a
definition for ILA—>303) which is 0/1-valued.
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*9.2.11. Adverbs like “very” and “slightly” provide the opportunity for creating new
and arbitrary functions. Suppose some predicate 1) (such as “tall” or “ma-
ture”) describes a fuzzy set A. The adverbs “very” and “slightly” can be
used to modify p and produce new fuzzy sets V(A) and S(A) (such as “very
tall” or “slightly mature”). People have proposed various functions 1) and 3
such that V(A) and S(A) could be automatically created from A by

#V(A)($) = ”(I‘A($)) and #5(A)($) = 3(#A(-'B))-
One possibility is v(t) = t2. Note that 'v and 3 are completely specified by
defining them on [0,1].

(a) What are some properties you think 1) and .9 should have. Why?

(b) Suggest and defend one or more choices of functions for v and for 3.

Suppose our universe consists of integers Z and we want to add two of them. Unfor-
tunately, we have only a vague notion of their values. The next two exercises explore
probabilistic and fuzzy approaches.

9.2.12. Our elementary events will be 6' = Z x Z, a slight extension of the concept
in Chapter 7, where 6' had to be finite. The probability function is Pr(x, 3]).
Two particular numbers a: and y correspond to the elementary event (1:, y).

(a) What is the compound event corresponding to a: and 31 having a partic-
ular sum and what is its probability?

(b) We’ll say that the values of :1: and y are independent if the compound
events {1:} x Z and Z x {y} are independent for all a: and 3;. Let

Pr1(:c) = Pr({z} X Z) and Pr2(y) = Pr(Z x {y}).

Prove that the probability that the sum is c is the sum over all z and 3]
that sum to c of the product Pr1(:c) Pr2(y)—in mathematical notation,

Pr(sum is c) = Z Pr1(a:) Pr2(y).
my:

x+y=c

9.2.13. Suppose that X and Y are sets of integers.

(a) Let Z be the set of sums a: + y where :1: E X and y E Y. For example,
if X = Y = {1,2}, then Z = {2, 3,4}. Defend the corresponding fuzzy
definition

Itz(0) = 15.13)} (min(ux($),uv(y)))-
$+y=c

Hint. Why is set intersection like “and” and set union like “or”?

(b) Extend the previous ideas from addition to an arbitrary binary operation
g(:v, y) E Z. This is the basis of fuzzy arithmetic.
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Fuzzy Rule Systems

Fuzzy Wuzzy was a bear.
Fuzzy Wuzzy had no hair.

Fuzzy Wuzzy wasn’t very fuzzy,
Was ’e?

—Anonymous

It should be clear by now that using and interpreting fuzzy sets can be a
tricky business. This makes it particularly important to have a clear method
for moving between the real world and the mathematics of fuzzy reasoning.
Of course, this correspondence must be such that the operations (union, in-
tersection, etc.) on fuzzy sets mirror what happens in the real world. It seems
to me no such method currently exists and its lack will cause severe problems
if we attempt to use fuzzy methods for complex reasoning.

For some types of reasoning, the difficulties can be overcome or ignored.
These are the “shallow rule systems.” In fact, they’ve been so commercially
successful, that “fuzzy logic” has come to be synonymous with such systems
despite the their rather limited logical reasoning capabilities.

First, a one-paragraph review of rule systems for those of you who skipped
or forgot Section 6.4 (p. 229). Rule systems are often used to control various
devices. A thermostat uses a very simple rule system for controlling a furnace.
If T is the present temperature, the rule system is

If T < Tlow, then furnace should be 0N.
If T > Thi, then furnace should be OFF. (9.9)
If Tlow 5 TS Thi, then furnace may be in any state.

The use of such a system is straightforward: Whenever the antecedent (“if”
part) of a rule is true, its consequent (“then” part) is also taken to be true—or
made true if it describes an action. The consequents of one rule can become
the antecedents of another, a process known as forward chaining. The depth of
a rule system is the length such a chain of reasoning can reach. The example
(9.9) has depth 1 since the rules cannot be chained together. A rule system
whose depth is small is called shallow. The general form of a rule is

VXl...VXk((a1/\~-Aan)—~fl) (9.10)
where a1, . . . ,amfl are predicates whose only variables are X1, . . .,Xk and
rules are used when their hypotheses are true. In other words, whenever
a1,...,an are true for some values of X1, . ..,Xk, then ,6 is also taken to
be true—or is made true if it implies an action as in (9.9). When rules are
stated, the universal quantifiers are usually omitted.

A more complicated thermostat might control a furnace whose rate of
heat production can be set to levels other than just off and on. For example,



9.2 Fuzzz'ness 375

the first rule in (9.9) might be replaced by

If 1v—-T'is large and positive,
then furnace should be 0N high.

If Tv-T‘is medium and positive,
(9J1)then furnace should be 0N medium.

If TLWV—-T'is small and positive,
then furnace should be 0N low.

Terms like large, medium, small, high, and low should suggest fuzzy sets to
you. We’ll discuss the foundation of such controllers in this section.

How do fuzzy controllers overcome the difficulties raised by fuzziness?
Here’s a brief answer.

0 Restricted logic: Rule systems allow only two logical connectives, A and —*.
They can be interpreted in a way that fits fairly well with “commonsense”
notions of what the rule systems should mean.

0 Shallowness: Chains of reasoning can magnify discrepencies between how
we imagine fuzziness should work and how it actually does work. Since
controllers use very shallow rule systems—often the depth is only 1—they
sidestep this problem.

0 Predicate visibility: In a rule system of depth 1, the effects of all predicates
are visible as either input information (temperature) or output action
(furnace control). This makes it easier to adjust them, an important ability
since we lack a solid foundation for constructing fuzzy sets. (Remember,
predicates can be thought of as sets and vice versa. See p. 369.)

Fuzzy Controllers without Chaining

For the time being, let’s assume that no chaining takes place; that is, the
antecedents a,- of a rule refer to observations, and the consequent fl refers
to an action to be taken. Furthermore, we’ll assume that the consequents all
contain one and the same variable, say Z. This is the situation in the rule
systems (9.9) and (9.11).

To interpret such a system, we must understand the meaning of the corre-
sponding ordinary rule system better. Suppose it’s time to take action. Then
we must apply one of the rules to the present situation. This means (11, . . . ,0",
would be true in some rule (9.10) and we would act so as to make fl true. In
other words, we act so that at least one rule has both its antecedents and con-
sequent true. If the jth rule is (0:1,,- A a” A - - ) —* flj and there are m rules,
we choose an action that makes the formula

((am A (12,1 A - - - A fl1)v -~V(az1,m A 0.2,, A - - - A an) (9.12)



376 Chapter 9 Fuzziness and Belief Theory

true. To illustrate, add a third rule to (9.9) to cover intermediate temperatures.
Then rewrite the system in the form (9.12) to obtain

(((T < Tlow) /\ Furnace(0N)) V ((T > Thi) A Furnace(0FF))
(9.13)

v ((TlOW _<_ T S Thi) A Furnace(Z))),

where Z is arbitrary and “Furnace” and the temperature inequalities are pred-
icates. You should convince yourself that the control system (9.9) is choosing
the state of the furnace so that this formula is true.

We can think of (9.12) and (9.13) in a slightly different manner: Given the
values of variables in the antecedents, these formulas determine a set of allowed
values for the consequent variable Z. This can be done simply by substituting
in the values of the antecedent variables and interpreting predicates as sets—
something the next example will clarify.

We now have something that fits easily into a fuzzy context. Formula
(9.12) with its connectives A and V makes sense from a fuzzy viewpoint.

Example 9.5 Implementing These Ideas: Balancing a Stick
A classic example of a fairly simple fuzzy controller is the problem of balancing
a stick in a vertical position by supporting it on a moving platform. For
simplicity, let’s do the problem in two dimensions rather than three—the
stick can fall only to the left or right, not forward or backward. We’ll have
five fuzzy predicates to describe the stick’s tilt:

TL 2 moderate tilt to left,
T1 = slight tilt to left,
To = nearly vertical,
T,- = slight tilt to right,
TR 2 moderate tilt to right;

three predicates to describe the stick’s velocity:

Vf = falling slowly, V0 : essentially still, Vr : rising slowly;

and five predicates to describe the desired motion:

ML 2 move support quickly to the left,
M1 2 move support moderately to the left,
M0 2 do not move support,
M, 2 move support moderately to the right,
MR 2 move support quickly to the right.

There is no specification in the movement rules about how far to move. In all
cases, carry out the movement for a fixed time interval.
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left tilt right tilt

Figure 9.2 Fuzzy sets for stick tilt. The graph of each membership function has
a triangular bulge above the u = 0 line. See Example 9.5 for a discussion.

Possible choices for the fuzzy sets associated with the tilt predicates are
shown in Figure 9.2. The sets for the other predicates have a similar triangular
shape. Why triangular? It’s an easy shape to work with and captures the fact
that the predicate fits less well as we move away from some central value.
Fuzzy controllers are frequently such that the exact graphs of the membership
functions are not important—only a crude estimate is needed. Of course, some
additional thought or experimental work will be needed to establish a scale
on the horizontal axes.

All rules have the form (T?(X) A V?(Y)) —* M?(Z), where the variables
X, Y, and Z indicate tilt, velocity, and movement, respectively. Since the
subscript on M is determined by those on T and V, there are 5 x 3 possible
rules. Depending on the implementation, some rules may be omitted because
the situation is deemed hopeless (moderate tilt and falling) or ambiguous
(vertical and falling doesn’t indicate direction of fall). The model should be
changed to avoid the ambiguity, but we won’t do it. Here’s a possible set of
rules for leftward-tilted sticks:

TL(X)AV0(Y) —*ML(Z) rule 1L
TL(X) A V,.(Y) —* M;(Z) rule 2L
T((X) A V0(Y) —* M1(Z) rule 3L
T;(X)AVf(Y) —~ML(Z) rule 4L
T((X) A V,.(Y) —* Mo(Z) rule 5L

There are corresponding rules for rightward-tilted sticks. Vertical sticks have
only one rule because the information on falling does not allow us to decide
which direction it’s falling.

T0(X) A V0(Y) -—‘ M0(Z). rule V

Suppose the stick is tilting very slightly leftward and is falling very slowly so
that

HT.(X) = 0.4, ,uTO(X) : 0.6, ,uv, (Y) = 0.7, ,uvo(Y) = 0.2
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Figure 9.3 The first graph shows fuzzy sets for leftward movement. The shaded
area in the second shows (9.14). Horizontal dashed lines indicate u = 0.2, 0.4, and
1. The chosen velocity on the second graph is the center of gravity.

and all other membership functions for X and Y are 0. Rules 3L, 4L, and V are
the only ones whose antecedents have nonzero membership functions. They
give the following fuzzy contributions to (9.12) (p. 375):

rule 3L: min(0.4, 0.2, ,uM,(Z)) = min(0.2, ,uM,(Z))a
rule 4L: min(0.4, 0.7, ”ML (2)) = min(0.4, #ML (2)),
rule V: min(0.6, 0.2, ”MO(Z)) = min(0.2, ,uMO(Z)).

Combining these three, we obtain (9.12) for this situation:

max(min(0.2, pM,(Z)), min(0.4,/1ML(Z)), min(0.2, (1M0(Z))). (9.14)

Figure 9.3 shows the membership functions for the movement sets and the
resulting set (9.14). I have yet to explain how a velocity is finally chosen.
That’s next. I

As you can see from Example 9.5, we’re not done yet because our control
system must choose a value for the output variable Z. Given a fuzzy set like
that on the right side of Figure 9.3, how should we choose Z? Making this
choice is called defuzzifying.

In the ordinary set situation, ,uR only takes on the values 0 and 1 and we
choose a value 2 for Z so that ,uR(z) : 1. We may hope that there is only
one such .2 so that our action is determined unambiguously. Perhaps the same
idea can be used in a fuzzy system:

(a) Choose the element z for which [13(2) is largest.

Often, the value of z is not unique, so how do we choose? Furthermore, since
,uR(z) is usually nonzero for many values of 2, why should we choose one of
the largest? Here’s two other possibilities.
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(b) If R consists of real numbers, choose an average value; for example,

z _ ftpR(t)dt—
fflRUNt ’

(c) Use pm to construct a probability space in which Pr(z) is proportional
to ,uR(z). Then choose a random 2 using this distribution.

the center of gravity.

When we are dealing with an ordinary rule system that specifies a unique
action, all three methods give that action.

How can we choose among the possibilities for fuzzy systems? I’m not
aware of a good theoretical defense for any of these three options. Indeed,
the entire concept of defuzzifying is foreign to the basic concept of a fuzzy
set—how do you choose a representative “tall” individual? Nevertheless, if
fuzzy methods are to be used in control systems, we must defuzzify in order
to act. What method is likely to work well in practice?

We attacked option (a) almost as soon as we proposed it. Since the action
of a control system usually involves setting a numerical variable in some device,
option (b) could be used. In fact, it’s the common choice. Using it in the
stick-balancing example gives the velocity in Figure 9.3.

Option (c) seems a bad idea since we’ve been emphasizing that fuzziness is
not probability. On the other hand, defuzzification is, by definition, nonfuzzy.
The randomness of a probabilistic approach may increase the stability of a
controller. The use of randomness to improve stability is a common technique
that arises again in Chapter 11. Although it’s probably been tried, I’m not
aware of any attempts to use it for designing fuzzy controllers.

Note that both the input and output of a fuzzy controller are “crisp”;
that is, they are actual numbers rather than a distribution. The input causes
fuzziness through its interaction with the fuzzy rules and the fuzzy result is
defuzzified to produce a crisp output.

More General Rule Systems

Thanks to the previous exploration, we now have some information about
applying rules. In the previous study we

(a) started with some values of the variables in rule antecedents,
(b) combined rules to produce a fuzzy set for the variable in the conse-

quents, and

(c) extracted a member of this set for use in setting a control.

In order to extend this procedure to chains of reasoning we eliminate (c) for
intermediate consequents and extend (a) and (b) to allow fuzzy information
about variables.
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Let’s do it. Suppose we have

the fact that X E F and the rule (a(X) —* fl(Z)). (9.15)

Based on earlier discussion, we replace the rule with a /\ H. In other words,

”OI/W303: z) : min(pa(a:),pp(z)).

How can we combine the fact X E F with this rule? Since we must use the
fact AND the rule, we obtain

”We, z) = min(up(x),ua<x),up<z)). (9.16)
Note that a: can have any value whatsoever; that is, a: = 130 OR . . . OR a: = 1:”.
Since OR corresponds to set union, we take a maximum over all :13:

#(z) = mgX(min(/JF(0:),ua($),#a(2)))- (9.17)
Alternatively, we can view (9.17) as projecting (9.16) onto the z coordinate us-
ing (9.6) (p. 368). In the earlier situation, the value of a: was given explicitly—it
was input.

The previous paragraph holds the key for chaining in a fuzzy rule system:
We take fuzzy information of the form (9.15) for all rules that talk about 2,
apply (9.17) to obtain a ,u(z) for each of these rules, and compute the fuzzy
union of these p(z) results to obtain fuzzy information about 2. Suppose we’re
given several rules (”(2) —~ fli(Z) and the fact I? E F. Then (9.17) becomes

,u(z) : projz((F/\a1 Afll)V---V(F/\am/\flm))
(9.18)

= mfax(F /\ ((a1 Afil) V - - ~ V (am Aflm))).

This is actually a generalization of (9.12) (p. 375) with a,- = a”- /\ 0:2,,- /\ - - -,
,up(:E') = 1 when :1: equals the value of the input variables and ,up(5:') = 0
otherwise. To see this, you simply need to notice

0 [JFA(_._)(£) : 0 when :i? differs from the input because ,up(:i:') = 0 and

o pFA(.._)(a':') : p(...)(:i:') when :3 equals the input values because [11:10?) 2 1.

We’re now able to chain rules. I won’t pursue the subject any further;
however, I should point out that I’ve quietly slid some issues by you. One of
these is discussed in Exercise 9.2.19.
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Constructing Fuzzy Sets and Rules

So far, we’ve avoided two central problems any creator of a fuzzy rule system
must face:

0 How do we create rules?

0 How do we create fuzzy set membership functions?

Creating rules: An obvious method is to understand the situation well enough
to be able to construct the rules. What if understanding is in short supply?
Researchers are working on methods for developing rules from observational
data. For example, how would you back up a tractor trailer to park it at a
loading dock without jackknifing? Ford researchers constructed a “neural net”
to do this. By studying the neural net, they developed a system using just
three fuzzy rules. Here’s a rough description of it in ordinary English.

If near jackknifing, then reduce steering angle.

If far from dock, then back up toward dock.

If near dock, then back up directly toward dock.

Neural nets have also been used to find clustering in data from which rules are
extracted. (For information on neural nets, see the next couple of chapters.)

Creating membership functions: We faced a similar problem with probabilis-
tic expert systems in the previous chapter. Theoretically, we could estimate
the probabilities by measuring frequencies of events. Practically, this is of-
ten infeasible. As a result, the numbers in probabilistic expert systems are
often crude estimates or educated guesses. Extensive testing of the particu-
lar expert system is done to adjust the numbers and to decide how much the
inaccuracies of the numbers affect the performance of the system.

The situation with fuzzy systems is worse. Since there’s no clear way
to estimate a fuzzy set like “slight tilt to the lef ,” designers guess. Usually
they choose a membership function to have one of the following three simple
shapes:

fl /_ \ (9.19)
a b7 a b a b

where the top of each graph is at ,u = 1. The leftmost graph is symmetric—an
isosceles trapezoid. If e = 0, it becomes an isosceles triangle. Sometimes the
graphs (9.19) are replaced by others without corners. Although shape is rel-
atively unimportant, overlap of fuzzy sets is very important—it allows the
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results of several rules to be combined. If only one rule contributes to the
output, the system behaves like an ordinary rule system. Look back at the
stick-balancing controller in Example 9.5. The overlap of the tilt sets (Fig-
ure 9.2) and the overlap of the stick motion sets resulted in three rules’ being
applicable in the example given there.

How are the parameters a, b, and c chosen? We start out with guesses and
then adjust the parameters to improve expert system performance—a “learn-
ing” process called “tuning.” Fortunately, this can often be automated. How
practical is tuning? For general rule systems, it’s at least NP-hard; that is,
prohibitively expensive—a problem we’ll encounter again for neural networks.
In practice, tuning has proved practical for very shallow rule systems of the
sort used in controllers.

Exercises

9.2.H. Suppose we have rules for a controller in which no chaining is required. Ex-
plain how the rules are used to choose an action given the input data.

9.2.1. Describe how forward chaining can be done in fuzzy rule systems by using
projections.

9.2.J. What is meant by a shallow rule system? Why is it important that rule
systems for simple controllers be shallow?

9.2.14. This exercise refers to Example 9.5 and Figure 9.2.

(a) Describe the position of the stick when 1LT, (X) = 0.2 and I‘TR (X) = 0.8

(b) Describe the position of the stick when “T,- (X) = 0.2 and ”TR (X) = 0.2

(c) What rules apply when ”T, (X) = 0.2, ”Tn (X) = 0.8, #V,(Y) = 0.6,
and uvo(Y) = 0.3? Construct a sketch like Figure 9.3.

9.2.15. Modify the balancing-stick example to allow the stick to be caught if it falls
beyond the point at which it can be balanced.
Hint. You may want to introduce additional fuzzy sets and they may not
have triangular graphs.
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9.2.17.

9.2.18.

9.2.19.
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The purpose of this exercise is to construct a fuzzy traffic light con-
troller for a freeway entrance ramp. At the entrance ramp there is a

signal and a sign-The controller determines the length of
time between greens. A sensor on the freeway provides information on
the rate at which traffic is moving. The controller is used to reduce flow
onto the freeway when additional cars would cause problems on the free-
way.

(a) Using short, medium, and long to describe the duration of the red sig-
nal and jammed, crowded, and moving well to describe the traffic flow,
write down fuzzy rules for the controller.

(b) Draw graphs like Figure 9.2 for the six fuzzy sets introduced in (a).
(A triangular shape may be inappropriate for some graphs.)

Design a fuzzy controller for steering a car. (Speed is not an issue.) You
have sensors that measure (a) the amount the car’s front wheels are turned,
(b) the deviation of the car’s position from the center of the lane, and (c) the
angular difference between the car’s heading and the direction of the road.
The following information may or may not be relevant. Road direction is
measured a slight distance ahead of the car since that is more important
than the road direction at the car’s present position. This measurement is
subject to a fair amount of inaccuracy.

Design a fuzzy controller for a car’s speed. The following information is avail—
able:

0 the current speed limit;

0 the current speed of the car;

0 the current acceleration of the car;

0 the distance to the vehicle in front of the car, or a very large number if
no vehicle is within a reasonable distance;

0 if a vehicle is in front of the car, its speed relative to the car’s.

All sets in this exercise are fuzzy. In Exercise 9.2.8 (p.372) we defined a
normal fuzzy set to be one in which u3(:c) = 1 for at least one as.

(a) Suppose ll 7’: F1 g X1, F2 g X2, and 0 g X2 x Z. Prove that

projz((F1 x F2 x Z) A (x1 x 0)) = projz((F2 x Z) A 0)

when F1 is normal but that it is sometimes false when F1 7’: 9 is not
normal.

(b) Suppose we have two rules, 011(X1) —- [91 (Z) and 02(X2) —~ fi2(Z), and
two facts, X1 6 F1 and X2 6 F2. Using (a), discuss whether

projz((F1 /\ (11 A H1) V (F2 A (12 Aflg))

= projz((F1 X F2) /\ ((011 A .31) V (0’2 A .32»)
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(C) The two sides of the previous equation suggest different ways of incor-
porating facts F.- about rule antecedents into the calculations. State in
words what the two ideas are.
Hint. One way of doing this incorporates with each rule just those facts
that are relevant to the rule.

*(d) The previous results in this exercise suggest three ways of handling
fuzzy facts about rule antecedents. You should have found two in
the previous part. The third method involves “normalizing” the facts.
This means, given a fact F, replace it with the normal set F* where
uF-(z) = uF(:c)/(maxtup(t)). Normalization is the method usually
used, but arguments can be given for the other methods. Come to class
prepared to defend normalization. Try to bring a specific example to
illustrate your argument.
Hint. What happens if you combine two rules, one whose antecedent in-
volves input data and another whose antecedent involves the consequent
of another rule?

Further Remarks

The first industrial use of a fuzzy controller was by a Danish company in 1980.
It used about fifty rules to regulate the controls of a cement kiln. Fuzzy rea-
soning has also been applied to other areas, including character recognition,
speech recognition, medical diagnosis, financial planning, and information re—
trieval.

In spite of these successes, fuzzy logic hasn’t really been tried! All the
systems mentioned in the previous paragraph need is a way of combining
competing rules based on the degrees to which the preconditions of the rules
hold. Other methods having adjustable parameters could work as well as fuzzy
logic. But isn’t fuzzy logic the “correct” or “natural” approach? Doesn’t it
reflect reality? If this were so, then there should be little or no need to “tune”
parameters. In practice, fuzzy systems usually undergo extensive tuning.

Given the ad hoc nature of fuzzy logic, does it have anything to offer
“true” AI? That depends on what you think true AI is. Fuzzy methods will
probably play vital roles in motor control and low-level processing of sensory
input for robots. On the other hand, they probably won’t play a significant
role in complex reasoning: Even if the rules are adequate, tuning a complex
system probably isn’t feasible. See Chapter 11 for discussion of this problem
in connection with neural nets.

I’ve emphasized fuzzy methods for controller design. How do these meth-
ods differ from the traditional approach?
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0 Traditional methods start with a mathematical model of the system—a
technical and often difficult step that usually requires considerable under-
standing of the system. Since fuzzy methods rely on descriptions in ordi-
nary language, much less technical skill and much less analysis is needed
to design a fuzzy controller.

0 Traditional analysis produces a nonfuzzy rule system, which often con-
tains many more rules than a comparable fuzzy controller. Traditional
methods need intermediate rules for intermediate situations. Fuzzy meth-
ods, in effect, construct intermediate rules by combining several rules as
illustrated in Figure 9.3 (p. 378).

0 Standard methods of control have a better theoretical foundation. As
a result, it may be possible to say something about system stability but
often only near equilibrium. No such theory is available for fuzzy systems.

0 The net result of all of this is that the fuzzy controller is often available
sooner than the traditional one and frequently functions better.

9.3 Dempster-Shafer Belief Theory

It is a capital mistake to theorize before you have all the
evidence. It biases the judgement.

—Arthur Conan Doyle [Holmes] (1888)

Ignorance gives one a large range of probabilities.
—George Eliot (1876)

Dempster-Shafer belief theory is also referred to as the Dempster-Shafer the-
ory of evidence, which may be preferable since “belief” has other meanings in
AI. Our discussion here is restricted to conceptual issues.

Example 9.6 Sherlock Holmes’s New Method

The following is taken from a manuscript discovered in October of 1993 and
destroyed shortly thereafter in a major Los Angeles fire.

His near failure in the “Affair of the Tickled Trout” forced Holmes to admit
that his deductions could contain uncertainties. Acting on the suggestion of
his brother Mycroft, Holmes studied and refined a method proposed by the
Reverend Bayes in the Philosophical Proceedings of 1763. Since I do not
understand the rarified mathematics he employed, I have omitted mention
of the method in my accounts of Holmes’s cases. Holmes plans to publish a
manuscript on his Probabilistic Method of Evidence so as to set the record
straight.
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No such manuscript has been found. What might Holmes’s method have been?
Suppose that Holmes has reduced the suspects in a burglary to Bl, B2,

33, B4, and B5. Then he discovers some badly decomposed cigar ash at the
scene and is certain that it was dropped by the burglar. Since the ash’s state
makes identification uncertain, he can only say that, with probability 31,; it
implicates one of 31 and 32, and with probability % it implicates one of B2,
B4, and B5. (32 smokes two types of cigars.) As a result, he can rule out Ba.
What other use can he make of this evidence?

Let the random variable E denote the evidence, Let E = e1 denote the
case that implicates 31 and 32 and let E = 62 denote the other case. We
don’t actually know the value of E; we know only that the evidence exists.
Let 8 denote the existence of the evidence and let B,- denote the event that
B, was the thief. We want Pr(Bg IE). Applying basic probability and then
Bayes’ Theorem (Theorem 7.3 (p. 280)), we have

Pr(B; ls) = ZPr(B,- A E | 5) = ZPr(B,- |EA£)Pr(E | s)
E E

=
2};

Pr(B, | E) Pr(E | 5) (9.20)

E

where Pr(B; I E A 8) = Pr(B; I E) since the value E conveys more informa-
tion about B; than the mere existence 8 does. Holmes gave the values of %
and g for Pr(E = e, IS). We have

5
Pr(E) = Z Pr(E | 3,) Pr(B,-).

5:1

The values of Pr(E = e, | B,-) are 0 when B,- could not have led to E5; that
is, Pr(E = e1 '31:) = 0 for z' = 3,4,5 and Pr(E 2 e2 | B,-) = 0 for z' = 1,3. At
the other extreme, Pr(E = ej |B,-) = 1 when (i,j) is (1,1), (2,4), or (2,5).
Holmes may be unable to put values on Pr(E = e,- | B2).

The values of Pr(Bg) are more troublesome. Bayes’ method requires
Holmes to put a value on Pr(Bg), but he may have believed that this vio-
lated his precept of working solely with the evidence. Instead, Holmes might
have collected further evidence and combined all the information to see what
emerged. How?

Suppose some independent evidence f—a footprint partially destroyed
by rain—is found. Associate the random variable F with it. The formal ad-
justment in (9.20) is simple: Allow the sum to run over values of F as well as
E, replace E with E A F, and replace 8 with 8 A .7. Since Holmes believed
the cigar and footprint evidences are independent, we expect to have

Pr(E/\F|8AF)=Pr(E|£)Pr(F|.7-'). (9.21)
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Suppose that F = fl implicates one of B3 and B5. Then E : el and F = fl
taken together are impossible since they eliminate all suspects. Hence, (9.21) is
incorrect in this case since the left side is zero and the right side is not. What,
then does it mean to say that the evidence is independent? We cannot know
how Holmes dealt with such situations; however, it’s possible he discovered
the Dempster-Shafer approach. I

Before dealing with the problem of combining “independent” evidence,
we need to define some basic concepts.

Definition 9.3 Belief and Plausibility

Let X be a finite set and let m be a function from the subsets of X to
the nonnegative reals such that

m((b) = 0 and Z m(T) = 1,
T: Tgx

where the notation T: T g X means that the sum is over all T such
that T g X. We call m a basic probability assignment. The belief and
plausibility of S are defined by

Bel(S) = Z m(T) and P1(S)= Z m(T) = 1 — Bel(S’),
T: Tgs T:

Tns¢b

where the last equality is left as an exercise. The set X is called the frame
of discernment.

Belief is also called certainty. The function m is sometimes written as
a set of ordered pairs (19,3) where S Q X is such that m(S) = p 96 0.
Capital Greek letters such as (9 are usually used instead of X to denote
frames of discernment.

Let’s look at some extreme cases to gain a bit of insight. Suppose we are
looking for one a: E X—the answer—and m reflects our knowledge about X.

o If Bel(S) = 1, then we are certain that the answer is in S.

o If Pl(S) = 0, then we are certain that the answer is not in S because
1 — Pl(S) = Bel(S’) tells us that we’re certain the answer is in S".

0 Finally, if Bel(S) = 0 and Pl(S) : 1, we’re totally ignorant about whether
the answer is in S: Bel(S') = 0 says there is no evidence pointing to S' and
Pl(S') = 1 says there is no evidence pointing to S".
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Example 9.7 Belief in Cigar Ashes

Here’s how to think about the definition in terms of the previous example.
Let X = {31, 32, B3, B4, B5} and

%, ifs={Bl,B2},

"2(5): .3, ifS={Bz,B4,Bs},
0, otherwise.

Thus m is constructed directly from the “testimony” of evidence: There are
two distinct cases suggested by the evidence, namely (i) that it comes from a
cigar of the type smoked by B1 and Bg and (ii) that it comes from a cigar of
the type smoked by Bg, B4, and Bs. How certain can we be that the burglar
is in some particular set S"? If we have evidence that the thief belongs to a
subset of S, that contributes to our certainty. Bel(S) is simply the sum of that
evidence. On the other hand, plausibility is a measure of whether something
could be true. The burglar could belong to S if there is evidence that he
belongs to a set that shares a burglar with 5'.

Let’s do a couple of calculations. In the first place, there’s no evidence
that points definitely to any of the burglars and so Bel({B,-}) = 0 for all 2'.
More generally, Bel(S) = 0 unless 5' contains B2 and also contains either Bl
or both B4 and B5. (Why is this so?) Plausibility is another matter. We have

P1(Bl)= m({31,32}) = .713,
P1(Bg)= m({B1,Bg}) + m({Bg,B4, B5}) = 1,

P1033) = 0,
Pl(B4) = Pl(B5) = m({Bg, B4, B5}) = %°

You might practice computing P1 and Bel for other subsets of X. I

Example 9.8 Other Simple Examples of Evidence

Let’s phrase (9.1) (p. 358) in belief theory terms. We can let the frame of dis-
cernment be X : {f11,f13, b}, where fd indicates that Jim is free on day (1' and
b indicates that Jim will be busy on both days. in this case m({f11, f13}) = 72-,
m({b}) = i, and m(S) = 0 otherwise. In the alternative notation, the evidence
consists of the two pairs

G, {f11,f18}) (i, {b})-
You should show that

ifS = X = {f11,f18,b},

ifS = {f11,f18},
if S = {1)},
otherwise,

9Bel(S) =
9

O

AII—

AID)

H
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and
0, if S = 0,
l 'f =

z, 1f5=if11,f18},
1 otherwise.

‘0

A traditional example of evidence is the unreliable witness. Let X be the
possible suspects in a crime. If the witness is correct, the criminal is in the
set A. If p is the probability that the witness is correct, then the evidence is
(p,A) and (1 — p,X). In this case, you should be able to show that

1, ifBzX,
Bel(B)={p, ifBQAandByéX,

0, otherwise.

What is the value of Pl(B)? I

Combining Independent Evidence

Suppose we have two sets of evidence that we regard as independent—like
Holmes’s cigar ash and footprint. How should we combine them? In the new
terminology, we have two basic probability assignments, m1 and mg on X,
and we want to combine them to produce a new basic probability assignment,
my; on X. Here it is.

Definition 9.4 Dempster’s Rule of Combination

Let m1 and m2 be basic probability assignments for two bodies of evi-
dence E1 and E2, both having X as the frame of discernment. The basic
probability assignment mm = m1 EB m2 is defined by m12(0) = 0 and

m12(S) =fl 2 m1(T)m2(U), if 5 ¢ (0 and K < 1, (9.22)
T,U:

TnU=S

where

K: 2 m1(T)m2(U).
T,U.

TnU=0

If K = 1, we say that m1 and m2 are incompatible and m1 EB m2 is
undefined. If mm is the basic probability assignment for the combination
of E1 and E2, we say that E1 and E2 are independent (bodies of) evidence.
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K is chosen so that ZS m12(S) = 1. We can think of K as the strength of
the contradiction between the evidence provided by m1 and m2. Since m12
should reflect a consistent situation, K is distributed to the noncontradictory
evidence in a proportional manner: “When you have eliminated the impossi-
ble, whatever remains, however improbable, must be the truth” (Holmes, The
Sign of Four).

What does independence of evidence mean? This is like asking what any
mathematical concept means—it’s the wrong question. We should ask “In
what real-life situations is it reasonable to assume independence of evidence?”

For independence of random variables, causality and Bayesian nets pro-
vide an answer: When a random variable X is conditioned on its immediate
causes C(X), it is independent of many other random variables. See Defini-
tion 8.3 (p. 306) for a formal statement and Theorem 8.5 (p. 336) for a more
general result. Can we find something analogous for independence of evidence?

Imagine a diagram indicating causal dependence of evidence. Trace the
dependency paths of the evidence E1 and E2 backward. If they meet before
reaching elements of the frame of discernment X, they are dependent. If they
do not meet before X, they are independent. To illustrate, suppose I ask Chris
and Liz if it’s still raining. Each of them may actually know the answer or
may make a guess. If I have prior estimates of their reliabilities in such a
situation and I question them separately, then the evidence about the rain
is independent. On the other hand, if Liz listens when I ask Chris, and this
affects her answer, then the evidence is no longer independent.

If you find my description of independence of evidence a bit vague, that’s
fine. Researchers are not in agreement about when Dempster’s Rule of Com-
bination can and cannot be used. More detailed discussions can be found in
the literature.

Example 9.9 A Warning
If we have no prior reason to prefer one alternative to another, it’s natural to
divide up the basic probability assignment among the alternatives. In other
words, if m({a', e, f}) = p, it’s natural to decide that this contributes p/3 each
to the posterior probabilities of d, e, and f. This is wrong.

To see why, suppose that

m1({a}) = m1({b,c})=% and m2({a,b}) = m2({c}) = a
Let mm 2 m1 EB m2. You should be able to show that

m12({a}) = m12({b}) = m12({c}) = %- (923)
If we divide up m,- as suggested to get a probability pi, we obtain the following
table

a: = a b c

101(3) % i i (9-24)
P203) % i i
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Any reasonable combination of these probabilities would ascribe equal prob-
ability to each of a and c and a lesser probability to b. This disagrees with
(9.23).

What happened? A belief theorist might react as follows. The probability
is assigned to different possibilities for evidence; not to the consequences of
the evidence. What do I mean? To answer this, let’s first look at Sherlock’s
cigar ash problem. After examining the crime scene, he decided the ash must
have been dropped by the burglar. Examining the ash, he decided that it was
from one of two varieties of cigars and twice as likely to be from the second
type. You’re free to bring to bear whatever probability interpretations you
want on all of this. For example, the 1:2 for types of cigars might even be
given a frequentist interpretation. It’s only after obtaining the 1:2 that we
look at what the evidence implies about the suspects. In more general terms:

The probabilities in belief theory apply directly to the evidence (sub-
sets of the frame of discernment X), not to the elements of X as in
traditional probability theory.

The table in (9.24) was derived by (improperly) assuming that m,(S) was
obtained by summing the probability of a: over all a: E S. In essence, we
assumed that the prior probabilities of the elements of X were all equal and
then conditioned on the evidence. As already noted, independent evidence is
not the same as independent probabilities, so we should not expect that we
could then use the rows of (9.24) as 'if they were independent. I

Why redistribute K proportionally as done in (9.22)? There are various
justifications. Here are some.

0 Think about what combining evidence should mean. In particular, the re-
sult should be the same regardless of the order in which m1,m2, . .. are
combined. This is equivalent to saying that 69 commutative and associa-
tive, a result stated in the next theorem.

0 The notion of evidence can be interpreted using a combination of propo-
sitional logic and Bayes’ Theorem. The next example shows that, if we
do this, Dempster’s Rule emerges as the way to combine independent
evidence.

0 In a some sense, this method of redistribution involves less of an assump-
tion than other methods.

Theorem 9.3 Combining Evidence Is Commutative and Associative
Let m1, m2, and m3 be basic probability assignments for the frame of
discernment X. Dempster’s Rule of combination is

(a) commutative; that is, m1 EB 7729, = mg EB m1, and
(b) associative; that is, (m1 GB m2) EB m3 = m1 EB (m2 EB m3).
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The proof is left as an exercise.

*Example 9.10 A Possible-Worlds Viewpoint
Let L be a propositional logic language. Choose a finite set 8 of formulas in .6.
Let Pr make 8 into a probability space; that is, Pr 2 0 and 20168 Pr(a) : 1.
For any formula fl 6 E, define the random variables

0) ifa l: (Tia):
1, otherwise.s(a) = {1’ if“ I: fi’ Pp(a):1— B.fi(a) ={

0, otherwise;

There are various ways to think about a I: fl:

0 It is the same as I: (a —-> fl); that is, a —> fl is valid (a tautology).
o In any possible world where a is true, fl is also true.
0 If we believe that 0: is true and we are logical, we must believe that fl is

true, too.

Let Bel(fl) : Pr(Bp : 1) and Pl(fl) : PI‘(P[3 : 1). Thus, Bel(fl) is the
probability that we must logically believe fl, given that the formula for a E 8
which we choose to believe is selected according to our probability distribution.
Saying that a does not entail (-fl) is the same as saying that a and fl can
both be true simultaneously. Thus Pl(fl) is the probability that fl could be
true.

Suppose that someone else chooses a set of formulas 6" and a probability
distribution Pr'. Now we can choose a formula a and she can independently
choose a formula a’. If they are inconsistent, it would be illogical to believe
both of them If they are consistent, we can ask whether they tell us that we
must believe fl; that is, we can ask if (a A a’) I: fl.

What we did in the last paragraph was look at the probability distribution
on 8 x 8’ given by Pr*((a, a’)) : Pr(a) Pr'(a’). Insisting on consistency of a
and a’ means conditioning on a A a’ being satisfiable. Since only the truth
values are relevant, we can often replace 8 x 8’ by a smaller set 6'” of formulas
logically equivalent to the consistent aAa’ . In other words, there is a function
f from consistent aAa’ to logically equivalent formulas in 8” . The probability
conditioned on consistency is given by

Pr"(a”) = 1:11? Z Pr(a) paw),
where the sum ranges over all (a, a’) such that f(a A a’) : a” and K is the
sum of Pr(0z) Pr’(a’) over all inconsistent a A a’. We’ll soon see that this is a
generalization of Dempster’s Rule of Combination.

Why go through all this formalism? It gives another View of the operation
63: Two formulas are chosen independently at random and we condition on
their being consistent. We can then ask if this seems to be a reasonable way
to model a particular situation.
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To recover standard belief theory as a special case, let 8 consist of all
formulas of the form 7(5) 2 6(5) /\ (-I6(5’)) where

o 5 is a nonempty subset of X, the set of propositional letters,
0 5' is X — 5, the complement of 5,
o 6(T) is the disjunction of the propositional letters in T.

We claim that assigning a value to Pr(7(5)) is equivalent to assigning that
value to m(5) in standard belief theory and that Bel(6(5)) here corresponds
to Bel(5) there. Here’s a sketch of how to prove the claim. You should be able
to show that

7(5) I: 6(T) if and only if 5 g T and so Bel(7(T)) : Z Pr(6(5)).
S(_:T

To verify Dempster’s Rule, you need to observe that, if 5 0 T = 0), then
7(5) and 7(T) are inconsistent, and, otherwise, 7(5) A 7(T) = 7(5 0 T). The
details are left for you to fill in. I

Further Remarks

There are two major problems with evidence theory.
Dempster’s Rule of Combination is an essential feature of the theory since

it’s our prescription for accumulating evidence. Unfortunately, it’s difficult to
decide when it can be used. Researchers have proposed various viewpoints,
some of which I’ve mentioned.

Since [1 is defined on the nonempty subsets of X, its domain is extremely
large even for relatively small X. This can cause problems in both data col-
lection and data manipulation. Data collection is often facilitated by the a
pm'orz' information that [1(5) = 0 for many 5 (_I X. Researchers have looked
at approximate methods of computation.

Exercises

9.3.A. How does belief theory sidestep the problem of assigning prior probabilities?

9.3.B. Define frame of discernment and basic probability assignment.

9.3.C. Define Bel, P1, and ml 63 m2.

9.3.D. What does it mean mathematically to say that two sets of evidence are
independent?

9.3.E. Prove that Bel(0) = Pl(0) = 0 and Bel(X) = Pl(X) = 1, where X is the
frame of discernment.
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932.

933.

*934.

935.
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Prove that Z m(T) = 1 — Bel(A').
T:

TnA¢0

Prove Theorem 9.3.

Let m1, m2, mm and K be as in Definition 9.4 and suppose that K = 0.
Let Belg; (resp. P13) be the belief (resp. plausibility) function associated with
mm.

(a) Prove that P112(S) g P11(S)P12(S) _<_ min(P11(S), P12(S)).

(b) Prove that Be112(S) Z max(Be11(.S'), Be12(S)).
(c) Do you think these results are plausible given the intended interpretation

of Bel and P1 that I discussed after Definition 9.3? Why?

Fill in the details in the last paragraph of Example 9.10.

It is interesting to compare results obtainable from Bayes’ Theorem with
the Dempster-Shafer theory; however, it’s not clear what conclusions to draw
from this. The following is adapted from an example discussed by Shafer and
others. Suppose it’s a cold, wet day and I’m wondering if the sidewalks are
icy. My friend George stops by and I ask him if the sidewalks are icy. He says
they are. A few minutes later, Kramer comes in and, when asked, tells me
the sidewalks aren’t icy. Unfortunately either friend might answer a question
without thinking carefully; however, if they do think carefully, their answers
are accurate. The probability that George is careful is PG = 0.8 while for
Kramer the value is only PC = 0.3. Let RG and RC be the probability that
each is accurate when not being careful. Let S and N denote the events
“slippery” and “not slippery.” We begin with probability theory.

(a) Assuming independence as needed, show that

Pr(S I evidence) _ Pr(S) x 0.8 +0.2RG >< 0.7(1 — RC)
Pr(N I evidence)

—
Pr(N) 0.2(1 — Ra) 0.3 + 0.7RC'

(b) Assume that Pr(S) = Pr(N) = %. Why might it be reasonable to assume
that RG = RC = %? In that case, what is Pr(S)?

(c) Assume that Pr(S) = Pr(N) = %. Why might it not be reasonable
to assume that RC = RC? Show that the product of the last two
factors in (a) can take on any value from 0 to 00 depending on the
values of the probabilities RC and Hg. What does this say about
Pr(S I evidence)?

((1) Assume that Pr(S) = Pr(N) = %. Suppose that RG = R0. What are
the possible values for Pr(SIevidence)?

We now switch to belief theory.

(e) Explain why the following translation is correct and compute mGC-

mG({S}) = 0.8 mG({S, N}) = 0.2
mc({N}) = 0.3 mC({S, N}) = 0.7
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(f) Compute BelGC({S}) and PlGC({S}).
*(g) How might the previous result be interpreted as saying something about

the range of probability for the sidewalks being slippery? What hap-
pened to the prior probabilities that we needed in (a)?

9.4 Looking Backward

When we enter a new field, very often new concepts are needed,
and these new concepts usually come up in a rather unclear and

undeveloped form. Later they are modified, sometimes they are
almost completely abandoned and are replaced by better concepts

which then, finally, are clear and well-defined.
—Werner Heisenberg (1972)

Sophisticated reasoning systems are a perpetual source of visions and night-
mares for AI researchers. Hopes of designing such systems have continually
foundered on the rocks of reality only to be refloated by someone with another
symbolic reasoning approach. A growing number of researchers have decided
to look elsewhere, seeking solutions in “subsymbolic” methods (such as neural
nets) or in ad hoc (“scruffy”) methods (such as scripts). The following argu-
ment is often seen: Symbolic reasoning requires a huge number of calculations
which our brains aren’t powerful enough to carry out in a reasonable time.
Furthermore, computers will also never be powerful enough to do so. In other
words, symbolic reasoning is too hard, it’s never been done and it never will
be. Before turning to subsymbolic methods, let’s look back over where we’ve
been.

Long Chains of Deductions

Developers of first-order predicate logic (FOL) were partially motivated by a
desire to formalize the reasoning used in mathematics. Thus it’s no surprise
that FOL handles long chains of reasoning flawlessly. (This is called “deep”
reasoning as opposed to “shallow,” which uses only short chains of implica-
tions.) In fact FOL is the only system we’ve studied that can safely do this.
Nonmonotonic methods can sometimes give unexpected (and unwanted) re-
sults when defeasible assumptions accumulate in long chains of reasoning.
Probabilistic methods are likely to require staggering amounts of data and
computation for long chains of reasoning unless we make crude approxima-
tions of independence as is done with certainty factors. Since we can’t predict
what the cumulative effect of such approximations will be, we can’t be sure
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how valid the results are. The more complex the chain of reasoning, the more
questionable the conclusions. Fuzzy methods are even more inept in their
handling of deep reasoning and belief theory is based on the assumption of
independence.

Things are not as bleak as they seem. Most human reasoning is shallow;
i.e., based on short chains. This can be seen by introspection, by reading
“deductive” detective fiction, or by realizing that our brains simply don’t
have the processing speed needed to perform lengthy serial calculations on
a regular basis. We substitute knowledge for reasoning. For example, you
compute £(sin(m2)) using knowledge of the chain rule and derivatives of
the sine and of powers—you don’t start with the definition of the derivative.
When driving a car, you make extensive use of unconscious knowledge that was
gained through experience—you don’t repeat the~steps you went through in
learning. In other words, human expert behavior depends heavily on knowing
and seldom on deep reasoning.

Learning plays a fundamental role because it provides the knowledge on
which rapid, shallow reasoning is based. AI researchers are beginning to make
progress in the practical aspects of learning; however, there is little in the way
of theoretical foundations. There are theories of learning in AI, but they are
primarily negative (“This is too hard to learn”) rather than positive (“Here’s
a method for learning”). I expect that the practical aspects of learning will
soon reach the point where significant learning is routinely incorporated in
commercial expert systems.

Robustness

Large bodies of information are almost certain to contain errors. Thus, it’s
important to know how sensitive a reasoning method is to errors in the knowl-
edge base. There are various types of errors.

0 Contradictions: These are the most obvious. As we’ve seen, a single con-
tradiction in the knowledge base of an FOL reasoning system destroys it.
This arises because [C I: a means that a is true for every interpretation
which makes all formulas in the knowledge base IC true. When a contra-
diction is present, there are no such interpretations of IC and so the set of
“every interpretation” is empty. Clearly a is true for every interpretation
in this empty set! Since default logic includes FOL, it suffers from the same
problem. This fragility ensures that no effective reasoning method will in-
clude the unbridled power of FOL. Most other qualitative methods we’ve
discussed, including Prolog and semantic nets, are essentially rule-based.
Such systems only apply rules whose antecedents or consequents contain
information relevant to what the system is reasoning about. This limits
the effects of contradictions. For example, knowing that all penguins fly
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and that no penguins fly will create problems only when we’re reasoning
about penguins.

0 Numerical errors: It’s usually impossible to obtain accurate estimates for
quantitative systems. In fact, numerical values are frequently “educated”
guesses and such guesses may contain relatively large errors. It’s gener-
ally believed that systems are relatively insensitive to all but the grossest
errors. Since this is based on empirical observation, it may or may not
apply to the particular expert system you happen to be interested in.
Although theoretical results are urgently needed, it’s unlikely that any
useful general results will be obtained in the foreseeable future. This pre-
diction is based on the difficulties numerical analysts and control theorists
have encountered in problems that seem more tractable.

0 Structural sensitivity: Here are two examples of structural sensitivity:

(a) Bayesian nets can misbehave if intermediate causes are inadvertently
omitted.

(b) Some qualitative methods may give different results when the knowl-
edge base is modified so that reasoning chains lengthen.

Although these are both forms of structural sensitivity, they’re really quite dif-
ferent. Omitting intermediate causes as in (a) is a genuine error in the knowl-
edge base, something that would cause problems for any reasoning method.
The situation in (b) is insidious: We make a change that seemingly should not
alter the conclusions. Nevertheless it does owing to counterintuitive quirks in
the reasoning method. The discovery of such quirks followed by their correc-
tion and/or defense is one of the facets of AI research. (Analogous research
is found in many areas of science.) Another form of structural sensitivity
arises when we make a somewhat arbitrary choice in the design of a reasoning
method. For example, what would be the effect on fuzzy controllers if defuzzi-
fication were done probabilistically instead of by using the center of gravity?

Computational Feasibility

A tension exists between the pull to design general reasoning systems and the
pull to design computationally feasible systems. You’ve encountered various
compromises—Prolog is limited to a subset of FOL, certainty factors ignore
the dependency problem in Bayesian nets, the link between the real world
and the theoretical one is tenuous for the methods in this chapter. Meth-
ods that work well for small knowledge bases may bog down when applied to
larger problems. Advances in computers have made it possible to move tech-
nology from supercomputers to desktops. However, I don’t believe that future
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breakthroughs lie in that direction. I think they’ll come from massive paral-
lelism. Achieving this requires knowledge-intensive, modular, shallow reason-
ing methods that can carried out on very simple processors. Connectionists
are exploring such ideas on the “subsymbolic” level and are also exploring the
integration of symbolic with subsymbolic methods. I believe future researchers
will also develop powerful parallel purely symbolic methods.

Psychological Validity

The previous hundred pages have dealt with methods for representing and ma-
nipulating numerical uncertainty. Some methods, such as Bayesian networks
are “normative”; that is, if we accept some basic axioms concerning measures
of uncertainty, then Bayesian nets are the one and only correct method of
manipulation. This approach was discussed in Section 9.1 where objections to
the axioms led to the alternative approaches of this chapter. Although these
methods are often intended for use in expert systems, little attention has been
paid to what experts do. Since we often obtain rules from an expert who in-
terprets and manipulates them in a certain way, it behooves us to design
methods that reflect the approaches of experts. If we fail to do so, our sys-
tems may produce numerical predictions that disagree with expert opinion.
Little research has been done in this area. See [23].

Similar issues can be raised regarding the qualitative methods of repre-
senting and manipulating uncertainty that were discussed in Chapter 6.

Choosing a System

Numerical methods provide an entire range from certainly true to certainly
false, in contrast to qualitative methods which abandon the middle ground,
ranging only from certainly true (or false) to probably true (or false). This
ability comes with a high price tag: considerable data collection and extensive
computation are required. To reduce the costs, people invent data and rely
on approximate methods such as certainty factors. Fuzzy methods seem to
overcome such problems by declaring data invention to be a virtue and using
simple numerical manipulations. This works well in very shallow systems, but
you should probably not use it otherwise.

Qualitative methods eliminate the need for expensive numerical data and
offer more sophisticated reasoning strategies. Although default and multival-
ued logics provide some ability to discriminate between levels of belief, they
can’t provide the fine discrimination of Bayesian nets and other numerical
methods. We might hope that fuzzy logics would combine sophisticated rea~
soning with fine discrimination. But, as discussed on page 384, this is unlikely
to happen.
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What method of reasoning should you use?
Obviously, that depends on the knowledge you have and what you want to

do with it. In other words, choose a method whose knowledge representation
fits the task.

If they are adequate, qualitative methods are probably preferable because
they require less data. Unless a higher level system is going to decide between
alternatives, default logic cannot be used. You might use a method based on
defeasible reasoning or semantic nets if you want to be presented with an
answer rather than a choice.

What about quantitative methods? Fuzzy methods are suspect for all but
the shallowest reasoning. Exact probabilistic methods are often impractical
because of extensive dependencies and so approximate methods such as cer-
tainty factors are needed. The approximations of independence assumptions
and crude data estimates may lead to a breakdown when the reasoning be-
comes complicated. People are poor quantitative reasoners and usually break
down much sooner than these methods.

The previous discussion is based on the assumption that you have a single
problem on which you must use a single system. It may be possible to break
the problem down into stages and use different knowledge representations
and reasoning methods for different stages—a hybrid system. Some expert
systems have been constructed this way; for example, CHATKB (p.24). I
believe this sort of modular construction with different methods being used
in different parts is the only way AI will construct large reliable systems and
that it will soon be a standard feature of large reasoning systems.

Notes

The axiomatic approach to conditional probability was developed by R. T.
Cox, G. Polya, and E. T. J aynes. An exposition is given by Smith and Er-
ickson [21]. The axioms, in various forms, have been discussed by a variety of
people. For example, see [8, p. 241] and [3, p. 112]. In a 1988 workshop [3], re-
searchers discussed the pros and cons of various approaches to quantitative
reasoning. Klir [10] discusses various forms of uncertainty.

I dismissed the knotty problem of the semantic content of the fuzzy mem-
bership function rather quickly. Various authors have attacked the problem,
but no consensus has been reached. If you’d like further discussion, see [7], a
special issue with papers devoted to the problem. For a discussion of the so-
ciological and technological as well as theoretical aspects of fuzzy logic, see
McNeill and Freiberger’s book [16]. Some of my discussion on the foundations
and potential of fuzzy logic was stimulated by Elkan’s paper and the reac-
tions to it [19]. If you want to see what AI researchers think and feel about
fuzzy logic, read that symposium. The only work on stability that I’m aware
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of is [12]. Books on fuzzy methods are appearing at a rapid rate. There are
[5], [9], [11], [22], [25], and [28], to mention a few. In addition, the text by
Dougherty and Giardina [6] has several sections on fuzzy sets and logic.

There are far fewer books devoted to belief theory. Some of the important
papers on the subject have been reprinted and annotated in [18, Ch.7]. See
also the papers in [24].

Paris [17] discusses the mathematical foundations of quantitative uncer-
tainty more deeply than I’ve done in this chapter. His text is at a slightly
higher level than mine. In his monograph for graduate students, Lopez
de Mantaras [15] discusses Bayesian nets, belief theory, and fuzzy methods. In
particular, he provides more information about inference in fuzzy systems and
discusses “possibility theory.” Dubois and Prade [4] also discuss possibility
theory and its connections with fuzzy reasoning.

Levesque [13] discusses some of the difficulties with symbolic reasoning
and reviews some of the newer methods. He answers “Is reasoning too hard?”
with a hopeful “Maybe not.”

As mentioned here and elsewhere, the representation of knowledge plays
a crucial role in choosing a reasoning system. The collection [2] of readings in
knowledge representation is somewhat dated but still quite useful. The special
issue [14] of Artificial Intelligence contains newer papers.

Biographical Sketch

Lotfi A. Zadeh (1921—)
Born Lotfi Aliaskerzadeh in Baku, Azerbaijan, he received a bachelor’s degree
in electrical engineering from the American College in Teheran, Iran. In 1944
he moved to the United States where he received masters and doctorates from
MIT and Columbia. In 1959 he joined UC Berkeley, where he is now professor
emeritus of computer science.

In a 1954 paper Zadeh coined the term “systems theory” for his area of
research. He introduced fuzzy sets in his seminal 1965 paper [27] and related
them to systems theory in the 19708. According to legend, the vagueness of
beauty led Zadeh to develop fuzzy set theory: Unable to resolve an argument
with a friend over who had the more beautiful wife, he became interested in
finding a way of expressing such ideas. Since then, he and other researchers
have used fuzzy methods in systems theory.
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What Is It?

[Rleasoning is a specialization of pattern-recognition applied to
language, and logic is a further specialization of reasoning

——Howard Margolis (1987)

The classification of the constituents of a chaos,
nothing less here is essaged.

—Herman Melville (1819-1891)

Introduction

Where there’s life, there’s classification: organisms constantly classify sensory
input patterns. People do it consciously, classifying objects by using nouns,
such as “chair,” but all living things do it—“food,” “enemy,” etc. Expert
systems are classifiers, too. We often call their classifications conclusions. In
fact, pattern classification pervades AI. So far you’ve only studied classifiers
that have their classifications “hardwired” in by means of a knowledge base.
This chapter begins the study of classifiers that learn.

In learning, the organism or program is developing classifications based on
input patterns. The learning may be supervised—patterns and their classifica-
tions are supplied and should be learned. The learning may be unsupervised—
input patterns are supplied and significant features should be found in them.
In either case, after the learning phase, the organism or program should be
able to assign novel patterns to the most appropriate classification category.
This is called recognition. The entire process is called automatic pattern clas-
sification.

There are various types of classifiers. In Al, the simpler classification prob-
lems are often referred to as pattern classification, and the more complex as
machine learning. The simpler classifiers focus purely on the simplest aspects
of the structure (syntax) of the patterns, ignoring more abstract patterns and
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meaning (semantics). In the next few chapters we’ll deal with pattern classi-
fication, especially “neural nets.”

But aren’t systems based on the methods in the previous chapters better
than those based on simple automatic pattern classifiers? After all, aren’t the
former carefully crafted using the knowledge of experts while the latter rely
on some crude general-purpose methods that ignore the higher level symbolic
structure of the knowledge domain? Not necessarily:

0 Converting expert knowledge into an expert system is difficult. There’s
plenty of room for errors and oversights.

0 An expert may be unable to (a) articulate how he/she makes decisions or
(b) estimate important numerical values.

0 Finally, there may be no expert to provide information. This is typical for
subconscious decisions such as interpretation of visual input.

Prerequisites: The definitions of a directed graph and of a decision tree from
Section 2.1 are needed, but I’ll remind you of them in case you’ve forgotten.

Used in: This chapter prepares you for the next three chapters by giving an
overview and by introducing some important concepts and issues.

10.1 Types of Automatic Classifiers

Classification is a tricky business. Yet it is difficult to
think of any area of human enterprise in which this is not

a fundamental activity. Classification is the way we sort
and order, a means to identify and understand. How we

classify reflects our biases and priorities.
—Doris Schattschneider (1991)

Before we begin, we’d better be clear about what a pattern classifier is. The
following definition is based on the ideas in the introduction.

Definition 10.1 Pattern Classification
Pattern classification (or recognition) is the process of mapping a large
space (or set) into a smaller one. An input to the procedure is a pattern
and an output is a classification. A pattern classifier is automatic if it
develops its own algorithm when it is given a training set, which consists of
a collection of inputs, possibly paired with desired outputs. In supervised
learning, desired outputs are present and the goal is to reproduce the
associated output as closely as possible. In unsupervised learning, there
are no desired outputs and the goal is to extract significant features from
the input so that the input can be divided into sets that differ significantly.
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We’ll focus on supervised learning.

Here’s a block diagram for training a generic classifier.

l

raw 7 d t I
design

_ a a ‘ .

input ' preparation ”31114 gIn

After feedback from a testing failure, the designer changes either the data
preparation, the nature of the classifier, or the training algorithm. Once
trained, the classifier simply takes input, prepares the data, and classifies
the pattern. This sequence of steps is implicit in the testing block. It’s also
used in a functioning deployed classifier.

Since pattern classification is simply a function from one set (or space)
to another, Why not just look at all possible functions? Even in simple cases,
the number of functions is huge. Let’s calculate this number in a simple case.
Suppose we’re looking at functions f from n-long binary vectors to k-long
binary vectors. The domain contains d = 2" points and the range contains
r = 2" points. Since there are r choices for f(a3) at each a: in the domain,
there are

n

rxrx---xr=r"'=2k2

possible functions. Even for moderate values such as n = 10 and k = 1, the
number of possible functions greatly exceeds the estimated number of atoms
in the universe!

Obviously we need a better approach than simply trying to look at all
possible functions.

Some approaches to classification were originally developed in statistics.
These often involve fitting some simple function to the data. Decision trees
fit more complicated functions to the data. This is accomplished by compos-
ing rather simple functions—the individual decisions. In another direction,
AI researchers have developed neural nets as another method of fitting com-
plicated functions to data. The complexity of decision trees and neural nets
allows greater flexibility. The price for this flexibility is the need for many
more calculations and less understanding of the process. Nevertheless, the
flexibility appears worth the cost.
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Statistically Based Functions

Typically, statistical classifiers assume that the pattern can be repesented as
a point in space, say in IR". The relative positions of the patterns in space are
taken to be the relevant features for classification. Although there are methods
that do not make such assumptions, we’ll limit this discussion to those that
do.

Unfortunately, we need more background in probability theory to discuss
probabilities in IR". For the present discussion, it suffices to know that there
is a concept called the “probability density function” which is essentially a
generalization of the function Pr introduced in Definition 7.1 (p. 260).

Bayes’ Theorem provides an ideal pattern classifier. Let I denote the
training set together with any other information we have about the material
we must classify. Let X be a random variable whose range is the set of possi-
ble classifications for patterns. Suppose that, given a pattern P, there is not
enough information in the pattern to decide on a definite classification. For ex-
ample, symptoms may be inadequate to determine a disease with certainty, or
information extracted from pixels may be inadequate to determine unambigu-
ously the boundaries of objects in a scene. The error rate will be minimized
if a: is chosen so as to maximize Pr(X = a: | P A I). Bayes’ Theorem enters
because it’s frequently easier to calculate Pr(P I (X = 1:) /\ I).

Estimating the necessary probabilities usually requires drastic simplify-
ing assumptions. One common assumption in statistics is that a probability
density function can be approximated by a “normal density.” This leads to
two classical statistical approaches to pattern classification:

0 Discriminant analysis: Typically, but not necessarily, there are two cat-
egories. Discriminant analysis attempts to select parameters in a simple
function (usually linear or quadratic) of the inputs so that the sign of the
function is highly correlated with the category the input belongs to.

Ideally, when constructing a linear discriminant for two categories,
we would find a vector 23 of “weights” and a parameter 0 such that the
class of any vector 53' is determined by the sign of the linear function
f(.'t':') : 0 + Zwimi. If 52' has length n, f(i:') = 0 describes a hyperplane
in n-dimensional space such that the points in one category lie on one
side and the points in the other category lie on the other side. Real life
is seldom so neat. Usually we must be satisfied with a high degree of cor-
relation. Sometimes even this is impossible. For example, let the class of
a 0/ l-vector be the parity of the number of ones it contains. The case
if = ($1,122) is referred to as the XOR (exclusive or) problem, since the
exclusive or of 1:1 and 1:2 is 0 when 6' contains an even number of ones
and is 1 if 5? contains an odd number of ones.
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0 Regression analysis: The categories are a subset of the real numbers; this
subset is typically either discrete or an interval. Regression analysis at-
tempts to select parameters in a simple function (often linear) of the
inputs so that the value of the output is close to the category the input
belongs to. Thus, it could be viewed as a continuous version of discrimi-
nant analysis.

These approaches are called parametric by statisticians because they assume
that the underlying probability density functions are known, except for some
parameters that must be estimated. There are also nonparametric methods.
These have the advantage of assuming less about the underlying structure
and the disadvantage of requiring much more data. Here are two popular
nonparametric methods.

0 Nearest neighbor: The idea here is to look at the nearest neighbor, or
k nearest neighbors, to a given input and classify it according to how its
neighbors have been classified.

0 Parzen estimators: The idea here is that knowing the classification of
some input 15' 6 HR" to be a: tells us that the probability density function
for X = :3 should be nonzero in a neighborhood of 15'. All these effects are
added up to obtain an estimate for the probability density function for
patterns conditioned on classification.

Finally, there are unsupervised learning techniques, the most important sta-
tistical one being

0 Cluster analysis: The various techniques in this category attempt to group
patterns into geometrically meaningful groups. The most obvious possibil-
ity is that each group should consist of patterns that are near one another
and far from other patterns. Hence the term “cluster” analysis.

There’s one other statistical method that deserves some mention although it
is not a method of pattern classification:

0 Principal-component analysis: Imagine a collection of vectors in IR". There
may tend to be linear relationships among the components of the vec-
tors. For example, if each vector measures meteorological information, the
components might be barometric pressure, humidity, and so on. Meteorol-
ogists would expect lower barometric pressure to often be associated with
higher humidity. Thus, there is an approximate dependence among the
variables. Geometrically, this means that the vectors tend to lie in a lower
dimensional subspace of HR". The goal of principal-component analysis is
to find a new coordinate system in IR” such that, in the new coordinate
system, our collection of vectors is nearly constant in as many coordinates
as possible. We can then ignore those coordinates with very little loss of
information.
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Neural Networks

Network: Anything reticulated or decussated, at equal distances,
with interstices between the intersections.

—Samuel Johnson (1755)

As the name suggests, neural networks have their origin in the idea of de-
signing a system that behaves like the neurons in a brain. Neural networks
are also called connectionist systems. The expectation of many researchers is
that neural networks will eventually be implemented in hardware by a very
large number of simple, highly interconnected processors with rather limited
memories.

Given the biological inspiration for neural nets, it’s natural to expect a
split—those researchers who attempt to use neural nets to understand brains
better (cognitive science) versus those researchers who regard human neurons
as the model for designing a tool (AI). Our approach is entirely from the tool
side.

It’s hoped that, when properly designed, such a system will possess some
properties of human brains. These include (a) the abilities we associate with
“intelligence,” (b) the use of massively parallel computation, and (c) the abil-
ity to compensate considerably for damage to hardware and software.

A connectionist system can be thought of as a (large) interconnected net-
work of simple processing units operating in parallel and exchanging a limited
amount of numerical information. Adjustable “weights” determine how each
processor uses the information it receives. The concept can be described in
purely mathematical terms, which is essential for the design and analysis of
algorithms. There are many different designs for neural nets; most—but not
all—are encompassed by the following definition.

Definition 10.2 Neural Net
Recall that a directed graph (V, E) consists of a set V called vertices and
a set E g V x V called edges and that the edge (u,v) is represented by
an arrow from u to u. A neural net consists of the following:

o a directed graph (V, E),
0 two sets I, 0 g V, called the inputs and outputs,
a a weight function w : E —> IR, usually written we instead of w(e), and
o real-valued functions fv for the vertices u E V.

If e : (i,j), we’ll write wid- instead of w(z-J). The vertices not in I U 0
are called hidden vertices.

Time-dependent values 0., are associated with the vertices as follows.
The initial values are supplied by the user for v E I, and these values may
or may not vary after initialization. For 2) ¢ I, 0., is initialized somehow.
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Vertices are selected in some manner, and for each selected vertex v, the
value of 0., is a function f” of its previous value and of those 0,, and wt,”
for which (33,12) 6 E. The functions fv often have the form

fv = f(9v + Z Owwxm), where In(v) = {m | (1:, v) E E} (10.1)
)xEIn(v

and f : R —> 1R. After some number of repeated selections of vertices, the
process is terminated. The outputs of the net are the values 0,, for v E 0.
You can think of 0,, as the “excitation” of 1), which is propagated as a
signal along all edges of the form (v,y). How the excitation affects the
“neuron” y is determined by its strength and the factor wv,y- We “train”
the network by adjusting the weights we and the parameters such as (9,,
in the functions f”.

A linear discriminant can be viewed as a very simple neural net called a
perceptron: Let

0={z}, V=IUO, E':IXO, f(:c)=sign(a:).

The values 0;, 2' E I, are held fixed at the values of the pattern to be classified
and the computed value of 03, is the classification. Thus,

0; = f, 2 sign (0; + 20510”).
2'61

This is the linear discriminant described earlier in slightly different notation.
In particular, 53' has become 6'. As we saw earlier, linear discriminants are too
simple for real life. However, we could build a more complicated neural net
by sending the input into many perceptrons and then sending the outputs of
these perceptrons into another perceptron which produced the output of the
net.

It’s difficult to find adequate algorithms for training nets and for using
trained nets. There is an algorithm for training the perceptron. Unfortunately,
it doesn’t generalize to the net consisting of layers of perceptrons described
at the end of the preceding paragraph.

In the next chapter, we’ll discuss two types of neural nets. The focus will
be on algorithms for choosing neural net parameters (called “training”) and
for using trained neural nets. The study of nets continues briefly in Chapter 13
after some probabilistic tools have been developed.
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Decision Trees

Decision—or classification—trees were developed by statisticians and, inde-
pendently, by AI researchers. They’re among the most widely used learning
methods. Let’s begin by quickly reviewing the definition given in Section 2.1.

Definition 10.3 Decision (Classification) Tree
A rooted tree is a directed graph that can be built as follows:

0 Select a vertex, say 7’, for the root of the tree.
0 Select some number (possibly zero) of rooted trees, T1, . . . ,Tk.
0 Add the edges (7373-) for 1 S i S k, where i is the root of Ti.

A vertex with no edges leading out is called a leaf or terminal vertex. (See
Figure 10.1.) A decision tree is a rooted tree such that

0 Associated with each nonterminal vertex v is a decision procedure
(also called a rule) for selecting an edge (22,.12) based on the input
pattern.

0 Associated with each terminal vertex is classification information,
either deterministic (“Hot tomorrow”) or probabilistic (“30% chance
of rain tomorrow”).

Since a decision procedure contains, at least implicitly, a list of the possible
decisions at each vertex, we can order the edges leading out of a vertex if we
wish. The definition of a decision tree in Section 2.1 included such an ordering.

Part of an imaginary decision tree for weather prediction is shown in
Figure 10.2. We use a decision tree by starting at the root r and using the input
pattern and the root’s decision procedure to select an edge (731:). (A decision
procedure might direct us to one of three vertices depending on whether the
pattern had a rising, falling, or steady barometer.) Having selected 1:, we move
to it and repeat the procedure there, and so on until we reach a leaf, which
gives us a classification.

Since we can think of a decision procedure as a rule, we may think of a
decision tree as a type of rule-based expert system. Using automatic tree clas-
sification algorithms, people have constructed such expert systems containing
thousands of rules.

There’s nothing in the definition of a decision tree about how it should be
created. Instead of creating one automatically, we might create it by hand. (To
do so, we must decide on its structure, rules, and classifications.) In fact, many
expert systems based on rules obtained from experts can be viewed as decision
trees. A simple example of such a system is a procedure for determining the
species of an organism by means of a series of questions.

By changing the nature of the leaves, we can use a decision tree in a
hybrid expert system. The decision tree can be used to divide the problem
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°/\/k m
Figure 10.1 Building rooted trees recursively. We start on the left with a
single-vertex rooted tree. This lets us build more rooted trees like those in the
middle, which let us build still more, and so on. By convention, the trees are drawn
upside down, so the root is the topmost vertex. Open circles are leaves.

barometer?

fallii/steadyl \ing

temp.? no change sunny

cMotl \fller

chance of thunder- rain
snow storms likely

Figure 10.2 An imaginary decision tree for weather prediction. The input pattern
consists of “temperature” and “barometer change.” A decision procedure consists
of a question at a vertex with possible answers on the outgoing edges. The classifi-
cations are shown at the leaves. A real decision tree would be larger, probably have
more complicated decisions, and might quantify “chance” and “likely.”

space into smaller groups amenable to some other expert system approach.
Thus the tree is an expert system all of whose leaves are other expert systems.
Since this more modular approach allows the construction of larger systems,
it is likely to become increasingly important.

To construct a decision tree automatically requires (a) choosing decisions
and (b) deciding when the tree is big enough. We’ll discuss the construction
of decision trees in Chapter 13.

Structural and Syntactic Methods

The methods discussed so far largely ignore structural and syntactic features
except for those that can be extracted by simple numerical manipulation of
the patterns. The definition of structural and syntactic pattern recognition
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is somewhat hazy. The basic underlying theme is that it looks for some un-
derlying patterns in the data other than relatively unstructured numerical
relationships. At one extreme (the highly symbolic), this could be taken to in—
clude inductive learning (p. 596). At the other extreme it could be taken to
include purely numerical approaches that involve more structure than usual,
such as “hidden Markov models” (p. 593) and some approaches to large neural
nets (p. 567). Since the structure of a decision tree is determined by the data,
this method could also be called structural pattern recognition. The central
area of structural methods lies somewhere between these extremes.

In neural nets, some underlying family of functions is specified paramet-
rically. (The parameters are the weights of the net.) We then work within
this domain: for example, by adjusting parameters to obtain a good fit to the
training set. Structural and syntactic pattern recognition are similar. Instead
of specifying some underlying family of functions, we might specify certain
types of graphs or grammars. We then attempt to find a good fit to the data
within this family. For example, our data might consist of strings of sym-
bols that we want to classify into two categories. A syntactic classifier would
attempt to produce a grammar that would generate all the strings in first
category and none of the strings in the second.

Research on structural and syntactic methods is growing. For more infor-
mation see the References.

Further Remarks

The complexity of reality usually means that compromises must be made in
designing pattern classifiers. In statistically based classifiers, these assump-
tions are clear as we see, for example, in the independence of some random
variables or in the particular forms for some probabilities. The assumptions
behind other classifiers are usually less clear; for example, neural net classi-
fiers are based on the assumption that certain sets of complicated functions
contain functions that fit the data (both observed and unobserved) fairly well.

This suggests that we should use statistical methods. Indeed, all else be-
ing equal, we should. Unfortunately, statistical methods exact a price—the
necessary simplifying assumptions may be quite unrealistic. The gain from
the clarity of the assumptions may not be worth the price.

It can be shown that, given certain assumptions about how decisions
should be made, it follows that probability theory—in particular Bayes’
Theorem—should be used. In technical terms, the Bayesian approach is
normative—it tells us how a rational person should act. As a result, some
researchers are using Bayesian methods in constructing decision trees and
neural nets. We’ll come back to this in Chapter 12.
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Exercises

10.1.A.

10.1.B.

10.1.C.

10.1.D.

10.1.E.

10.1.F.

10.1.G.

10.1.H.

10.1.I.

10.1.1.

*10.1.2.

What is pattern classification? Give an example of pattern classification by
humans.

What is the difference between pattern classification and machine learning?

What are the input and output of a classifier called?

What is automatic pattern classification? How does automatic classifica-
tion differ from an expert system written in Prolog to classify organisms by
species?

In the context of pattern classification, what is a training set?

Distinguish between supervised and unsupervised learning in terms of the
information presented and the goals.

What is a neural network? How is it used for classification?

What is a perceptron in statistical terms? in neural net terms?

What is a decision tree? How is it used for classification?

By drawing a picture in two dimensions, show that the exclusive or (XOR)
problem cannot be solved by a linear discriminant. Repeat for 53' = (1:1, :32, 1:3).

Let’s return to the XOR problem. Imagine a neural net in which the two
inputs 2'1 and 2'2 both feed into two perceptrons 01 and v2 which feed their
outputs to a third perceptron 0. Find 0’s and w’s so that this net solves the
XOR problem; that is, 0 has one output when (2'1, 2'2) contains a single 1 and
a different output otherwise.

i1 —”01\
0

. /'
1.2 —"v2
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10.2 Applications

If reason determined us, it would proceed upon the principle, that
instances, of which we have had no experience, must resemble

those, of which we have had experience, and that the course of
nature continues always uniformly the same.

—David Hume (1748)

Statistical classifiers are used in a variety of disciplines, resulting in the forma-
tion of such subdisciplines as econometrics, which is devoted to the analysis
of (: search for patterns in) economic data. In AI, statistical classifiers are
used primarly in vision research and secondarily in speech understanding.

Statisticians developed decision trees and applied them to the design of
expert systems, most notably in medical diagnosis situations in which experts
are unclear about the connections between the patients’ medical data and
the underlying diseases. AI researchers also developed decision trees and used
them in other situations where rules relating data to classification were crude
or unknown. Some expert system shells construct decision trees.

Neural networks are by far the largest research area in the automatic
classifier field. They’ve found a wide range of applications as expert systems.
Medicine, finance, chemistry, and game playing are just a few areas of success-
ful use outside AI. In AI, neural nets have been applied in a variety of fields
including vision, language, robot motion, and more traditional expert systems.
So far, the size of these systems has been small compared to larger rule-based
systems. (More on the problems of building large neural nets in Chapter 13.)
Expert system shells based on neural nets are commercially available.

Researchers are currently studying ways of combining an automatic pat-
tern classifier with another system, either symbolic or automatic.

0 Automatic classifiers are used to organize the data so that another system
can be constructed. For example, an automatic classifier may discover a
way to cluster the data that leads to rules for a fuzzy controller. (An
example was mentioned on p. 381.)

o A variant on this idea is to extract information from raw data using an
automatic classifier. This information is then used by another system,
either symbolic or subsymbolic.

o A different approach is to divide up the problem domain using one system.
Other systems then handle the different pieces. The dividing up could be
based on clustering discovered in the raw data by an unsupervised learning
algorithm, or it could be based on a clustering of problems (2 patterns)
based on an expert’s opinion as to what represents a meaningful division.
More interestingly, the partitioning could be developed as the system
is being trained. For example, first train a classifier A1. Then train a
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classifier 31 to separate data into two sets, one in which A1 does well and
one in which A1 does poorly. Finally train a classifier A2 on the latter
set. Now we can use 31 as a decision maker that chooses between the
classifiers A1 and A2. This could be iterated.

10.3 Data Preparation

Errors using inadequate data are much less than those using no
data at all.

—Charles Babbage (1792—1871)

You might think that raw data requires little if any preparation before it is fed
to an automatic pattern classifier. This is seldom true. Generally, the more
effort spent in data preparation, the better a classifier will work—there’s no
“free lunch.” Unfortunately it’s tempting to ignore data preparation and get
on with the more exciting aspects of the work.

Data Friendliness

Pattern classifiers find some data more friendly than others. Obviously, any
classifier will find garbage unfriendly, but there are other considerations. For
example:

0 Because of the functions they use, 'some classifiers have to be trained
longer if an important input variable ranges from 1,000 to 1,001 than if it
ranges from 0 to 1 or from —0.5 to 0.5, even though the difference between
minimum and maximum is the same in all cases.

0 Since most pattern classifiers perform arithmetic operations on numeri-
cal data, they may have difficulty with information like telephone area
codes—so called “nominative” data.

How can data be made more friendly for a pattern classifier? That depends
on the nature of the classifier and the nature of the input. Suppose the input
is in the form of real numbers. The meaning of the numbers can be lumped
into three general categories as follows:

0 Nominative: A nominative value simply names something. It need not
even be a number. In fact, if it is a number, you should think of the
number as simply a name. Generally, such data should be encoded as
m-bit binary vectors. Each bit of the vector is interpreted as a real number.
For example, suppose we wish to encode the days of the week. Since there
are seven days and 23 = 8 Z 7, we could use 3-bit binary vectors. Seven
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vectors are assigned to the days of the week in some fashion. The eighth
vector is never used.

0 Ordinal: Ordinal numbers simply indicate an ordering of the data. For
example, say someone is in the 80th percentile on an exam. It makes no
sense to say that person is twice as knowledgeable as someone in the 40th
percentile. Using such numbers is usually okay, even though the classifier
performs arithmetic operations on them.

0 Arithmetic: These are numbers for which it makes sense to perform nu-
merical operations. For example, the annual income of a loan applicant
or values of probabilities.

It may be best to rescale ordinal and arithmetic data in some manner. For
some classifiers such as neural nets, it is usually best if all data is reduced to
a similar size. For example, if :c is one of the variables in the data, we might
choose a and b so that the values of y 2 an: + b range from —1 to +1. The
value of y is then used in place of 2:. If a: can be any real number, we might use
3/ = tanh(aa:) to convert to values in the interval (—1,1). More complicated
functions of m may be better, but discussing that takes us too far afield.

Sometimes we can make input data more friendly by doing calculations
on the input. For example, it may be better to input a date as “day of year”
and “year” rather than the more usual “month,” “day of month” and “year.”
More generally, if we expect that certain operations will need to be performed
on the input, it is often better to do them and include the results as part of
the input data.

Garbage in the Training Data

GIGO: Garbage in; garbage out.
—Anonymous programmer

The art of being wise is the art of knowing what to overlook.
—William James (1890)

What sorts of things in training data should be regarded as garbage? Obvious
possibilities are

e Incorrect data.

0 Incorrect expert opinions: They may be hard to detect.

Here are three subtler sources of garbage.

o Bias: Training data can be a biased sample of the patterns we plan to
classify. Obviously, if you omit a pattern whose classification cannot be
inferred from similar patterns, the classifier will not be able to classify
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it. More subtle is the fact that classifiers are usually less accurate on
rarer training patterns. Thus, a classifier may do poorly if a rare training
situation arises frequently in applications.

0 Redundancy: Some of the information in a pattern may be redundant. As
noted in data friendliness, redundancy may be good if it makes the input
more friendly. Other redundancy is usually bad.

0 lrrelevancy: Some of the input information may be irrelevant to the clas-
sification of the pattern. For example, Social Security number, name, and
eye color are probably irrelevant data if we are trying to teach an expert
system to assess a person’s creditworthiness.

Irrelevancy needs some explanation. Won’t the classifier simply ignore irrel-
evant data? Not always. Given enough irrelevant data, spurious correlations
between some irrelevant data and the desired classification are likely to arise.
There is no reason to expect future patterns to exhibit the same correlation.
Such correlations can be quite strong. In one case, for example, a classifier
was trained to detect camouflaged tanks. It so happened that the pictures
with tanks were taken on a sunny day and those without, on a cloudy day.
The classifier learned to detect sunlight, not tanks.

How can we guard against irrelevance in the data? In the case of tank
recognition, it’s simply a matter of adding more pictures or replacing the
cloudy-day pictures. Sometimes it’s not just a matter of adding or throwing
out data. For example, a person’s scores on individual problems on an exam
contain irrelevant information if we want to predict the exam grade—only
the sum of the scores is relevant. In this case, it’s clear that several numbers
should be replaced by a single number. Usually the situation is much less
clear-cut. Obtaining relevant information in a form the classifier can use is
known as feature extraction.

Removing irrelevancies can be quite difficult even when we’re aware of
them. For example, imagine that we want to analyze a picture that’s been
presented as a set of black and white pixels. Our goal is detecting squares. In
this case, only the position of one pixel relative to another matters—absolute
position is irrelevant. You may be able to devise a way of arranging the data
to eliminate this irrelevancy. A much bigger challenge is the fact that size
and rotation are also irrelevant. Since your eyes and brain can eliminate these
irrelevancies, there must be a way to do so. How? See Exercise 10.3.1.

What can be done in general?
Statistical tools can provide some guidance and support in rooting out

irrelevancy and redundancy. For example, cluster analysis might reveal a sharp
grouping of some components of the data. By labeling the groups and using the
labels in place of the data that determines the groups, we may eliminate some
irrelevancy. As another example, suppose that principal-component analysis
provided new coordinate axes in which a few coordinates contained much of
the variation in the data. By reparameterizing the input and using these few
new coordinates, we eliminate redundant and/or irrelevant information. More
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generally, a pattern classifier might be used to look for relevant aspects of the
data. Using these various mathematical methods is a complex subject, which
we lack the time and tools to pursue.

Of course, instead of focusing on data we can focus on understanding the
particular classification problem. Through such understanding, we may be
able to extract useful features or identify irrelevant ones.

Incomplete Data

Data is often incomplete. It may be missing as in questionnaires that are
only partially filled out, or it may lack the required accuracy as sometimes
happens in dating fossils. What we can do with incomplete data depends on
the classification method and the nature of the data.

0 If there’s plenty of complete data, we can simply ignore the incomplete
data. Let’s suppose that’s not the case.

0 Some methods allow the use of incomplete data; however, most methods
demand complete data. How can we make complete data out of incomplete
data?

0 In some cases, we could introduce a new data category—“missing.” In
most cases, this is unsatisfactory.

c We could create many “complete” data items from each incomplete one.
For example, if we have an estimate of the probabilities of the various pos-
sible values for a missing item, we could construct a representative collec-
tion of values. Naturally, each of these completed items should be given
less weight than an item that was complete to begin with. This method
has two drawbacks: It can increase the amount of data tremendously and
we may be unable to estimate the probabilities that are required.

There is a more insidious form of incomplete data: We may lack data
about a part of reality that the classifier will be called upon to deal with. A
weaker form of this is when the data contains more representatives of some
areas of reality than others. For example, data on causes of death in one region,
A, of the world may differ from that in another region, B. If we construct a
classifier based on data from A and attempt to apply it in region B, we are
likely to get poor results. The only advice I have here is “Be careful!”
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10.3.A. What are the differences between nominative, ordinal, and arithmetic data?
Give an example of each.

10.3.B. Irrelevant data is an insidious form of garbage. How can irrelevant data cause
problems? How can irrelevant data be detected?

10.3.1. This exercise requires some familiarity with complex numbers. The Fourier
transform of a function is another function. We follow the convention of using
a lowercase letter for the original function and the corresponding uppercase
letter for its Fourier transform. The definition of the Fourier transform of f
IS

F(y) = [0 f(t)e_itydt. (10.2)

Ignore questions of convergence and similar issues.

(a)

(b)

*(C)

Let g(:v) = f(:c + h). Show that |F(y)| = |G(y)|, where |z| is the
absolute value of the complex number 2. If f is the description of a
one-dimensional object, then IF I provides information about the object
that does not depend on its absolute position.

Extend (10.2) to a function of two variables, f(2:1, 1:2) by using a double
integral. With 9031,32) = f(:cl + h1,a:2 + hg), show that |F(y1,y2)| =
|G(y1,y2)|. Thus the absolute value of the Fourier transform provides
translation-independent information about a two-dimensional object,
too.

While the previous approach removes translation effects, it does not
remove rotation or scaling effects. We do this now. Define a new function
h(p,9) = |F(y1,y2)l, where p. 0, 3/1. and 212 are related by exp(p +
£0) = y1 + iyg. Show that |H(*,*)/H(0,0)| has rotation and scaling
removed. How can we remove scaling but not rotation? rotation but not
scaling?

10.4 Evaluation

There are various aspects to evaluating a classifier. The most obvious is ac-
curacy. Complexity and interpretation are also important.
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Measuring Accuracy

Let’s assume that the classifier makes simple yes/no type classifications—
nothing like “The probability of rain tomorrow is P%.” The simplest measure
of accuracy is the percentage of incorrect classifications the classifier makes.
This is called its error rate. There are two types of error rate:

0 The training error rate is error rate on the training set.

0 The generalization error rate is error rate on all possible data. It’s called
the generalization error rate since it measures how poorly the classifier
generalizes to cases it hasn’t seen.

(The word “rate” is often dropped.) Computing the training error is straight-
forward. We usually want the generalization error. It’s almost always greater
than the training error, often significantly.

In this discussion, I’ve slipped in the notion of generalization error as if
it were an obvious concept. It’s not. What does “all possible data” mean?
We often don’t know. It frequently refers to an infinite set that is hard to
manage or is inherently unknown. For example, “all possible data” for a chess-
move classifier is a fantastically large, hard-to-manage set. On the other hand,
“all possible data” for a weather predictor contains future weather and so is
inherently unknown.

If we don’t know what our classifier must generalize to, how can we pos-
sibly measure the generalization error rate? We can’t! All we can do is hope
that the given data is somehow typical and use it to make an estimate. Since
generalization error is based on data not used in training, only some of the
given data can be used for the training set. How do we go about choosing it?
It should be “representative” and so be as large as possible. Often the avail-
able data is limited, so how much should be used for training and how much
reserved for computing the generalization error? Are there ways of estimating
generalization error that don’t require reserving much data? In Section 12.3,
we’ll discuss some ways of approaching these problems.

Classifier Complexity

As we increase the complexity of a classifier (e.g., larger neural nets or big-
ger decision trees), the added complexity allows the classifier to fit the data
better. Thus a good training algorithm will produce classifiers with decreas-
ing training error rates as shown in Figure 10.3. Unfortunately, beyond a
certain complexity, this improvement is often an artifact—the generalization
error rate often begins to increase. This behavior is common but not univer-
sal. There’s a close connection between classifier complexity and irrelevancy.
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complexity

Figure 10.3 The horizontal axis measures classifier complexity in some manner
and the vertical axis measures error rate. The dashed curve shows how training error
rates behave—they decrease as complexity increases. The solid curve shows how
generalization error rates often behave. The rapid decrease in generalization error
rate followed by a slow increase is typical. The shaded region indicates a reasonable
range of complexity.

In effect, a classifier that is too complex for the problem at hand contains
irrelevant parts.

Obviously, we should choose a classifier with the best level of complexity.
Unfortunately, no one knows a simple method for making such a choice. The
best level of complexity depends in some manner on the classifier, the training
set, and “all possible data.” Fortunately, there’s usually a fairly broad range of
acceptable complexity. We’ll return to this problem later: See Example 12.4
(p.502), which discusses the “bias—variance dilemma,” and Example 11.10
(p.485), which discusses the interaction between complexity and parameter
estimation in the context of neural nets.

In summary, here are the typical situations for the three intervals of com-
plextity in Figure 10.3.

0 Low (left of gray region): Insufficient complexity leads to poor fitting of
the training data.

0 High (right of gray region): Excess complexity leads to good fitting of the
training data and results in poor generalization.

0 Correct (in gray region): The correct level of complexity leads to good
fitting of the training data and to good generalization. Unfortunately, this
level is hard to find and, even if it’s known, it may be difficult to train
without the freedom excess parameters provide.
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These situations aren’t universal—just typical.

What Does It Mean?

With some types of classifiers, such as decision trees, it’s often easy to iden-
tify “rules” that the classifier has developed for its own use. With others, such
as neural nets, it’s usually difficult to do so. However, obtaining rules may be
important if the classifier is being used as a first stage in a multilevel process.
Researchers have made progress in extracting rules from classifiers.

When we find such rules, it’s very tempting to impute an explanatory sig-
nificance to them. Unfortunately, they merely describe correlations between
patterns and their classifications, not causality. Since people usually expect ex-
planations to be rooted in causality, thinking of such rules as explanations can
be misleading. You may enjoy reading Armstrong’s discussion of this issue [1].

Exercises

10.4.A. What is training error? generalization error? How are they related to the
complexity of the classifier?

10.4.B. If we accept the tempting equation

rule found by classifier = explanation of classification,

we can be misled. Explain this statement.

Notes

I’ve sketched a variety of methods for pattern recognition. Which is best?
That depends on both the problem and the expertise of the researcher. Some
comparisons have been done for particular problems. For example, Ripley [21]
and Kim, Weistrofier, and Redmond [16] compared systems based on neural
nets, on statistical methods, and on decision trees. The latter paper deals with
bond rating and the former with three examples. An important problem is
determining if differences are significant. See Section 12.3 for some discussion.

Part I of the handbook [6] discusses a variety of pattern recognition meth-
ods. Later parts discuss applications to robotics and vision. Weiss and Ku-
likowski [23] have written a readable, practical introduction to a variety of
pattern classifiers. In addition to discussing them in some detail, the authors
also give experimental results and make suggestions about how and when they
should be used. Pao [18] discusses pattern recognition from an AI perspec-
tive and provides critical assessments of a variety of methods. A much more
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abstract approach is taken by Pavel [19], who draws on category theory and
topology. It remains to be seen how fruitful such abstractions will be.

There are a variety of books that deal with statistical pattern classifiers.
Stork is working on a new edition [9] of Duda and Hart’s classic book [8].
It will be greatly expanded to include material on methods that have been
developed since the original edition, including nonstatistical topics such as
neural nets and learning theory. In addition to the chapter in Weiss and Ku-
likowski [23], you might look at J ames’s readable book [14], which contains
algorithms in BASIC. The books by Devijver and Kittler [7] and by Fuku-
naga [11] are more mathematically oriented. Jain [13] gives a brief survey of
the state of statistical pattern recognition research in 1986. A good introduc—
tion to principal-component analysis is Jolliffe’s text [15]. In the first part of
his book, Bow [2] discusses a variety of methods.

Syntactic pattern recognition was largely founded by K. S. Fu. An intro-
duction to the subject and related mathematics can be found in the books by
Fu [10], Miclet [17], and Pavlidis [20] and in the chapter by Bunke [4]. The
text by Schalkoff [22] is a readable account of statistical, syntactic, and neural
net methods of pattern classification.

The papers reprinted in Chapter 4 of [3] discuss some aspects of pattern
recognition in an AI context. The papers in [12] are written for a rather gen-
eral audience and discuss some applications of probability and statistics in AI
and vice versa.

A variety of classification methods, including Bayesian nets, have been
unified by Buntine [5] using a graphical framework. This paper uses terminol-
ogy you may not be familiar with. Most important is the concept of a maximal
clique. Given a graph with vertices V and edges E, a clique is a subset C Q V
such that {c, c’} E E for every pair 0, c’ E C. If there is no clique containing
C as a proper subset, then C is a maximal clique.
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Neural Networks
and

Minimization

The real hope of von Neumann and his coworkers, the story goes,
was to construct parallel processors capable of manipulating large

blocks of information at the same time.
It is an exquisite irony that parallel processors and neural

architectures, which he is said to have pioneered, are continually
compared to the “von Neumann approach” to computing.

—Maureen Caudill and Charles Butler (1990)

Introduction

You’ve probably heard “the brain is a computer” so often that you no longer
think about it. AI attempts to emulate some of the abilities of the human
brain using ordinary computers. Some researchers believe that this is the
wrong approach because brains have some desirable features that computers
lack. These include:

o “associative” memory,
an architecture that apparently facilitates learning,
a self-programming ability,
an ability to obtain results after relatively few machine cycles,
an ability to compensate for processor and storage degradation.

People researching neural nets hope to develop artificial systems with such
capabilities by emulating, to some extent, the structural features of brains.
These structural features include

425
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o massive parallelism (much more than we can currently achieve) of
0 highly connected, simple, imprecise processing units with
0 information stored in self-adjusting interconnection weights.

The progress that has been made on connectionist systems (neural nets) is
fairly modest when compared with the capabilities of even fairly simple brains.
Researchers disagree on the ultimate usefulness of neural nets. At one extreme
are those who believe neural nets will eventually supplant other AI techniques.
At the other, there are those who believe the entire approach is doomed.

It can be difficult to sort through the wide variety of neural nets that
are currently being studied. They can be roughly classified according to the
following properties:

0 Computing elements: This refers to the functions fv in Definition 10.2
(p.408). There are two main types of allowed outputs—either all real
numbers or just two values, usually denoted by either 0-1 or i1. In the
real-valued case, a variety of continuous functions have been proposed
(see p.478). Examples of nets with two-valued outputs appear in Sec-
tions 11.1 and 11.3.

0 Network architecture: A major architectural feature in supervised train-
ing is the presence or absence of feedback. Nets with feedback are called
recurrent and those without are called nonrecurrent. A feedback loop is
simply a directed cycle in the digraph of the network. Thus, a net is non—
recurrent if and only if its digraph is acyclic.

Another aspect of architecture is whether the digraph is predeter-
mined or is developed as part of the training process.

0 Training: There are many algorithms for training nets. The most impor-
tant division is between supervised and unsupervised learning. A super-
vised net is given the responses it should produce while an unsupervised
net should find “interesting” features in the data.

The previous discussion provides eight major categories for classifying nets,

discrete vs. continuous
recurrent vs. nonrecurrent

supervised vs. unsupervised,

and additional refinements of them. Here are some other ways of classifying
nets.

0 Purpose: One purpose is associative memory: When given partial infor-
mation about a stored pattern, the net retrieves the complete pattern.
Another purpose might be termed information processing. Actually there
is less to this difference than meets the eye. In both cases, the net is
performing a pattern classification. The distinction is primarily in how
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Figure 11.1 In the small Hopfield net on the left, the weights on a given edge are
the same in both directions. In the small feedforward net shown on the right, all
paths lead rightward.

the net output describes the classification (a complicated pattern for as-
sociative memory versus probably one or two numbers for information
processing) and how we think about the result.

0 Time: Except for the timing of internal computations, time is irrele-
vant for some neural nets. An example is an expert system that suggests
promising pathways for chemical synthesis. For many recurrent nets, tim-
ing of inputs is important. For example, an expert system for converting
from spoken to written language would rely heavily on input from the
recent past.

Any significant study of the various types of nets would require at least an
entire book, so let’s limit our attention to two types of nets—Hopfield and
feedforward. Both of them use supervised learning; however, they differ from
each other in architecture, in computing elements, in algorithms, and in rele-
vant mathematics.

In a Hopfield net, if (i,j) E E, then (j,z') is also an edge and win,- = 10.5,...
Frequently, E consists of all (z', j ) with 2' 76 j. See Figure 11.1. Given (V, E) and
a collection of patterns, the values of ww- can be computed quickly. Given a
new pattern to be analyzed, the determination of the outputs for that pattern
is time-consuming. The mathematical formulation is akin to that for energy
functions in statistical mechanics—we attempt to minimize an “energy.”

Feedforward nets are nonrecurrent; that is, every way of moving through
the graph along directed edges, (2', j) to (j, k) to (k,l) and so on, eventually
leads to some vertex m such that there is no edge of the form (m,a:); that
is, m has no edges directed “out.” In such a net, these vertices form the set
0, and the set I consists of vertices v with no edges “in.” For 1) ¢ I, 0,, is
initialized to “unknown.” Then 0,, is set to the value of (10.1) (p. 409) when
0,, is known for all a; for which (mm) 6 E. Hence, unlike the Hopfield nets,
computation of outputs is straightforward. On the other hand, given (V, E)
and a collection of patterns, the determination of the weights is a difficult
minimization problem. The goal is usually to minimize some measure of the
error in the net’s attempt to map input patterns to desired output patterns.
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Since Definition 10.2 (p.408) allows such a wide variety of neural nets,
how do researchers select designs? There are several important points to keep
in mind. You should refer back to them when reading material on neural nets.

0 Any neural net design involves algorithms.
— The algorithms must work. (This is not facetious—some neural net

algorithms behave poorly.)
— The amount of calculation required by the algorithms must be rea-

sonable.
0 Since a major goal is to implement neural nets with parallel processors,

perhaps using very large-scale integration (VLSI), we have the following
conditions.

— The algorithms should involve simple calculations that can be per-
formed in a distributed manner at the vertices and perhaps the edges.

— The structure of the digraph (V, E) of the neural net must be feasible
from a hardware design viewpoint.

0 Since neural nets should be competitive with other methods, we have the
following conditions.

— The network should be flexible enough to handle a variety of problems.
(This is seldom a problem.)

— The network size and running time needed to handle a problem should
be reasonable. (This is often a problem.)

We’ll give the most emphasis to the first category—algorithms—and the least
to the last—usage.

Algorithms for neural nets involve finding the minimum of some function.
As already mentioned, for Hopfield nets, training is straightforward and the
minima must be found when using a trained net. In contrast, for feedforward
nets, the minima must be found during the training and usage is straightfor-
ward. Unless we are lucky, the problem of minimizing a function can be quite
difficult. Here’s an outline of the chapter and an indication of the role min-
imization plays. Since the chapter is so long, you may want to refer back to
this outline from time to time.

o We’ll begin with an introduction to Hopfield nets since the minimization
there is fairly simple.

0 In Section 11.2 we’ll review some mathematical tools—matrices, linear
algebra, and multivariate calculus—most of which should be familiar to
you. If it’s not review, you may want to do some supplementary reading in
introductory texts on linear algebra (or matrix theory) and multivariate
calculus (found in most standard calculus texts).

0 Before pursuing more complicated aspects of minimization, we’ll briefly
examine a classic example of feedforward nets in Section 11.3—perceptrons
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with no hidden units. As with Hopfield nets, there’s a straightforward
minimization algorithm.

0 Next, we’ll tackle the thorny topic of minimization itself in Section 11.4.
The treatment differs markedly from that found in numerical analysis
texts because it’s oriented toward minimization for feedforward nets.

0 Section 11.5 on feedforward nets is brief because minimization techniques
were already discussed.

0 In Sections 11.6 and 7, we’ll explore some important issues in algorithm
design. (I’ve marked those two sections with asterisks because they are
important in actual design work but not in conceptual understanding.)

0 The chapter concludes with a brief history.

Some aspects of neural nets, especially those requiring additional background
in probability and statistics, are discussed in Chapters 12 and 13.

Prerequisites: You should have read the preceding chapter which provides
some background for the present chapter. In a couple of places, I refer to basic
probability theory concepts, but these can be skipped.

Used in: Chapter 12 relies only slightly on the material here, so you can
read that chapter without first reading this one. The neural net discussions
in Chapter 13 refer back to some concepts in this chapter. Since I’ll provide
specific references in Chapters 12 and 13, you needn’t read this entire chapter
beforehand.

Exercises

11.A. What is associative memory?

11.B. What is the difference between a recurrent and a nonrecurrent net?
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11.1 Hopfield Networks

Suppose that we have a questionnaire with a variety questions whose answers
we believe tend to be interrelated. This is the basis of such things as per-
sonality tests, career aptitude tests, and so forth: Some answers are expected
to be able to predict what other answers (personality types, aptitudes, etc.)
are likely to be. Of course, some answers are simple to obtain—you just ask
the person—while others are much more difficult, requiring such methods as
in-depth psychological interviews. The hope is that the pattern of easily ob-
tained answers can be used to predict the other answers. Various statistical
methods can be used to help locate such patterns. Hopfield nets provide an—
other approach.

More generally, we can think of the answers a subject gives to easy ques-
tions together with the (unknown) answers to the remaining questions as a
pattern. All we have is a degraded pattern—the answers to the easy questions.
We want to recover the entire pattern.

Suppose the questions are all of the true/false type. The idea behind
a Hopfield net is to assign one question to each vertex V of the digraph.
Thinking in terms of bit patterns, we let each vertex correspond to one bit in
the pattern. The edges are E = V x V and an edge (u, 1)) measures how alike
we expect the answers to questions u and v to be.

Definition 11.1 Hopfield Net

A Hopfield net is a particular type of neural net. See Definition 10.2
(p.408) for neural net notation. Let V = {1,2, . . . ,n} and let E consist
of all (i,j) with i 75 j and i,j E V. Frequently, I = 0 = V, but this need
not be the case. Let 6', 13(1), and so on denote vectors. Define

+1, ifa > 0,
fv(6') = sign (0.. + Zwmom) and sign(a) = {—1, ifa < 0, (11.1)

x :I:1, if a = 0,
where the sign is either chosen arbitrarily at 0 or is chosen to equal the
sign of the present value of 0”.

A pattern is an n-long sequence of +1’s and —1’s. Suppose we’re given
a collection of patterns 13(1), 16(2), . . . . Define

w” = 0 and wid- = ZB(k)PJ-(k) for 2' 75 j. (11.2)
k

The formula for 10.7,]- is often called Hebb ’3 rule. When we have computed
u')’, we say that the patterns have been stored in the Hopfield net.
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What does this definition say?
0 It defines the vertices to correspond to the bits in the pattern.
0 The presence of 0,, in the definition of fv tends to bias fv toward sign(0.,).

The larger Wu], the larger the bias.
0 The definition of wid- measures how much 0,- and o, tend to agree in the

stored patterns. If they always agree, all terms in the sum for win,- are +1
and so the sum is s, the number of patterns. If they always disagree, all
terms in the sum for wm- are —1 and so the sum is —3. If the agreements
and disagreements are “random,” about half the terms are +1 and half
are -—1, and so the absolute value of the sum is much smaller than 3.

e The sign of oxwww is a prediction of the sign of 0,, given 03,, and |w$,v| is
some measure of the confidence of the prediction.

* * * Stop and think about this! * * *

Consequently, f” can be thought of as a prediction of 0,, based on the
observation of 0:0 for all vertices a: E V. In other words,

An input pattern 6' is likely to be a solution to the set
(11 3)of IV] linear equations 0,, = fv(6') for all 2) E V. °

This is the key to recovering stored patterns—start at some 6' and change it
by replacing 0,, with fv (5'). Of course, we may need to repeat the changes
many times.

The previous discussion leads to some natural questions about Hopfield
nets and algorithms for recovering stored patterns. Here are some together
with their answers.

(a) Question: Does this procedure stop or can it get stuck going in circles?
Answer: Yes to both, depending on the algorithm.

(b) Question: If it stops, is (11.3) right; that is, does it do so at a stored
pattern?
Answer: If there aren’t too many stored patterns, almost certainly yes.

(c) Question: As a function of WI, how many patterns can we expect to be
able to store and recover in this way?
Answer: Approximately Cn/ log n.

Question (a) will be dealt with in this section. The others require additional
material on probability theory, which is introduced in the next chapter.

Assume the results in the preceding paragraph. Also assume an algorithm
for moving from a starting point 5 to a local minimum of <I>(6) that is close
to the start. Then we can use a Hopfield net to solve our problems:

0 Degraded Patterns: Store the given patterns in the net. When a degraded
pattern is received, use it as a starting point for 6', set 2' = 0, and find a
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local minimum. This should be the original pattern corresponding to the
degraded image.

0 Questionnaire: Again, store the given complete patterns in the net. When
partial answers are received, use them as starting points 6' for the algo-
rithm. Those components of 5' for which no answers were received could
be started randomly at 5:1 or they could be set to 0. Set 0,, = 0 if 0,, is
unknown. If 0,, is known, set 0,, to some multiple of it, thus biasing new
values of 0,, toward the original value. (Show that if the multiple exceeds
Ex w’v I, then 0,, will never change.) When the algorithm stops, read off
the answers it gives for the missing responses.

The concept of the energy of 6' is quite useful in studying Hopfield nets. It’s
called “energy” because of the close analogy with the energy of what physicists
call “spin systems.” Researchers have exploited this by converting theorems
concerning spin systems to theorems concerning Hopfield nets. That’s beyond
the level of sophistication of this text, but the energy concept is still helpful.

Definition 11.2 Energy of a Hopfield Net

The energy <I>(6') of a particular vector 6' in a Hopfield net with biases 0.,
and weights w“, is

<I>(6')=—Z€vov—% Z wmoxov. (11.4)
06V 1:,vGV

We’ll see that the local minima of <I>(5') are solutions of 0,, :: fv(6'). You should
be familiar with the concept of a local minimum from calculus. Unfortunately,
calculus deals with functions whose arguments are real numbers and the do-
main of (I) is the set {—1,+1}"’ of 2” points, not the n-dimensional interval
[—1,+1]”. Thus, our first task is to define the notion of a local minimum.

Definition 11.3 Neighbors and Local Minima

We say that 6' and 6" from D = {—1,+1}” are neighbors if they differ
in exactly one component and if that component is allowed to vary. (In
the questionnaire example, those components corresponding to known
responses are not allowed to vary.)

Let g be a function from D to the real numbers 1R. We call 6' a local
minimum of 9 if g(6') 3 9(6") for all neighbors 6" of 6°.
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The following two theorems show the close relationship between local min-
ima of q), the functions f,,, and stored patterns. The first is stated rather
vaguely since stating and proving it require concepts and tools we haven’t yet
discussed. A crude heuristic proof is given in Example 11.1 (p. 436). The the-
orem is stated more precisely in the discussion beginning on page 568, and a
better heuristic proof is given there. In contrast, the second theorem is easily
proved.

Theorem 11.1 Minimum Energy at Stored Patterns

Suppose that 0,, = 0 for all 1) and that 10,-“,- is given by (11.2) (p.430).
Under suitable assumptions, the values 6': 16(k') and 5': —13(k) for k =
1, 2, . . . will almost certainly be local minima of @(6’) and Algorithm 11.1
below will converge to such a state if it starts nearby.

Theorem 11.2 Minimum Energy at Fixed Points of f,,

The vector 6' is a local minimum of <I>(6') if and only if 0,, = f,, (5') for
all 1) E V, where the value of sign(0) is the value of 0,,. (This does not
assume 0,, = 0.)

Proof (of Theorem 11.2): Let 6" equal 6' in all components except the vth.
With a little calculation,

<I>(6") — <I>(6') = —0,,(0:, — o,,) — §Z wm- (020.;- — 0,0j), since 10,-),- = 0,
m’#3

: —0,,(0:, — 0”) —% Z wi,v(0iol; _ 050v)
i2i¢v

”:1; Z tow-(01,0,- — 0,0,),
jzj¢v

o
I I _ . .

.
—

u
_smce 0i _ 0,0, unless ] _ v or z _ v,

I= —(0,, — 0,,) (0,, + E w,,,,o,- + E wm- 01-)
i: i¢v jzj¢v

I ' _= —(0,, — 0,,) (0,, + E w,,,,0,-), Since w,,,,- _ w,,,,,
i: an

E w,,,,0,-), since 0;, = —0,,.= 20,, (0,, +
i: i¢v

Since 212,-),- = 0, we’ve just shown that

<1>(5’) — <I>(6’) = 20,, (0,, +
2...:

w,,,,o,,). (11.5)
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It follows from the definition of ft, in (11.1) that the right side of (11.5) will
be nonnegative if and only if 0,, fv (6') is nonnegative. This happens if and only
if 0,, = fv (6') since they are both :l:1. I

The criterion 0,, : fv (6') for a local minimum given in Theorem 11.2
suggests an algorithm for finding such minima, while Theorem 11.1 tells us
that these local minima probably correspond to input patterns 13(16). Here’s
the algorithm.

Algorithm 11.1 Hopfield’s Algorithm

Given a Hopfield net as described in the text, the following algorithm
converges to a local minimum:

0 Step 1: Initialize 6' based on the given values.

0 Step 2: For each 1) E V, replace 0,, by fv(6') as given by (11.1),
choosing sign(0) to be the old value of 01,. These computations are to
be done sequentially, not in parallel. That is, when some 0,- has been
replaced, its new value is used in all future computations of fv’s.

0 Step 3: If no components of 6' were changed in Step 2, stop; otherwise,
repeat Step 2.

Note that the algorithm can be implemented in a local fashion: Each
vertex 0,, simply looks at the weights on the edges (1:,12) to which it
belongs and the values of 01, at at the other ends of the edges.

It’s fairly easy to show that the algorithm stops after a finite number of
steps—see Exercise 11.1.1. When it stops, Theorem 11.2 guarantees that it
has reached a local minimum. In fact, more can be shown: The function <I>(a':')
is a nonincreasing function of time. More generally, suppose that 53' is any
collection of variables that change with time according to some algorithm. If
<I>(:i:') is a nonincreasing function of time, it is called a Lyapunov function for
the algorithm.

Aside. Lyapunov functions are important in the study of differential equations. A dif-
ferential equation for 55 (t) is an algorithm for changing if . If we can find a Lyapunov
function which is bounded below, we can often use it to prove that the solution
converges. As a simple example, consider a pendulum whose motion is governed by
0' = w and w' = —a sin 0 + F(w) where F is a frictional force whose sign is opposite
that of the angular velocity w. Let @(0, w) = w2 — 2a cos 0. Then

d<I>/dt = w' + 2a(sin (9)0’ = 2w(w' + a sin 0) = 2wF(w),

which is nonpositive by assumption. This can be used to show that the pendulum
gradually slows toward a stopped position.
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Let’s stop and review what a Hopfield net is and how it works. This is
just a rough description to help you organize your thoughts on the important
points.

The values at a vertex must be :l:1.
Every vertex receives input from every other vertex and the weight for
an edge (2', j) reflects agreement minus disagreement of vertices 2' and j
in the training patterns—the patterns “stored” in the net. As a result,
wm' = wani-
The goal of classification is to recover a stored pattern that is close to the
input pattern.
Since the weights are simply sums, training is very fast. In contrast, pat-
tern recovery is more complicated and time-consuming.
Pattern recovery can be thought of as choosing each 0,, so that its sign
agrees with the sign predicted with the weighted sum of the outputs of
the other vertices. It can also be thought of as minimizing the energy
function (I).

Many variations on the Hopfield algorithm are possible. Here are a few of
them.

Since the algorithm can be implemented in a local fashion, we could have
the vertices simultaneously compute new values in Step 2. While this
usually gives more rapid results than the serial computations in the al-
gorithm, it opens the door to the possiblity that the algorithm will not
converge—see Exercise 11.1.2.
Instead of the synchronous (or “lock-step”) parallelism we just proposed,
we can use a random approach: Imagine each vertex updating its 0; us-
ing (11.1), but selecting the times for doing so in a random manner. It
can be shown that such a procedure converges almost surely—a technical
term in probability theory which means that convergence is practically
guaranteed. This illustrates an important point:

If an algorithm can exhibit some sort of undesirable behav-
ior, it may be helpful to introduce some randomness into (11.6)
the algorithm.

The ramifications of this idea extend far beyond computer algorithms. It
is “known” to evolution which has used it often in “designing” organs; for
example, heart muscles are stimulated in a slightly irregular manner and
this helps prevent fibrillation.
The order in which the bits of o are adjusted to 21:1 could have an impor-
tant effect on which local minimum is found. One way to overcome this
problem is with multiple starts with different (perhaps random) orders
for replacing the components in Step 2.
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a We can introduce a continuous version by allowing 0,, to be in the interval
[—1, +1] rather than just :l:1. See Exercise 11.1.3.

Let’s conclude with a rough explanation of why we can expect local min-
ima at :l:P(/c) from Hopfield nets with 0—— 0, as claimed in Theorem 11.1
(p. 433). The calculations are used in the discussion starting on page 568,
which improves on the conclusions reached in this example.

Example 11.1 Why We Expect Local Minima at ifiUc)

In this example, we’ll assume that 67: 6 in (11.1) (p. 430) and (11.4) (p. 432).
You should be able to easily show that <I>(—6') = <I>(6') for any 6'. Thus it
suffices to consider 13(k). The idea is to use Theorem 11.2 with 5' = 13(k) and
replace the weights with their definitions (11.2) (p. 430). Let [3’ (16) equal 13(k)
except in the vth component. By (11.5) (p.433)

<I>(13’(k)) — @0500) = 2P..(k) 2w.,.P.(k), by (11.5) (p.433),

P(k) Z (:PMUW (t))P (k)
as: $751)

:2P,,(lc) Z (P.(k)P.,(/c)+ Z P,(t)P.,(t))P,,(k)
1:: 3751) t: t¢k

2= 2 Z (P.(k>P.(k)) + 2 Z P.(k)P.(t)P.(t)P.(k).
a2: :vgév 1:: x¢v

t: t¢k

Letting n = |V|, the number of vertices in the Hopfield net, and recalling that
the components of the P’s are :l:1, this becomes

<1>(13'(1c)) — <I>(I3(k)) = 2(n — 1) + 2 Z P,(k)P,(t)P,(t)P,(k). (11.7)
“2:125:

Suppose that the 13(1)’5 are, in some sense, random. In that case, the term
PU (k)P,, (t)PH(t)P (k) will be randomly :l:1. Since the sum in (11.7) involves
terms that are randomly :|:1, there should be a considerable amount of can-
cellation in that sum. Thus the sum will be much smaller in magnitude than
the total number of terms, which is (n — 1)(s — 1) when 3 is the number of
patterns. How much smaller will be discussed in the next chapter in connec-
tion with the Central Limit Theorem. For now, we can simply conclude that
if the number of patterns 3 is not too large—how large depends on n—then
the sum in ( 11.7) should be smaller than (n — 1) in magnitude. If this holds
for all 1), then [3(lc) is a local minimum of <I>. I
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Exercises

11.1.A.

11.1.B.

11.1.C.

11.1.D.

11.1.1.

11.1.2.

11.1.3.

What does classification mean for a Hopfield net?

How is a Hopfield net trained?

What do we do when recovering a pattern from a Hopfield net? (Not an
algorithm—just the broad view.)

Give an example of how randomness may be useful in designing an algorithm.

The purpose of this exercise is to prove the convergence of Algorithm 11.1.
To aid in the proof, I’ll define a number A. Let

E 101:,v
a:

where the minimum is over all 2) such that the sum is not zero. (If there are
no sums satisfying this condition, 13(3) = +00.) Let A be the minimum of
A(E’) over all choices of :l:1 for the components of E'.

A(E') = min ’

(a) Prove that any change made in Step 2 after the first pass causes <I>(6')
to decrease by at least 2A.

(b) Let M = 31523.1. Iwg’jl. Prove that M 2 (19(6) 2 —M.

(c) Prove that the algorithm terminates in at most 2 + M/A iterations of
Step 2.
Hint. To obtain the 2, remember that the last pass and, possibly, the
first pass of Step 2 are different from the others.

Alter Algorithm 11.1 so that the changes in Step 2 are all computed simul-
taneously. Suppose that m = 2, n = 4, 03 = +1, 04 = -—1, and wi,j = +1 for
all 2',j. Show that it is possible to have 01 = +1 and 02 = —1 after the first
execution of Step 2. Show that at each succeeding application, both 01 and
02 change.

In this exercise, you’ll briefly look at a continuous version of the Hopfield
net and a differential equation algorithm for it. We could imagine that the
differential equation might be implemented by some sort of analog circuitry.
Let ‘wi,j and (I) be given by (11.2) and (11.4). Suppose that 0g(0) is given for
all i.

(a) Let o£(t) = Zjfl wz',j Oj (t) determine the values of the 05’s. Prove that
d<I>(3)/dt S 0 with equality if and only if 02 (t) = 0 for all t.

(b) Unfortunately, the above algorithm may lead to very large values of 03-.
To keep them in the interval [—1,+1], let 0,- = tanh 1:; and determine
the values of the xi’s by the initial values of the oi’s at t = 0 and then
by 32(t) = 2].?“q (t) for t > 0. Again, prove that d<I>(b')/dt S 0
with equality if and only if 0:;(t) = 0 for all t.
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11.1.4. A heteroassociative memory is one in which each pattern I509) is a pair
5(Ic), 117(k) such that when we input i'(k) the memory recovers 37(k).

(a) Why can this be done using a Hopfield net in which V is partitioned
into I and 0 where I is associated with if, 0 is associatied with 37, and
the outputs of v E I are held fixed to the input 5:"?

(b) Suppose we modify the preceding net by setting um,” = 0 whenever
u,v E 0. Show that Algorithm 11.1 converges after one iteration of
Step 2. Why is this a bad way to implement a heteroassociative mem-
ory?

11.2 Some Mathematics: Mostly a Review

We’ll begin with a review of the basic properties of vectors and matrices.
Except for the fact that indices need not be {1,2,...,n}, this is standard,
calculus-level material. Next we’ll discuss vector spaces, including some ma-
terial that is probably new. Since that material will not be used extensively,
the presentation is brief and the proofs sketchy. Your instructor may decide
to provide more details. Finally we’ll discuss some basic tools from multivari-
ate calculus. Again, this should be review with the possible exception of the
concept of the Hessian and results about approximations.

Vectors and Matrices

The classical vector is a 3-tuple of real numbers that gives the position of a
point in space. It is often denoted (1:1,:32, (1:3). There’s nothing special about
the number three and the set {1,2,3} of indices—unless you insist on a simple
physical interpretation, which is not relevant here.

Definition 11.4 Vector Notation
Let R be the real numbers. A vector indexed by the set I is a function
i" : I ——> HR. The value of a? at i E I is denoted by 2:,- (instead of by 5(2))
and is called the ith component of 53'. The set of all such vectors is denoted
by IR]. When I = {1,2, . . . ,n}, the set is denoted by R" rather than the
cumbersome R{1’2""'"}. In all our work, the set I will be finite. The dot
product of two vectors 5?, 37 6 IR! is given by

f‘§=zmiyi-

The length of :E" is given by |:E'| = x/a'f- if.
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We’re using a more general notation for the index set of a vector so that we
can use such things as X and the edges of a graph as index sets.

You’ve probably encountered matrices in connection with linear algebra
where they arise from linear transformations of vector spaces. Our use of ma-
trices is much less sophisticated—they simply serve as a convenient device for
manipulating numerical data. In particular, we’ll be multiplying and adding
matrices and vectors.

Definition 11.5 Matrix Terminology
A matrix with index set I x J is a function A : (I x J) —> R. The value
at (i,j) is denoted by Ag’j, (A),-,J-, or, sometimes, am. We call AM the
(z', j)th entry of A and say that it is in row 2' and column j. We refer to
A as an I x J matrix, or simply an m x 77. matrix if I = {1, . . .,m} and
J = {1,...,n}.

Let |I| be the number of elements in I. When |I| = 1 we may think of
A as a vector and call it a row vector. Similarly, if |J I = 1, we speak of a
column vector. If III 2 |J| = l, we may think of A as a real number.

The transpose ofa matrix A : (Ix J) ——> R is the matrix At : (J x I) —> IR
given by Aid 2 Am‘ .

The identification of a matrix having II I : |J| = 1 with a real number could
sometimes lead to problems. That will never be the case here, so

We’ll always interpret a matrix with |I| = |J | = 1 as a real number.
Finally, we come to the arithmetic operations on matrices. Since vectors

are a special case of matrices, these definitions apply to them as well.

Definition 11.6 Arithmetic of Matrices
Let A and B be matrices with index sets I x J and K x L, respectively.
Let c be a real number. The matrix cA has index set I x J and is defined
by (cA),-,J--_ c(A; ,J-) The matrix sum A+B is defined if and only if I: K
and J: L. In this case, (A+ B).- J- ——A- ,J-+ B,- J. The matrix product AB
is defined if and only if J: K. In this case, AB: (I x L) ——> 11R and

(143%.: = 2 am 51.1-
16.1

When a vector appears in matrix calculations, it should be thought of as
a column vector. In particular, if :3, 37 E IR], then it" . 37 = #37.

The essential feature of the arithmetic operations on matrices is that they
behave in the same way that arithmetic operations on real numbers behave,
except that AB gé BA and division hasn’t been defined. Theorem 11.3 lists
these properties, as well as some results about transposes of matrices and
lengths of vectors.
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Theorem 11.3 Properties of Matrices and Vectors

Let A be a matrix with index set I X J; let B, C, and D be matrices with
index sets J x K; let E be a matrix with index set K x L; and let 1' and
s be real numbers. We have associative and distributive laws and some
commutative laws:

(a) B + (C'+ D) = (B + C) + D, (rs)A = r(sA), and A(BE) = (AB)E;

(b) r(B+C’) : rB+rC, A(B+C) = AB+AC, and (B+C')E : BE+CE;

(c) B + C = C + B and A(rB) = (rA)B = r(AB).

Transposition “passes through” some operations:

(d) (B+C')t = Bt+Ct, (rA)t = 1°(At), and (AB)t : (Bt)(At), reversing
the order of multiplication.

There are matrices that behave like 1 in multiplication:

(e) Let In be the n x 77. matrix with (In )iJ equal to 1 ifz' 23' and equal
to 0 otherwise. If A and B are matrices such that Al” and InB are
defined, then AIn : A and [“3 = B. We call In the n x 71 identity
matrix.

Some properties of the lengths of vectors :3, g' E IRI are

(f) |r - 5| 2 |r| |:E'|, where M is the absolute value of r;

(g) 5- 373 Ifl |37|, with equality if and only if 52' = 6 or 3]: 1):? for some
real number p Z 0;

(h) (the triangle inequality) Iiizl: 37] <
which is sometimes used, Ia? :l: 3,7 I Z

IEI + Ifil or, an equivalent form
Ifl — |37|-

Since i" . 37 = #37, properties of matrix products hold for dot products, too.
Let A be n x 72. If there is a matrix B such that AB 2 BA : In, we call B the
inverse of A and write B : A'l. This is the analog of the inverse (reciprocal)
of a real number and so provides a means for defining division. (I won’t pursue
this or discuss how to compute A"1 from A.)
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Proof (of (g) and the triangle inequality): The rest of the parts and some
of the details in this proof are left as an exercise. Squaring both sides of the
desired inequality in (g) and rearranging, we see that it would be implied by
0 g |af3'|2|37|2 — (5 -

3232.2
By simple algebra,

IxI3IyI3— (“ 2=23?:v‘siyixjyj
3€I jej £61 £61

z 32 gammy + (W)? — mas/new»)
iteI

3:203:10 — 9313/02
iEIjEJ

Since this is a sum of squares, the inequality follows. The inequality is strict
unless miyj : xj y; for all z' and j. Suppose thata: 76 0. Let 2' be such that
m; 5:6 0 and let p: yg/mi. It follows that

.x. o -. —o31,- = y:B—J : pxj; that 18, y 2 pm.
2'

Hence :3- 37: 1003-53) 2 plflz. It follows that we must have p Z 0.
We now prove the first version of the triangle inequality. It will be true if

it is true for the square of both sides. We have

(m + Ifl'l) = 5 3+ 2m lyl +y"
|:i:':l:g7|2 = (3:21:37) - (fig?) = 53-51 253-314 37- 37.

By canceling common terms, we see that it suffices to prove that

2li’l lfl'l _>_ i25- 37
This follows from (g). I

Exercises

11.2.A. Define vectors, dot product, and vector length.

11.2.B. Define matrices, transpose, matrix addition, and matrix multiplication.

11.2.C. Express the dot product of two vectors in terms of the matrix operations
defined in the previous exercise.

11.2.1. Prove the rest of Theorem 11.3.

*11.2.2. Suppose that A and B are n x n matrices such that AB = In. Prove that
B = A"1 and A = B‘l. In other words, prove that BA = In.
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11.2.3. Using vector and matrix notation, rewrite the material on Hopfield nets; that
. '9 . . .
IS, regard i, F(k), wij: et cetera as vectors and matrices wrth appropriate
index sets and then rewrite (11.1), (11.2), (11.4), and the derivation of (11.5).
In doing this, let it be the dimension of the vectors and let 3 be the number
of patterns I306).
Hint. It may be helpful to define a, to be a vector that consists entirely of
zeros except for a 20., in its vth component because then 6' — a, differs from
6' in just the vth component.

11.2.4. Given a list of pairs (51,§/'1),...,(§:'3,fi,), where 53',- E {—1,+1}m and 1i},- 6
{—1,+1}"’, we want to create a bidirectional associative memory; that is,
given :75; retrieve 37,-, and given 37',- retrieve $5. Define an m x 72. matrix by

8 w-otM = 2151‘”i

(a) Assuming that the components of the 55’s and the 375’s are :l:1 and are
random, show that we can expect to have

M371: 8125]; and :iiktmj/‘kt

provided 3 is not too large.
Hint. See Example 11.1 (p.436).

(b) Explain how you could use the previous observation to design an asso-
ciative memory.

Linear Algebra

We’ll begin with the notion of a vector space and bases. Next we introduce
some concepts and results concerning eigenvalues and eigenvectors. Our defini-
tion of a vector space won’t be as general as the one used by mathematicians.
Since we won’t use this material much, you may want to skim it and then
refer back to it as needed.

Definition 11.7 Vector Spaces and Bases

Let F stand for either ER or C, the real or complex numbers, and let I be
a finite set of indices. A subset V of F1 is called a vector space if

0 ii+i7€Vforeveryii,i2'EVand

o fife V for every 176 V and every f E F.

Let V be a vector space containing 171, . . . ,6}, such that, for every 17 E V
there exist unique f1, .. .,fn E F for which if: flifl + --+ fnifn. We call
171,” ,v,, a basis for V, call n the dimension of V, and call f E F” the
coordinates of"v in terms of the basis”v1,. .. ,ifn.
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A simple example of a vector space is all of F]. We can take 27, to be the
vector that is 0 in all components except the ith, where it is 1. The dimension
of F1 is |I|.

Given a basis for a vector space, the map 2'; —> (f1, . . . , fn) shows that
we can think of the vector space simply as F“. This is very important and
convenient because it allows us to forget about the abstract notion and work
with matrices and vectors as defined earlier. That’s what we’ll usually do. In
order to do that, we need to know that bases always exist. That’s what the
following theorem says.

Theorem 11.4 Existence of Basis and Dimension

Every vector space has a basis. If 61, . . . ,6" is a basis and 131, . . . , 113m is
another basis, then n = m.

Given two bases 61, . . .,v',, and U71, . . .,1I2',, for a vector space and some
vector ii in the space, let j? and g’ be the coordinates of ii in terms of the two
bases; that is, 11' = 221:1 fit-ii = 2&1 gw‘ig. How are fand {7 related?

Define B by
131' = b1,j7-;1 + - - - + bn’j’ffn.

Since

1
n

u= 2 Mi
i=1

we see that f: 39'.

Zgj(zbi,j17zf) = 2(2 b£,jgj)17i,
j=1 i=1 i=1 j=1

Definition 11.8 Eigenvalues and Eigenvectors

Let A be an n x n matrix of real or complex numbers. If A E (C and 27 E C"
are such that A27: A27 and if 76 6, we call A an eigenvalue of A and if an
eigenvector of A. The terms characteristic valve and characteristic vector
are also used. Note that if if is an eigenvector, then so is of; for all nonzero
c E (C.

It can be shown that A has at most n eigenvalues. By allowing appropriate
multiplicities, it turns out that A has exactly A eigenvalues. This is not an ad
hoc adjustment—it is closely related to the fact that an nth-degree equation
over the complex numbers has exactly n roots when multiplicities are handled
appropriately. Explaining how this works would take us too far afield, so you’ll
have to take it on faith or look at a linear algebra text.

Since many of our matrices are symmetric, the following result will be
useful.
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Theorem 11.5 Spectral Theorem

Suppose that A is an n x n symmetric matrix with eigenvalues A1, . . . ,An.
Then the following are true:

0 All of the eigenvalues are real numbers.
0 If ir'tAi" Z 0 for all 53' 76 (I, then A,- Z 0 for all i. Furthermore, one

inequality is always strict if and only if the other is.
0 Let 5 6 IR". There is a “rigid motion” of IR” that fixes the origin and

is such that, if the components of 37 are the coordinates of 52' in the
new coordinate system, then

ftAi’ = Alyf + - - - + Anyfi.
A rigid motion is the sort of motion we allow in geometry—one that
preserves straight lines, angles, and distances.

In two and three dimensions, the only rigid motions fixing the origin are ro-
tations and reflections about the origin. In higher dimensions, the situation
is more complicated. It turns out that rigid motion in any number of dimen-
sions is equivalent to the statement that the dot product of the c00rdinates of
any two vectors is the same in both coordinate systems. (See Exercise 11.2.5.)

We can describe a rigid motion in terms of our change-of-coordinates
equation f : Bg’ derived earlier. The dot product of two vectors in the first
coordinate system has the form j? j?’ = ftf’ and, in the second coordinate
system, 5‘53". Since 1?: Bé’ and f7 = 353", we have

f -f’ = f‘f' = (3mm) = §t(BtB)§',
which must equal 57%)" for all j and 17’ if values of the dot product are un-
changed from one coordinate system to the other. Thus §t(BtB)§" 2 fits?"
for all g‘ and 57’ . This implies 3’53 2 In, the n x n identity matrix—just take
if and g" to be all 0’s except for a 1 in the ith and jth coordinates, respec-
tively. This explanation of eigenvalues and rigid motions is quite sketchy. A
fuller explanation would take longer than the applications merit. If you want
more information, see a good linear, algebra text.

Proof (of Theorem 11.5): For those of you with the background, I’ll indi-
cate how most of the theorem is proved when the eigenvalues are distinct. Let
17;, be an eigenvector corresponding to M.

Suppose that i at j. We have

Aim-27.- =62~<Am=twt
= (A6093, since At = A by symmetry,
2 Ail-i,- - ’5}.

Since A,- 7£ Aj, it follows that 17,- ii]-: 0.
We can prove by contradiction that all eigenvalues are real. Suppose that

A is not real. Then its complex conjugate X“ is also an eigenvalue and, by the
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"Illconclusion in the last paragraph, if - v = 0. This is impossible since 17-17“ = 0
is a sum of squares.

Since the eigenvalue A is real, 17 is determined by a set of linear equations
with real coefficients, namely A17 2 A17. Consequently, we may assume that {2'
is real. Since an eigenvector can always be multiplied by a constant, we may
also assume that |f2°| = 1.

We now have a set of eigenvectors such that 17',- 17']is 1 or 0 according to
whether i = j or not. These provide the unit vectors for our new coordinate
system. In terms of these coordinates, a? = 3/1171 + - - - + 31,152,. A little matrix
algebra shows that :E'tAzif equals A1 3/? + - - - + Anyg. I

*Example 11.2 Principal-Component Analysis

Suppose we’re given a sequence of vectors 271, . . . ,6} 6 IR". We want to extract
some new coordinates that contain most of the information.

To simplify our discussion, we assume that 23.17.- : 6. This is not really a
restriction because we could simply replace 17,: with 17} — 77': where 775. = % Z, 13}.

-o-otDefine an n x 12 matrix A = 23.1251); . Note that A is symmetric. By the
Spectral Theorem, all the eigenvalues of A are real, say A1 2 A2 2 Z An.
We claim that the eigenvalues are nonnegative. To see this, let A and iii 6 JR"
be an eigenvalue and corresponding eigenvector. Since Iziil > 0 and

A m2 = atom) = u'itAzii = 2(13t'72)(175t13)= 201;- :7.)2 2 o,
i i

it follows that A Z 0.
By the Spectral Theorem, there is a rigid-motion change of coordinates

B such that if = 337 changes ftAa? to Z Aiyf. Thus

A1 0 0

BtAB :
0 A2

.
0

: '- 0
0 0 An

This is just the change of coordinates needed to extract the principal compo-
nents of the 12’s, but we have to unwind things a bit. Define 2',- = Btu}. Since

BtAB = Z Etna-t3 = Z Bttm-Y.
i i

In summary, there is a rigid motion B such that
A1 0 0

_. t 0 A2 0 _. _.223-2;- = , .
0

= BtAB, where z,- = Btvi. (11.8)
a 0 0 )‘n

The transformation from 17.- to 2',- is the transformation to “principal-component”
form.
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From (11.8), the sum of the squares of the jth components of the E'g’s is
2

240%») = A_,-. Thus, if the eigenvalues beyond A], are small, we can ignore
all but the first 16 components of the 22’s with little loss of information. I

Exercises

11.2.D.

11.2.E.

11.2.F.

*11.2.5.

11.2.6.

11.2.7.

11.2.8.

Define vector space, basis, and coordinates.

Why are bases important?

Explain the following statement—what does it mean and how is it done?
“The idea behind principal-component analysis is to change coordinates so
that some of the coordinates become unimportant and can be ignored.”

Show that 4} - f’ = If + f’l2 — If — f’l2. Conclude that if lengths are un-
changed, then so are dot products.

Let 52' and 37 be vectors in IR" and let 271, . . . ,6}; be a basis for a 1R". Sup-
pose that f and {1' are the coordinates of the vectors 52' and 37 in terms of that
basis; that is, :"c' = 22° ffi)’; and 37 = 2,. 955,-.

(a) Let V be a matrix whose columns are the vectors 271, . . . fin. Show that
if = V}.

(b) Show that 55 . g; = 55%v = 2m f;(z‘:‘,~ . am

This exercise requires familiarity with linear independence and bases. You
are to prove the claims after Definition 11.8. Suppose that A is an n x 72.
real or complex matrix with n distinct eigenvalues A1, . . . , An. Let 13'; be an
eigenvector associated with A5.

(a) Suppose that 01271 + . - - + cm, =_ 6 and not all of C1,... ,0], are zero.
Prove that we can assume that C], = 0.
Hint. Let t?) = 01271 + - - - + 01,271, and look at A1?) — Akin.

(b) Conclude that 221, . . . , 2),; form a basis.

Let f = 89' convert coordinates in the basis {(51, . . . ,flin to those in the ba-
sis 271, . . .,2')'n. Show that 3-1 exists and that 9': 3—1;.
Hint. Show that there must be some matrix A for converting from '31, . . . , {in
coordinates to 1751,. . . , 213,; coordinates, and use uniqueness to conclude that
AB = In.
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Multivariate Calculus

Modern scientific thought has been formed from the concepts
of calculus and is meaningless outside this context.

We teach calculus because it is important for an understanding
of who we are as a society.

——David M. Bressoud (1992)

The main concepts we need from multivariate calculus are partial derivatives,
the chain rule, and approximations by first and second derivatives.

Definition 11.9 Multivariate Calculus Terminology

Suppose g is a real-valued function defined on (some subset of) 1R].
0 The partial derivative of g with respect to at,- is given by

09 _. . g(i:°+ he?) — g(:i:')
55(3) " Ill—fit h

if the limit exists. Otherwise, 0g/0mi is said not to exist at :E'.
o The gradient of g, is a vector with index set I and

_ 09(V9). —
a i

Note that the components of the gradient are functions, so we have
to expand our notion of vectors and allow components of vectors to
be functions.

If each of the functions in the components of Vg is evaluated at 6,
we write Vg(c'i) for the resulting vector in IR}.

0 The Hessian of g is the I x I matrix of functions given by

(H(g))s,j = 6% (639—) .
The results in the following theorems are incomplete because they require

“well-behaved” functions—a vague concept we won’t try to make precise. The
functions that arise in practice are “well-behaved,” so the condition can be
ignored. For a precise statement of the theorems and for complete proofs,
consult any good multivariate calculus text.

Theorem 11.6
If g is well-behaved, the order of differentiation is irrelevant; that is,

26
(0g)

8
(69), andwewritetheseas 0g

69:; 6—135; :55; 5—1-3: amiamf

In particular (H(g)).~,j = (H(g))j,.' and SO (H(9))t = HQ!)-
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Proof: Let é'k be a vector in which all the components are 0 except the kth,
which equals 1. We have

09 _ . g(£"+hé}-)-9(5)_
h

— 11m
air-1' h—>0

and so

i
(E61:,- 62:]-

-O
[-0. -0. —

—O .0,
o

= lim
(—1-(lim

9(2) + h e. + he,) g(a: + h e.)
h’—>0 h’ h.—+0 h

h—>0 ’1
1m 9(5+hé}')

-9(5)))
-' H. "-—"_"-—"h"- -'

_ lim lirn g(a:+he,+he,) g(a:+he.) g(.'c+ eJ)+g(a:) .
h’—+0 h—ro h’ h

If g is well-behaved, we can interchange the order of the limits in the last
expression. Then the steps can be reversed and we end up with E,- and h’
interchanged with (3} and h. I

Partial derivatives behave like ordinary derivatives except that the gen-
eralization of (f(g(:z:)))’= f’(g(m))g’ (:3)1s not obvious. This generalization18
called the chain rule:

Theorem 11.7 Chain Rule

Suppose that sI —+ R, and for all i E I, gilR" -> 1R are well-behaved
functions. Let h(:i:') be f(37) with yz- replaced by 95(5). Then the chain
rule is 612(5) 0_f(y)ag-_.(a:)—- = . (11.9)axj 2631—63,,- 8x——j

We often use the same letter to denote f and h, distinguishing between
the two functions by the letters used for the arguments. We also often use
yz to denote the function g,- since we are setting yi-_ gi(:r'°')in f. Rewriting
the chain rule1n this form, we have

_2_
5f 8312'

6—-xj 6—yi i '
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Example 11.3 The Chain Rule

Suppose that F : 1R" —> R is given by F(:E') :: G(c'i - 5?). What is 6F/6mg?
Apply the chain rule with

f = G and I = {1}, a function of a single variable,

91(5)=5-5, and J={1,...,n}.

The result is BF/am; = G’(&' - 5)a,- since (991/03,- : a5.
Now suppose that m,- = HA3?) and we want 8F/8yj. We again use the

chain rule:
a_F _ 2":

0F 6H,- " 6H,;
'21 z yj

6F_ I ..... ,_
63/]- 0:12,; yj —;G(a ”(has

.

The chain rule can be conveniently written in matrix notation. Let 037/65
be the matrix whose (2', j)th entry is 631,- /i. Similarly, for a single function
af/0:? is a 1 x n matrix—a single row, not a column vector. The chain rule
is then

3f _ 0f (9.77
E‘ — 5555"

This has the form of the chain rule for functions of a single variable. We can
then easily state results for functions of functions of functions analogous to
f'(U) = f'(y)y'($)$'(U)=

0f _ 0f (937 8:?
8—17 _ afifi'fi'

This shows you some of the convenience and power of matrix notation in
multivariate calculus. I

For this text, the essential property of the gradient and the Hessian is
that they allow us to estimate nearby values of the function. These estimates
correspond to the approximations of functions of a single variable by parabolas
and tangent lines, respectively.

Theorem 11.8 Quadratic Approximation

Suppose that glI —> R is a well-behaved function. The following is
the analog to approximating a function with a Taylor series using terms
through the second derivative. Suppose that c > 0. Let H be the Hessian
of g at it. There is a 6 > 0 depending on c, g, and if such that

|(g(a) + (Wm) .i;+ iat') _ 9(a+ ml < 6.5,. (11.10)
whenever If-il < 6.



450 Chapter 11 Neural Networks and Minimization

In practice, we usually won’t be able to obtain the Hessian of a function, so
we’ll have to make compromises. One possibility is to use the following weaker
result instead of (11.10).

Theorem 11.9 Linear Approximation

Suppose that g : R1 -—> IR is well behaved.

(a) If [2' is a local maximum or minimum of 9, then Vg(c'z') = 6.
(b) If 6 > 0, then there is a 6 > 0 depending on c, g, and ('1' such that

|(g(fi) + (vg(a)) .5) — g(5c'+ a)| < em (11.11)
whenever |a':'| < 6.

(c) If :3- (Vg(&')) < 0, then there is a 6 > 0 depending of g, 61', and 53'
such that

g(c'z'+ci:') <g(Ei) <g(&'—c:fi') (11.12)

whenever 0 < c < 6.

Exercises

11.2.G. Define partial derivative, gradient, and Hessian.

11.2.H. State the chain rule as a summation and in matrix notation.

11.2.I. What is the multivariate statement corresponding to the single-variable
statement “|f(a: + h) + hf’(a:) — f(a:)| is small compared to Ix] when |h|
is small”?

112.]. Deduce Theorem 11.9(a) from the standard calculus result for extrema of a
function of a single variable. Do this by holding all components of 52' fixed
and thinking of g(:i:') as a function of just 16;.

11.2.9. Suppose that g : R” —> R and that B is an m x n matrix. Let h : lRm —-> R
be given by h(5:') = g(B:'c'). Prove that Vh = Bt.

11.2.10. Deduce Theorem 11.9(b) from (11.10).

11.2.11. Deduce Theorem 11.9(c) from (b).

11.2.12. Using your knowledge of multivariate calculus, show that

f(5='+ 5) = 9(5) + (V900) ' 53'
is a plane tangent to g at {i when i = {1,2}. What does (11.11) say about
approximating g by a tangent plane?
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11.3 A Brief Introduction to Perceptrons

The purpose of this brief section is to familiarize you with some of the ideas
and problems associated with feedforward nets and to introduce the concept
of gradient descent, which plays a central role in the next section.

A perceptron is a particularly simple feedforward neural net. Instead of
describing it in those terms, let’s use terminology more in keeping with statis-
tics. We are given a collection of vectors 37, each of which is classified as being
either “in” or “out.” We seek a real number 0 and a vector 13 such that 0+u7-37
is positive when 37 is in and is negative when 37 is out. It is, of course, entirely
possible that no such parameters 0 and 13 exist. For example, suppose that
271 = (1, 1) and 172 = (3, 3) are in and 172 = (2, 2) is out. Using the requirements
and a bit of algebra, we have the contradiction

0>2(0+1I).-172)=(0+1D.-61)+(9+13°’l71)>0.

If it is possible to find the parameters, statisticians say that the in and out
sets are linearly separable.

Before discussing how to solve the problem of finding parameters, let’s
simplify it a bit. First, we’ll add an additional component to all the vectors.
For the given vectors :7, this component is always 1. For 13, this component is
6. The expression 0 +13 ~37 in the old notation becomes simply 217 -37 in the new.
Second, if a vector 37 is out, we replace it by —;¢7 and call the new vector by
the old name. These two operations (adding a component and then changing
signs) have changed the problem to the following:

Given a collection of vectors 37, we wish to find a vector 112' such that
u')’ - 37 > 0 for all 37 in the collection.

The following theorem provides an algorithm for solving the problem whenever
a solution exists. It can be thought of as a minimization algorithm since we’re
trying to minimize the number of errors. However, the algorithm doesn’t work
in general—it won’t stop unless there’s a if} that produces no errors.

Theorem 11.10 Perceptron Algorithm

Let y be a finite set of vectors such that for some 13 we have u')’ - 37 > 0 for
all 37 E y. Let 13(1) be arbitrary and let c > 0 be arbitrary. Define

y(t)={376y|zb'(t)-g'50} and a‘(t+1)=a'(t)+c 2 g’
1700)

for t Z 1. Then, for all sufficiently large t, y(t) = (D. This is equivalent to
the statement that for all sufficiently large t, 13(t) - 37 > 0 for all 37 E y.
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Proof: Here is a brief but unenlightening proof that y(t) is eventually zero.
The equivalence of the last two statements is obvious from the definition of
ya). In fact, note that if y(t) = 0, then y(t’) = (D for all t’ 2 t.

Let 6 be the minimum of 13- 37 over all 3] E y, let .§'(V) be the sum of all
37 in V, and let S be the maximum of |§(V)| over all subsets V g y. Choose
a constant 7’ > 0 and let a be such that

20:6 — 052 > 7*.

Since 6 > 0, this can be done. We claim that

y(t) #0 implies that ltD'(t + 1) — (1117'2 < Iu'2'(0) — onb'l2 — crt.

Since the left side of the inequality is positive and the right side decreases
without limit, the procedure must stop.

Here’s the proof of the claim.
213(t)+ c.§'(y(t)) — awllu'2'(t+ 1) — azb'lz =

2= Km) — ms) + c§'(y(t))|
= lea) — mm2 + c2|§(y(l))|2

+ 2c(u'2'(t) . §(y(t)) — au'i- 3132(0)).
Since tb'(t) - g'_<_ 0 for all y E 3’03) and since |§’(y(t))| S S, we have

|zD'(t + 1) — my]? 3 Wt) — awl2 + 0252 — 2catIi . 502(0)
3 lu'i(t) — auil2 + 0252 — 2ca6|y(t)|

_. _. 2< |w(t) — awl + cr,

since |y(t)| 2 1 because the set is not empty. The claim now follows easily by
induction on t. I

There are a variety of variants on the algorithm. A significant one involves
cycling through the vectors 3] E y one by one, and each time 115(t) ' 37 < 0,
setting 13(t + 1) = ”(t) + c37. This holds the promise of quicker convergence
since we don’t examine the entire set y before changing 125(t).

Let’s assess what’s been accomplished and what hasn’t been accom-
plished. On the positive side, we’ve stated an algorithm and proved that it
converges. This is a significant accomplishment since such results are rare in
this field. On the negative side, we’ve fallen down in three important areas:

0 Failure Detection: The theorem gives no indication of what happens when
no linear separator 13 exists. This can be dealt with but isn’t worth the
time since we’ll abandon perceptrons shortly.
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0 Time Estimates: It’s impossible to extract from the proof an estimate
of how long convergence will take without having 6, which depends on
already having a solution. This is typical—useful time estimates for min-
imization algorithms are usually impossible to obtain.

0 Motivation: The apparently ad hoc definition of 117(t+ 1) in Theorem 11.10
leaves us in the dark about how the algorithm might be improved upon
or how it might be extended to more general situations.

How can changing the weight vector by c§(y(t)) be made less ad hoc?
Let’s change notation slightly: 112' will now be the current vector 13(t). There are
various ways of looking at the problem of changing 112'. One fruitful approach
is to think in terms trying to increase

$76341)

since it’s a sum of terms, each of which we want to make positive.

You should be able to show that the gradient is given by

37€y(t)

Hence the algorithm changes 13 by c(u7), a procedure known as gradient
descent—or, more properly in this case, gradient ascent since we’re trying to
increase f(217’) Gradient descent is the first algorithm we’ll look at in the next
section.

Exercises

11.3.1. Prove that a solution exists for classification by a simple perceptron if and
only if a linear separator exists. (This involves little beyond translating from
one definition to another.)

11.3.2. Show that a linear separator for two inputs can be interpreted as a line in
the plane such that all inputs on one side are classified 0 and all on the other
are classified 1. What is the interpretation for three inputs?
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11.4 Finding Minima

[Minimum methods] are the first refuge of the computational
scoundrel, and one feels at times that the world would be a better
place if they were quietly abandoned. But even if these techniques

are frequently misused, it is equally true that there are problems
for which no alternative solution method is known.

—Forman S. Acton (1970)

In practice there are serious convergence issues
for such algorithms, with, unfortunately,
very few analytical tools to address them.

—Stuart Geman, Elie Bienenstock, and René Doursat (1992)

Since we’re moving through the domain of a function seeking values that make
the function small, we can think of minimization as a form of search. Of course,
the methods are rather different from those we studied for “combinatorial”
type searches in Chapter 2. Since the minimization problems are in Euclidean
space, we usually use tools from calculus. In this section, we introduce some of
the methods for minimizing functions of many variables that are particularly
suited for use in neural networks. We’ll also discuss some of the difficulties
that arise.

Types of Algorithms

Let’s suppose we want to find the minimum of some complicated function
g : IR" —+ IR. From Theorem 11.9(a), it would suffice to find the solutions if of
Vg(c'i = 6. It’s usually unrealistic to expect to solve such equations directly.
Instead, minimization problems are solved by search techniques called descent
methods. Maximization techniques are called hill-climbing methods. Of course,
replacing g(a':') by -—g(:z':') converts a maximization problem into a minimization
problem and vice versa. We can describe many max/min algorithms in general
terms by the following algorithm.
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Algorithm 11.2 Generic Hill Climbing/Descent
Given a fairly smooth function g : IR" —+ R and a termination criterion,
proceed as follows:

1. Start: Choose a value 550 and set I: = 0.
2. New Guess: Using information at flu—namely some or all of g(a':'k),

Vg(a':'k), and H(g(:fi'k))—and perhaps previous information, choose
0 a direction to move and

o a distance to move,

which together determine a vector file. Set :31,“ = 5k + Ii), and incre-
ment k. We call h], the kth step.

3. Terminate or Iterate: If the termination criterion is satisfied, stop;
otherwise, go to Step 2.

Depending on the information used in Step 2 of the algorithm, we can broadly
classify the methods as follows:

0 Simple Search: In this case, only the function values are used—derivatives
and previous function values are ignored. The amount of calculation re-
quired by such methods is generally too large.

0 Linear Approximation: These methods make use of the gradient V9 and
the approximation (11.11). The most naive approach is steepest descent,
also called gradient descent. Because it has severe problems, several mod-
ifications have been proposed.

0 Quadratic Approximation: The most direct way to obtain a quadratic
approximation is to use both the gradient and the Hessian H(9) Such
methods are potentially much better than methods based only on linear
approximation, and numerical analysts advise using them whenever pos-
sible.

Some methods use only first derivatives but make use of information
gained on previous steps to approximate the Hessian. This circumvents
the need to compute second-order partial derivatives but still provides a
quadratic approximation similar to (11.10).

Unfortunately, calculating the Hessian, or even just storing any ma-
trix approximating it, violates the requirement that neural net calcula-
tions be carried out in a distributed manner. There are some methods
that circumvent this problem for special situations, either by avoiding the
need for second derivatives or by computing just the vector H17 instead
of the Hessian matrix H.

Now we’ll look at some algorithms. As always, the goal is to indicate tools
and ways of thinking—not to provide a mere catalog of methods. As a result,
some details will be omitted.
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While on the subject of thinking, it’s worth noting that comparing al-
gorithms is often difficult and is particularly so for neural nets. People often
compare algorithms by collecting data from many runs of the algorithms. As
in practiCally all experiments, pitfalls await the unwary:

0 Comparisons may vary from problem to problem.
0 Comparisons may be sensitive to the choice of :30.
0 Comparisons may be sensitive to the criteria for stopping the algorithms.

(Instead of reaching a local minimum, we normally just get close.)

Newton's Method

Before discussing methods that are actually used, let’s see how the Hessian
can be used to find local minima.

For g : R —> 1R, a function of one variable, we have Vg = g’ and H = g”
in Theorem 11.8 (p. 449). Thus (11.10) yields the approximation

g(a + h) z g(a) + g’(a)h + %g”(a)h2 for |h| small. (11.13)
This approximation is simply a parabola and its extreme point is found by
setting the derivative with respect to h equal to zero. Solving for h, we obtain
h = —g’(a)/g”(a). This suggests that we take hk : —g’(:ck)/g”(a:k) in Step 2
of Algorithm 11.2 (p. 455). This is known as Newton’s method.

The idea is too naive. In the first place, it is attempting to find a point
where g’ (x) = 0, which could be a maximum or point of inflection instead of a
minimum. In the second place, we must be careful with division since |g”(:ck)|
might be nearly zero at times. Various methods exist for circumventing such
problems, but we needn’t go into them because they are primarily ad hoc and
would contribute little to our overall understanding of minimization methods.

Now suppose g : R” -—> IR. How can Newton’s method be extended to a
function of several variables? Replace (11.13) by

g(a + ii) z g(a) + (vg(a)) .5 + %iitH(g(&')li. (11.14)
In view of Theorem 11.9(a), we set the gradient of the right side (as a function
of h) equal to zero. After a bit of calculation (which you should do) we obtain

Vgo') + Haw/‘2’ = 0'.
(Remember that Hm- = H3-,,- when you do this.) Solving this equation for the
step 5k, we get

_. -1h. = — (H<g(a))) ma), (11.15)
which leaves us facing the same problems as in the single-variable case plus
the fact that finding H and H"IV may involve considerable computation.
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This computation is nonlocal in nature—it can’t be carried out by simple
computing units on the edges and vertices of the neural net. As a result, let’s
abandon this naive use of the Hessian.

Linear Methods

Using the gradient directly gives us only the linear approximation

g(r+i£) z 9(5)+ (Vg(i")) .13. (11.16)
We cannot attempt to find the minimum of this approximation since the values
of the approximation are not bounded below. Indeed, if you’re familiar with
basic n-dimensional analytic geometry, you may have recognized that the right
side of (11.16) is the equation for a hyperplane. (The one- and two-variable
cases are straight lines and planes, respectively.) Such a function has neither
a minimum nor a maximum.

What can we do?
Suppose we choose ii so that (Vg(:'i")) - H < 0. Then (11.16) suggests

that g(:i:'+ ii) < g(:i') for small enough ii. In fact, this is just what is stated
in (11.12). How should ii be chosen? How big should it be? What direction
should it point in?

The obvious choice for direction is that opposite the gradient because this
provides the most rapid rate of decrease for small |ii |. This choice of direction
for H is called gradient descent. Although the obvious choice, it is often not
the best. Thus, newcomers to minimization often try gradient descent while
full-fledged initiates look for other methods. In the next example, we explain
why gradient descent has problems and also estimate the rate of convergence
for gradient descent.

Example 11.4 A Difficulty with Gradient Descent

Consider the function of two variables

g(m,y) : 6:32 + 3/2, where 6 > 0 is small. (11.17)

You should be able to quickly see that the minimum of g(a:,y) occurs at
a: = y = 0.

The gradient at (13,31) is 2(603,y), so gradient descent gives us I: :
—217(6:c,y) for some 77 > 0. Then

(any) + 5 = ((1- 26mm, (1 - 703/)-
If we start at (mo,yo) and repeat gradient descent 1:: times, with the same 7)
throughout, we reach the point

((1— 26n)k$o,(1— 2n)kyo). (11.18)
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Figure 11.2 The dashed ellipses are level curves of g(:c,y) = 0.092:2 + 312: i.e.,
curves along which g(:c, y) is constant. From multivariate calculus, the gradient at a
point is perpendicular to the level curve through the point—a very different direction
than toward the minimum at the origin. The solid lines show three possible gradient
descent paths, each with five steps. The stepping rules are given by I; = —77Vg,
where n is the learning rate.

How fast could this converge? We must have [1 — 277] < 1 to keep the second
component from increasing. That is, 0 < n < 1. The Taylor series for log
truncated at the linear term gives us loge(1 — z) z —z. Thus

(1 — 2677),“ = exp(kloge(1— 2677)) m exp(—2k677) > 6—2” (11.19)

since 7) < 1. When 6 is very small, the convergence of (1 — 2677),” to zero will
be very slow, even when n z 1. (How large must k be to reduce :60 by a
factor of 10 when 77 z 1 and 6 = 0.01?—Get out your calculator!) Figure 11.2
illustrates (11.17). The value of 6 is fairly large so that the figure won’t be
too squashed in a vertical direction to be easily seen.

The factor 77 in if = a is called the learning rate. This may be somewhat
of a misnomer since it is a measure of step size. On the other hand, rate of
convergence can be thought of as the learning rate and (11.18) and (11.19)
connect 7) with the rate of convergence when 0 < 17 < 1.

The reasoning for (11.17) can be extended to a general function g near a
local minimum ('1'. The role played by 6 will be taken by the ratio of eigenvalues
of the Hessian. We do this now.

Using (11.14), we get g(c'i+ H) z 9(6) + %l-itHI-i, where H is the Hessian
of g at 6 and there is no gradient term because the gradient vanishes at a
local minimum.

Imagine applying Theorem 11.5 (p.444) with A = H and a? = ii. In the
resulting new coordinate system, fitHfi = My? + ---+ Anyg. Since we are
supposed to be near a minimum, I-itHl-i should be positive for all if 72’: 6. The
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only way that this can happen for all choices of 37 is to have A], > 0 for all
Is.

Using Exercise 11.2.9 (p.450), we can show that gradient descent with
learning rate 17 in the new coordinates and gradient descent with learning
rate 77 in the old coordinates lead to the same points. Our method for study-
ing (11.17) can be applied in the new coordinates. Let Amax be the largest
of the Ai’s. It can be shown that after k steps the ith coordinate has de-
creased by about a factor of exp(—2plcx\,-//\max), where 0 < p < 1. We omit
the details. Thus the rate of convergence of gradient descent depends on the
ratio Amin/Amax of the smallest to the largest eigenvalue of the Hessian. Of-
ten this ratio is quite small and so convergence is slow. Phrased another way,
the number of steps needed to at least halve all coordinates is proportional
to Amax/Amin. Thus, we say that the time constant for gradient descent is
proportional to Amax/Amin- When the time constant is large, convergence is
slow. I

How common is the sort of behavior in the previous example? Empirical
evidence indicates that Amax/Amin is usually quite large for neural nets. What
can we do to overcome the problem?

One approach is to carefully choose the distance that we go in the gra-
dient direction. This is a tricky problem: We try to find the least positive tk
that minimizes 9(3'3';c — tg(:E'k)).

At first, this appears to be no gain at all—we’ve introduced yet an-
other minimization problem. But the new problem is one-dimensional in-
stead of n-dimensional because the variable tk is a real number, not a
vector. For large n, the new problem is much simpler than minimizing
g : 1R" -—> R.

Finding t], is called Iz'ne search. This is a popular method in numerical
analysis texts. Unfortunately it may be impractical for neural nets because
computing 9 is usually costly. The following example shows how the idea might
be adapted and indicates a major difficulty.

Example 11.5 Approximating Line Search

In gradient descent, we have it], = —m, Vg(:fi'k) and want to choose the learn-
ing rate m, to be close to the tie that gives a minimum for line search. The
following observation suggests a method.

Let h(t) 2 9(51: — t(§:°k)) and let tk be the least positive t such that
h(t) is at a local minimum. Let Ek(t) = in}, — t(i"k) and let 5k+1 = 5H7")
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for some 1'. Then there is a T > tk such that

20, if0<T<tk,

(Vg(a:k+1)) - (Vg($k)) = 0, if 1' = tk, (11.20)

S0, iftk<T<T.

The proof is left as an exercise.

We might adjust our value of 77;, from step to step based on (11.20): Ad-
just it up or down, depending on whether the dot product of the two previous
gradients was positive or negative. This does not tell us how much of an ad-
justment to make, but at least it tells us whether to increase or decrease 771,.
In making such adjustments, we must be careful that 17;, not get too large
because it might exceed T.

This proposal is not a purely local condition since the computation of the
dot product (Vg(:i:'k)) - (Vg(:i'k_1)) requires that all the terms be summed up
at a central location. On the other hand, this is a relatively simple calcula-
tion.

This seems like a good way to approximate line search. Unfortunately, the
step size that makes (Vg(fk)) ' (Vg(:i:°k_1)) nearly zero will probably be quite
different from the one that makes (Vg(:i:'k+1)) - (Vg(i:'k)) nearly zero. Thus,
adapting 77;, may be impractical since the best value now and the best value
next can differ quite a bit.

There’s another approach based on the observation that even though com-
puting H is impractical, computing H17 is practical [28]. Let’s drop the sub-
script k that indicates the step and let if = V903). The line search problem
is then to choose t to minimize g(a':' + it?) By the quadratic approximation
formula in Theorem 11.8 (p.449) with ("i = a? and ii = tif, this is similar to
minimizing the quadratic

9(5) + (Vg) . (w) + %(t27)‘H(tz7) = 9(5) + ((Vg)t17)t + %(27tH27)t2,
where Vg and H are evaluated at f. The critical point of this quadratic is
at

t__ (WW_
UtHz')’ ’

which is a minimum if 17tHif > 0. Since H17 can be computed locally and
in about the same amount of time it takes to compute Vg, this method is
practical. I
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Another approach to the gradient descent problem is to move in a di-
rection other than the gradient direction. One idea is to learn from previous
movement, which is the idea behind “momentum.” Another approach is to
use some quadratic method.

Example 1 1.6 Momentum

Look back at Figure 11.2. Notice that as we use gradient descent we ei-
ther take steps that are too small (path A) or tend to reverse our direc-
tion with each step (paths B and C). If we learned from our past mistakes,
so to speak, we would take less timid steps than in path A while avoiding
the excessive motion in the y direction in paths B and C. How can this be
done?

To learn from past mistakes, we need some sort of simple memory. In
physical systems, there is a simple memory that tends to damp out radical
changes in direction—momentum. The minimization method based on this
idea is also referred to as momentum. It sets

13,. = 77,. (—vg(5.~',,) + ”51.1) (11.21)
where m, and [11, are some positive numbers that must be chosen. As in
gradient descent, m, is called the learning rate. We call 11;, the momen-
tum. When the momentum equals zero, ( 11.21) reduces to gradient de-
scent.

Suppose me = 17 is fixed and 11;, = ”(77) is fixed at an optimum value
that depends on n. (The optimum [1 cannot be determined a prion, so algo-
rithms are designed to adjust the value of ,u based on previous steps.) It can be
shown that, under reasonable assumptions, the time constant for the momen-
tum method is then proportional to N/Amax/Amim where Amax and Amin are
the largest and smallest eigenvalues of H. Since this is the square root of the
result for gradient descent, momentum should outperform gradient descent
when the learning rate is fixed. It does.

There’s an interesting contrast between momentum learning and the pre-
vious example. The previous example suggests that we should try to adjust
the learning rate so that the dot product of successive gradients vanishes; that
is, they are perpendicular. On the other hand, momentum tries to straighten
out the changes in direction. Studying conflicting ideas such as these two is
often rewarded by a deeper insight into the situation. What can we say here?
As noted at the end of Example 11.5, adjusting the learning rate as desired
could be difficult. It seems easier to adjust the learning rate and momentum
in a good manner. However, I’m not aware of any empirical or theoretical
confirmation of this.

How good is the momentum method? It varies considerably, depending on
the nature of the surface. The method is an ad hoc approach to the problem
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of descending “ravines”—regions with steep sides but a slow overall descent
rate. In other situations, it sometimes performs poorly. l

Quadratic Methods

Quadratic methods are usually significantly better than linear ones. Unfor-
tunately, they often involve computing a matrix that measures changes in g
with respect to pairs of values an, xj. This appears to cause both storage and
computational problems since both grow at least quadratically in the number
of parameters rather than linearly. Furthermore, such computations cannot
possibly be done locally since local storage is limited and the number of local
computation sites is essentially equal to the number of parameters. On the
other hand:

If the number of parameters is not large and you’re not interested in doing
calculations in a local manner, the problems are nonexistent.

Total work equals number of steps times the work per step. Since
quadratic methods usually converge significantly faster, the need for fewer
steps could easily mean less total work for a quadratic method than
for a linear one. This doesn’t address the problem of local computa-
tion.

There’s a practical use of the Hessian, which we saw while discussing
line search on page 460. The idea is that H27 doesn’t require a quadratic
amount of storage. Pearlmutter [28] discusses the efficient computation of
H17.

Finally, a quadratic method need not use the Hessian or a quadratically
growing amount of storage. That idea is discussed here.

While linear methods have dominated network minimization algorithms, it’s
likely that quadratic methods will dominate in the near future.
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Example 11.7 Sums of Many Squares

When a problem has some special structure, we should try to exploit that
structure. Anticipating Section 11.5, let’s note that in feedforward nets we’re
often trying to minimize a function of the form

5

9(a) = 530 (a?)—t.)2. (11.22)
(The value Ifs - tsl is the error in an output unit for a particular pattern.) A
look at books on minimization reveals that minimizing sums of squares is a
common problem and that special methods have been developed. Can we use
any of them here?

Of course, an expression for the gradient can easily be written down:

S

Vg=z(fs —t,)Vf,. (1123)
3:1

What’s more interesting is that an approximation to H‘IV can be found,
thereby opening up the possibility of using (11.15). Differentiating (11.23),
we have

a,
6,.H.j=Z(f.s— ”8:21:at] +82%

f f (11.24)

We can hope that the terms in the sums will be randomly positive and neg-
ative, and so tend to cancel out—except in the second sum when i = j since
all the terms are then squares. Thus, we have the approximation

{zf=.(af./ax.)2,
m = j,

Hg’j N

0, otherwise.

Hence
1

a

—' 1 S 2 ’
=

J)

(H )ilj z 23:1(af3/axi)

0, otherwise,

and so

-(H-1V)g z ‘Zf=1(fs _t3)6fa/a$i.

2.5:.(6f./6x.-)2
From (11.15), the n-variable Newton’s method, it seems reasonable to de-
fine

—Z:sS:1(f-9 _t,)6f,/6:c,
(1125)ii ,-—_.( )

23:1(afs/axi)2
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This approximation does not have the computational problems of the general
formula (11.15).

The approach in this example is closely related to an algorithm of Becker
and Le Gun [5]. Their method does not rely on having a sum of squares and,
even for the sum of squares (11.22), gives a step that differs from (11.25). See
Exercise 11.5.4 (p.476). I

In the previous example, we approximated the Hessian H, obtaining the
quadratic approximation

9(5+5) ~g(a)+ (Vb-5+ % Zea-2,

whose right side we then minimized. This approximation has an interesting
feature: There are no terms of the form hghj present. What this means is
that interaction between different components of ii has been neglected in esti-
mating g(:i:' + ii). Perhaps we should look for other methods that ignore such
interaction. That idea provides the basis for the next example.

Example 1 1.8 Quickprop

We’ll look at minimizing a general function g(:E) and neglect the interaction
between different components to obtain a quadratic approximation. In con-
trast to the previous example, we won’t attempt to approximate the Hessian.
Instead, we’ll use only the function and the gradient.

Suppose we have a function of one variable and want to approximate it
with a parabola using just function values and derivatives. Since a parabola
is an arbitrary quadratic, y 2 A332 + Ba: + C, there are three unknown coeffi-
cients. Since we want to determine three numbers A, B, and C, we need three
numerical pieces of information about g(:c).

Since we’re not using the Hessian, only the function g and its derivative
are available. Evaluating them at 3:], gives only two data points, which is not
enough. Hence, values of g and g’ at previous points must also be used. How
should we choose among 9 and g’ at the current point :01, and the previous
points, mk_1, mk_2, ? Since we have three constants to determine—A, B,
and C for the parabola—it suffices to choose three of these values. Which
ones? A good rule of thumb is

In iterative algorithms, give the most emphasis to the most recent
information.

This tells us that we should use 9(3),) and g’(:ck) together with either g(:ck_1)
0F g'($k—1)-
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As we’ll see, g(:ck), g’(mk), and g’(a:k_1) are the easiest to use because of
a nice property of parabolas:

I b _ I
If p(:z:) : A32 + Ba: + C', then W= 2A whenever b ;é a. (11.26)

Suppose that p’(c) : 0 so that c is a maximum (if A < 0) or minimum (if
A > 0) of p(a:). Put a = c in (11.26) to obtain

p’(b) - 0 = M = p’(b) -P’(a) and so 6 _ b _ p’(b)(b - 0)b—c b—a ‘ p'(a)—p'(b)'
Approximating p(a:) with g(1:), setting a = “-1, b = 3:1,, and c = “+1,
leads to

(33k — mk—1)g’(mk) -f 9'0”) - 9'($k—1)
I I ’ 1 > 0’hk = g ($k—1)- 9 (13k) 13k — (ck—1 (11.27)

??? (undecided), otherwise.

The undecided case corresponds to a parabola whose critical point is a max-
imum. If g is reasonably well-behaved, this should occur rarely if ever. Nev-
ertheless, we must decide what to do. About all that can be done is to
head down the slope; that is, somehow choose a value for he that is op-
posite in sign from g’(a:k). If this is done so that lhkl is small enough, then
g(a:k+1) < g(a:k). (We also need to be careful of small denominatorsin the
first case.)

You may have noticed that (11.27) uses only two values, namely 9’ (2:1,)
and g’ (51:13-1), but we pointed out that three values are needed to determine
A, B, and C. What happened?

* * * Stop and think about this! * * *

We computed only one number, the minimum point of the parabola. The a:
coordinate of the minimum depends only on slope information. Since a single
y coordinate provides no slope information, p(a:k) does not enter the calcula-
tions. If we’d used p’(a:k), p(:ck), and p(xk_1), the answer would have involved
10'(13k) and (13031:) —P($k—1)) / (17k — ink—1)-

The above calculations were done for a function of a single variable.
Since we’re ignoring the effect of interactions between different components
of ii, we can use (11.27) for g(:i:'). All we need do is (a) replace g’(a:) with
39(55)/0mi and (b) replace hk and an, -— “-1 : hk_1 with the ith compo-
nents of the vectors if), and 513-1. This is the core of Fahlman’s Quickprop
algorithm [8]. I
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Exercises

11.4.A. Describe a generic hill-climbing/descent algorithm.

11.4.B. Distinguish between simple search, linear approximation methods, and quadratic
approximation methods for minimization. Which are usually infeasible be-
cause of the amount of calculation? the amount of storage?

11.4.C. Give three reasons why it is often difficult to compare minimization algo-
rithms by testing them on a variety of inputs.

11.4.D. Why are quadratic methods good? Why are they bad?

11.4.E. What is gradient descent? Why is it bad? What is the momentum method
and how does it attempt to overcome the problem with gradient descent?

11.4.F. What basic principle of iterative algorithm design does Quickprop use?

11.4.G. What is the idea (assumption) behind Quickprop? In other words: Although
Quickprop requires only first derivatives, it gives a quadratic approximation
if a certain assumption holds. What is the assumption?

11.4.1. Show that, of all vectors with |ii| = 6, the one that makes Vg(:i:') . ii a max-
imum is given by

4 6
(IV9($)I)

Show that the vector for a minimum is given by —I-i.

11.4.2. Fill in the details of the proof at the end of Example 11.4 about the rate
of convergence in the general case. Don’t forget to show that using gradi-
ent descent in the new coordinates is the same as using it in the original
coordinates.

11.4.3. The goal is to prove (11.20).

(a) Show that h'(t) = —(Vg(:'c'k)) - (Vg(:i:'k(t))).

(b) Use the previous part and single-variable calculus to deduce (11.20).

11.4.4. In this exercise, you’ll verify the comment at the end of Example 11.5 in a
particular case. Let 9(53') = %(10312 + 393% + 1:3).

(a) Show that to have Vg(:'l:'k+1) and Vg(:i:'k) perpendicular requires that

_ 1023,26’1 + 323%,2 + reg,3
_

3 2 3 2 2 '
10 $k,1 + 3 $k,2 +513,“3

77k

(b) Suppose :30 = (10,10,10). Show that 710 = 0.107, :31 = (—0.7,6.8,9.9),
and 171 = 0.19.
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Figure 11.3 A textbook example with few relative minima and maxima ver-
sus the sort of picture that may be closer to what occurs in real-world prob-
lems.

11.4.5. In the momentum method, show that, for sufficiently small 77k: the step goes
down whenever

.. 2 .. -*
|V9($Ic)| + Ah (V9000) 'hk—l > 0-

Also, show that it goes up if the inequality is reversed.

11.4.6. In the momentum method, it is important that The and A}, not be too large.
To begin analyzing the situation, let’s make the totally false assumption that
Vg(:i:') is independent of 53'. This is a sort of worst-case assumption because
all the vectors will point in the same direction and so there will be no can-
cellation. Also, set 17;, = 17 and A], = A for all k. To start the momentum
algorithm, set 1:0 = 6.

(a) Show that

(b) Show that MAI < 1 is necessary and sufficient for if], to converge.

11.4.7. Fill in the details of the derivation of (11.27).

11.4.8. What do we obtain in place of (11.27) for the step hk if we use g(:ck), g’(a:k),
and g(a:k_1)?

*Domains of Attraction

Real-world functions are often more complicated than those in calculus texts.
For functions of a single variable, Figure 11.3 shows what you encounter in
textbooks as opposed to what you may encounter in the real world. Both
of the local minima in the interior of the left-hand curve might be accept-
able, but many of the local minima of the right-hand curve probably would
not be. It then becomes important to reach an acceptable local minimum. In
AI, we usually have many variables——so the situation is even more compli-
cated.
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A useful concept is “domain of attraction.” Suppose that g : 1112.2 ——> R.
Then we can construct a physical model of g, with a vertical axis for g(:r, y)
and horizontal axes for :c and 3/. Imagine a drop of water released on this
surface at (2:,y, g(:r,y)). If it rolls without inertia, it will reach a local min-
imum 17. We say that (:r,y) is in the domain of attraction of 23'. More gener-
ally:

Definition 11.10 Domain of Attraction

Let if be a local minimum of a continuous function g : lR" —-> IR. We say
that if is in the domain of attraction, or attraction basin, of if if there is
a “downhill path” from 53' to 17.

Aside. For those who want precision, “downhill path” can be made precise as fol—
lows. We assume that g is differentiable. If p : [0, 1] —> R" is a differentiable function
such that 12(0) = ('6', 12(1) = if and (g(p(t))' S 0 for t 6 (0,1), then p is a downhill
path from 53' to if.

Suppose that some fraction r of all possible starting points :30 belong to
the basins of unacceptable local minima. For example, they may be unaccept-
able because the function values are too large. If we choose :30 at random, our
probability of reaching an acceptable local minimum is roughly 1 — r. (We
said “roughly” because a minimization algorithm may sometimes take a step
from one basin to another.) Here are some ways we might improve the 1 — r
probability.

0 We could change the function g. This may be impractical.

c We could try several random starts and choose the best answer. With
k independent random starts, the probability that all of them lie in a
bad basin is roughly 1'" and so the probability of success is roughly
1 — 7*”. For example, if r = 0.3, quadrupling the amount of work by
setting 16 = 4 changes the chances of success from 70% to more than
99%.

o Unacceptable local minima often tend to have smaller basins of attrac-
tion. We can we try to escape from them by sometimes taking large
steps or by sometimes going uphill. This is more likely to get us out
of a bad basin than out of a good one. It’s common to try to elimi-
nate uphill tendencies. Ironically, this might make an algorithm worse.
A systematic approach to uphill movement is provided by “simulated
annealing.”
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Example 11.9 Simulated Annealing for Hopfield Nets

When a Hopfield net is storing many patterns, spurious local minima arise.
These typically have larger function values than minima associated with pat-
terns stored in the net. Our definition for basins of attraction does not apply
since vertex outputs are limited to the discrete values :|:1 (and sometimes 0),
while our definition requires real values. Nevertheless, the problem of unac-
ceptable local minima still exists. In the previous section, we gave an algorithm
for the Hopfield net which had the property that each step took it downhill.
As a result, it might stop at a spurious local minimum. We’ll indicate how
the algorithm can be modified to escape from bad minima by using simulated
annealing.

Simulated annealing receives its name from the physical process of an—
nealing in which a metal is tempered by gradually lowering the temperature.
At any time, an atom can move to a new state. The probability of choos-
ing a state depends on the energy difference and the temperature. With slow
cooling the crystalline state of the metal achieves a lower overall potential en-
ergy because the probability of escaping from local potential energy minima
is greater at higher temperatures.

Call the quantity in (11.5) (p.433) 131(5). Since it equals <I>(6") — <I>(6'),
it measures how much the energy will increase if the lth component of 6' is
changed. If the absolute “temperature” is T, then simulated annealing would
change the lth component of 6' with probability

1
1+ exp(A1(6')/T)°

Pr(change 01) 2

Whether 01 changes or not is decided at random using this probabilty.
(Many versions of simulated annealing set Pr(change 01) = 1 when A1(5') <
0.)

To complete this discussion, we must specify T as a function of time
t. This is referred as an annealing schedule. It is known that if T(t) :
C/ logt for some constant C' that depends on the problem, then the sim-
ulated annealing will converge to a global minimum. Unfortunately, the
time required for this leads to excessive computation, so some compro-
mises are needed. Choosing effective annealing schedules is a difficult prob-
lem.

The algorithm I’ve just described brings us close to the concept of a
Boltzmann net, which I won’t discuss. I



470 Chapter 11 Neural Networks and Minimization

Unfortunately, understanding the basins of attraction of functions that
arise in practice is quite difficult. Success at the theoretical level is hampered
by the complexity of the situation. Success at the experimental (numerical)
level is hampered by the considerable number of calculations needed to obtain
a reasonable amount of information.

Exercises

11.4.H.

11.4.I.

11.4.].

11.4.9.

11.4.10.

*11.4.11.

What is a domain of attraction?

How can repeated random starts of a algorithm help overcome the problem
of bad local minima?

How can simulated annealing help overcome the problem of bad local min-
ima?

The following method is proposed for finding domains of attraction. Select
an algorithm that finds a local minimum given a starting point 530. Select
a set of points so that the space of possible :E’s is well covered. For each 53'
in the set, run the algorithm with 530 = 53' and note the minimum 172(5) to
which it converges. We then claim that 5? belongs to the domain of attrac-
tion of 13(3), with due allowance for the fact that 173(5) may be sightly off
from a minimum because the algorithm will probably not exactly reach a
minimum.

(a) Explain why this method will probably not give an accurate picture of
the domains of attraction.

(b) Defend or attack the thesis that the result obtained by the above algo-
rithm is more relevant than the actual domains of attraction. (There are
arguments for both sides.)

Using the ideas in Example 11.9, write out an algorithm like Algorithm 11.1
(p. 434).

Let 531,...,:i:'p 6 HR." be such that every vector in HR" can be written in
the form 2p cpziip for some Cp 6 HR. (The cp’s may not be unique.) Let
y1,...,ypElR.Definegln—rly

P
-. -. 2

200°” ‘31P) ,
pzl

Prove that g has a unique local minimum and that its basin of attraction is
the entire space IR".

9(a) =
NII—l

f,
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11.5 Backpropagation for Feedforward Nets

Backpropagatz'on is an application of the chain rule to the computation of par-
tial derivatives in feedforward nets. A feedforward net is a net whose directed
graph has no cycles. We call such a graph a DAG—directed acyclic graph. A
feedforward net is a DAG with

I:{vEVIthereisnomEVwith(a:,v)EE}
and

0:{vEVlthereisnoxEVwith(v,:c)EE}

The simplest sort of feedforward net is one with no hidden units. Unless III
is large, such a net is not very useful. The next step up is a feedforward net
with

V=IUHUO and
Eg(IxH)U(Hx0).

We call H the hidden layer. More generally, we can define

V=IUH1UmUHkUO and
E§(IxH1)U(H1 xH2)U---U(Hk_1 k)U(Hk x0)

to obtain a feedforward net with 1:: hidden layers. Of course, a feedforward
net need not have the hidden vertices in layers. These ideas are illustrated in
Figure 11.4 on the following page.

For Hopfield nets, training is simple—just set wm- = ZPz-(k)PJ-(k). On
the other hand, getting an answer (i.e., recovering a pattern) is relatively
time-consuming. This may cause problems in applications: A net may be
trained once and then used repeatedly. Using feedforward nets is simple be-
cause a pattern is simply propagated forward from input vertices to the output
vertices. In contrast, training is a time-consuming minimization process based
on the methods of the previous section. You’ve already had a taste of this with
the perceptron training algorithm in Theorem 11.10 (p. 451). The algorithms
for general feedforward nets are much slower and offer no guarantees that they
will find good local rninima.

Feedforward nets have been studied more than any other neural net ar-
chitecture. This is probably due to their ability to fit training sets and the
concept of “backpropagation,” which forms the basis for a variety of learning
algorithms. In this section, we’ll limit ourselves to discussing feedforward nets
with just one hidden layer for the following reasons:

a The behavior of these nets is sufficiently rich to be useful.
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XXIX «»
._.Iva

I H1 H2 H1, 0

(a) (b) (C)
Figure 11.4 Feedforward nets that have (a) one hidden layer, (b) 1: hidden layers,
((3) hidden units not in layers. All edges point toward the right. (Arrowheads have
been omitted to avoid clutter.)

o The limitation helps us keep discussions simple, especially in equa-
tions.

0 The computational ideas and the observations apply to general feedfor-
ward nets.

After introducing notation, we’ll state the backpropagation algorithm for 10-
calized computation of the partial derivatives. Some concerns associated with
implementation are discussed in the following section.

Assumptions and Notation

The special form we’re assuming in this section is a feedforward net with one
hidden layer, where

0 all possible edges are present so E = (I x H) U (H X 0),
0 all vertex functions have the form in (10.1) (p. 409), and
o the parameters should be chosen to minimize the sum of the squares of

the output errors over the training set.

The top part of Figure 11.5 shows how calculations move through the
net.

The following notation will be used throughout

[II = a, elements of I are denoted by a’s,
|H | = 1), elements of H are denoted by fl’s,
IOI = c, elements of 0 are denoted by 7’s,
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vertex j

vertex i ‘ " > Inf = 91' + 23' oi
01' = f(1112')

vertex i

z,- = 23,- wm' 51'
53' = f’(In;)zg """""""""" 53' """""""""

vertex j

Figure 11.5 The top diagram shows information flow from i to j during out-
put calculation. The bottom diagram shows information flow from j to 2' during
backpropagation. Dashed arrows indicate information flow. (The variable 2; was in-
troduced just for the figure.)
Warning: It’s common in the neural net literature to write 20,-); for the weight of edge
(2', j), so you may need to reverse the order of indices when reading the literature.

P = number of patterns in the training set,
00(1)) 2 output of a given in the pth training pattern, and
0.”;(p) = desired output of 7 for pth training pattern.

Exercises

11.5.A. What is a feedforward net? a hidden layer?

11.5.B. Explain the following statements. Training times differ markedly between
Hopfield nets and feedforward nets. The same is true for the times required
to classify a pattern after training.

11.5.1. Here we consider the possibility of designing a simple neural net with no
hidden states. We also assume that the outputs are all :l:1. Define

P

wary = Z 0a(p)0§(p)
10:1

and let fv = :l:1 according to the sign of Ex oxwxm. Compute the argument
of f7 when pattern 00(1) is fed into the network and use it to show that for
small enough P we can expect to get output 0.”;(1).
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Backpropagation

Backpropagation is a localized method for computing partial derivatives by
using the chain rule. The calculations are localized in the sense that computa-
tions are done at the edges and vertices, each of which has a severely limited
storage capacity, and information is propagated backward along the edges.
This localization makes it feasible to consider implementing backpropagation
in a massively parallel manner. In our notation, the goal is to minimize

P
-o a —o " -o a 11 2g(w,0)=§jg(p,w, ). where g(p,w,a)=%23(o.(p)—o.(p)) , (11.28)

P=1 760

if} is the vector of all weights w”, 0-. is the vector of all 0’s,

07(1)) = f(97 + Z 0fi(P)wfin): (ll-29)
fiEH

03(1)) = 1(6).) + 2 0.4mm...) (11.30)
are!

and the values of oa(p) are given by the training pattern.
Since the values of 0.,(p) are built up by functional compositions, this is

a natural situation for the chain rule, Theorem 11.7 (p. 448). Let In, and Ing
denote the arguments of f in (11.29) and (11.30), respectively. We use this
notation because the argument of f at a vertex v is thought of as the signal
coming into the vertex, which then sends out the signal f(In). For (i,j) E E,
the following partial derivatives are useful:

(9900,13,!9) _ ,, , .
W

_ (07(p)
— 01(p))f any), for starting,

I .
31:] = wi.jf’(1ni), for backpropagating, (11.31)

i
a Inj a

In]. _ . .

awz‘J
_ 0‘ and 00.,-

- 1, for computing the gradient.

You should derive these formulas.
Using (11.31) gives rise to backpropagation, so called because information

is transmitted along edges of the DAG (V, E) in the reverse direction of the
edges, starting at 0 and moving back to I. An important observation follows
from the facts that (11.28) is a sum over patterns and the derivative of a sum
is the sum of the derivatives:

Derivative information can be collected at each vertex by backprop-
agating information for each pattern separately and then adding up
the results.
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Figure 11.5 may help you picture what is happening in the backpropagation
algorithm that follows.

Algorithm 11.3 Backpropagation
Suppose that a feedforward net with a single hidden layer is given. Sup-
pose that a training pattern of matched input (oa(p) for a E I) and
desired output (0.”;(p) for 7 E 0) are given. First carry out the forward
computation in the usual manner:

Inp = 0p + awafi’ 0:3 = farm)
and then similarly for In, and 07. After this, information for the pth
pattern is backpropagated as follows.

1. Send to 7: Send to all 7 E 0 the value (07(1)) — 0;(p)). Each 7
multiplies what it receives by f’ (In,) and calls the result 67.

2. Send to 6 and (6,7): Each 7 E 0 sends to all ,8 E H and to each
edge (6,7) the value 67. Each (6,7) multiplies what it receives by
03 and calls the result 6,3,7. Each 6 multiplies what it receives by
tag” f’ (Infi), sums over 7, and calls the result 6p.

3. Send to ((2,6): Each 6 E H sends to all edges (a,fl) for a E I the
value 6p. Each (a, ,6) multiplies what it receives by 00, and calls the
result 60,73.

When the algorithm is done, 6,- is the partial derivative of the pth term
of (11.28) with respect to In,-, which is also the partial with respect to 05.
Also, 6331' is the partial derivative of the pth term of (11.28) with respect
to w”.

The proof of the algorithm’s correctness uses (11.31) and is left as an exercise.
As a result of backpropagation, each edge and vertex has stored informa-

tion for the pth pattern in a value called 6. Let each vertex and each edge sum
its 6’s over all training patterns. The result is the gradient of 901726.), where
the partial with respect to 0., E V is the sum at vertex v and the partial with
respect to we 6 E is the sum at edge e.

The gradient is sufficient for the momentum and Quickprop equations,
(11.21) (p.461) and (11.27) (p.465), respectively.

In the Newton’s method approximation (11.25) (p. 463), more information
is needed: We must also compute the sum of squares in the denominator of
(11.25). To do this, we backpropagate to compute the values of C” = 007/06,,
and 807/0108. They begin C = f’ (In7) and are propagated backward just
as the 6v’s are. Each edge and vertex then takes what it has, squares it, and
sums the squares over all input patterns.
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Exercises

11.5.C. Explain the meaning and importance of the statement that backpropagation

11.5.2.

11.5.3.

*11.5.4.

11.5.5.

11.5.6.

*11.5.7.

involves localized calculations.

Prove the claims in Algorithm 11.3 by judicious use of the chain rule.

Write out explicitly the propogation rules for the 00’s for using (11.25)
(p. 463) and verify that they give the correct partials.

Becker and Le Gun [5] have proposed an alternative method to that in Ex-
ample 11.7 (p.463) for neglecting diagonal terms. It doesn’t depend on g’s
being a sum of squares. You’ll study it here.

(a) Derive a formula for 62g(p,...)/(6In.y)2 where g(p,...) is given by
(11.28).

(b) Becker and Le Cun approximate 82g(p, . . )./(8Infi)2 by

a2 , a ,. ..) ,,
Z (_5g___(pWW)2)(wmf(Infi))2 +2_9(1),, wfinf (11m)-

.Y

What terms are being neglected? Does this seem reasonable?

(c) Becker and Le Cun approximate (92g(p,...)/(6112M)2 by

2(amp. . . .)/<aIn.-)2) (f(In.-)) .
What terms are being neglected? Does this seeem reasonable?

This exercise deals with the backpropagation algorithm for a general DAG.
(a) Describe the numerical calculations needed to compute the information

in backpropagation.

(b) Describe how to time the propagation of information backward. You may
find it useful to assign two states to vertices and/or edges to indicate
whether or not they have received (or sent?) backpropagated informa-
tion.

Algorithm 11.3 focuses on partials with respect to In”. Can the algorithm
be modified to focus on 0,, instead? If yes, do so. If no, explain what the
problem is.

While it is obviously not feasible to compute all second-order partials by a
local algorithm, it might be feasible to compute 629/(6wi,j)2 and 82g/(60j )2
by a modification of backpropagation.

(a) Explain how to do this in a local manner for 67 and wfin'

(b) Can it be done in a local manner for 0;; and wa’fi? Justify your answer.



11.6 Parameter Issues in Feedforward Nets 477

*11.5.8. Training a neural net is often time-consuming. It has been suggested that this
could be sped up by taking steps more frequently. Here are some suggestions.
Let 6,- (p) be 6.,- for the pth pattern as computed by the backpropagation
algorithm.

(i) Sum 6j (p) over all p and use it to take a step. Repeat this. This is the
method discussed in the text.

(ii) Sum 6j (1)) over m patterns and use it to take a step. Repeat this using
another set of m patterns, either the next m repeatedly cycling through
the patterns, or a randomly chosen set of m. At one extreme, m = 1; at
the other, m is the number of patterns in the training set and we have
(i) again.

(iii) Start with 6- = 0. As in (ii) sum m values of 6j (p) but now define a
new 61' equal to this sum plus 7' times the old (Sj where O S r < 1. When
1‘ = 0, we have (ii) again.

Can you suggest other methods? What do you think might be the pros and
cons of these various methods? Some issues you might address are:

0 Will it converge? If so, would it be faster or slower?
0 Will it help in the escape from local minima?
o How might these ideas help if a net must be constantly retrained because

the environment (typical patterns encountered) is changing (slowly?)
with time.

This exercise has no one right answer and might best be used for class dis-
cussion.

11.6 Parameter Issues in Feedforward Nets

Various issues arise in designing networks and their algorithms. Ignoring these
issues lessens your chances of writing a successful program, but an awareness
of them is not central to a theoretical understanding of neural net algorithms.
Hence, unless you are planning some programming or some research on algo-
rithms, you may wish to skim the next two sections.

In this section, we focus on parameters; in the next, data. The discussion
of some issues is largely independent of network and algorithm specifics, while
other discussions are highly dependent on specifics. In the context of feedfor-
ward nets, here’s a list of parameter issues that progresses, more or less, from
very independent to very dependent.

0 Network geometry: What should the size and structure of (V, E) be?
0 Activation functions: What should we use for the activation functions fv?
o Initialization: How should the starting values of the parameters be se-

lected?
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Excessive parameter growth: What should be done if a parameter is moving
outside the range that’s considered acceptable?—and what is an accept-
able range anyway?
Stopping: How should we decide that the algorithm has converged suffi-
ciently?
Internal parameters: How should the algorithm’s own parameters be set?

Discussing an algorithm’s internal parameters requires focusing on a particu-
lar algorithm, which we won’t do. Network geometry for feedforward nets is
discussed to some extent in Chapter 13. The remaining issues are discussed
here.

Activation Functions

How should we choose the functions fv? Since we plan to differentiate them,
we should choose functions whose derivatives are easily computed. Here are
some possibilities.

Linear: Linear functions are obvious candidates. This is a very bad choice
because the output of the network is simply a linear combination of the
inputs regardless of the number and arrangement of the hidden units. (See
Exercise 11.6.2.) In other words, the net reduces to a perceptron, which
was discussed in Section 11.3.
Logistic: The output of a biological neuron is a nonnegative increasing
function of its input. A simple function of this form, which is also easily
differentiated, is

f(3) =
1+ 6“ since f’(s) = f(s)(1— f(s)). (11.32)

This is called the logistic function and is shown in Figure 11.6. We then
set fv = f(flv + Ex 031123,”).

Radial basis: A different approach is to design functions that look at the
form of the vector of inputs instead ofjust reacting to total strength. Thus
fv looks for ow to be close to some number, say wt,” , for each a: E In(v). We
cannot use 2 01,1123,” to measure this closeness. A reasonable alternative
is 2(03 — mam)2 since it is small if and only if the inputs 0,; are close
to the parameters way. The radial basis functions are based on this idea
and are largest when 0,, = ww, for all a: 6 In(v). We take

fv = exp (#7.? Z (on: — 103,02). (11.33)
:vEIn(v)

There are two reasons for using 03, in the denominator instead of just a
multiplicative factor of 0”. First, 0., could become negative but a square
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—'3 —2 —'1 0 i 52 3
Figure 11.6 A graph of the logistic function (11.32).

cannot. Second, (11.33) looks more like a “normal density function,” which
we’ll study in the next chapter.

0 More general: Let 6' and 13,, be vectors indexed by In(v). The linear and
logistic functions have the form f” (6'- 13”) while the radial basis functions
have the form fv(|6'— 117,, |). Obviously, we could use other maps (5,131,) —>
IR. Some researchers have done so.

Aside. It can be shown that a variety of nonlinear functions, including logistic and
radial basis, have a nice property: Suppose we are given a training set and a G > 0.
There is a feedforward net using the selected function such that 9056,13) < G'; that
is, the net is a good approximator to the training set. Such a net can even be built
with only one hidden layer. While this sort of theoretical result is comforting, its
practical implications are somewhat limited.

First, it says nothing useful about the number of hidden units that are needed.
Too many units can lead to poor generalization. See Figure 10.3 (p.421).

Second, it says nothing about the shape of 9013,51. ) It may be so bad that
minimization algorithms are unable to find the values of {6 and 5 that make 9 small.
Experimenters have reported situations in which g from nets having one hidden layer
was difficult to minimize but g from nets having two hidden layers was not.

Exercises

11.6.A. List several parameter issues for feedforward nets.

11.6.B. Why are linear activation functions a bad choice?

11.6.C. How do logistic functions and radial basis functions differ in what they look
for in inputs: that is, in what produces large output versus what produces
small output?
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11.6.1.

11.6.2.

11.6.3.

11.6.4.

11.6.5.

Chapter 11 Neural Networks and Minimization

Show that we can convert 9' into edge weights by adding another vertex
that has no inputs, has constant output 1, and is connected to all noninput
vertices. Why can’t this be done with 6" in radial basis functions?

The purpose of this exercise is to show that a linear function is a bad choice
for fv. Let zv = Ex omwxm. We assume that fv = Au zv + 01,, which is more
general than a linear function of the form fv = f(zv + 00) since Av also
depends on 2). We will also work with an arbitrary DAG.

(a) Prove that if all the inputs to v are linear functions of the input pattern,
then so is 0”. In other words, if there are constants (1,3,5 and bx such that

01; = 2 (13,50; + bx, for all a: such that (:13, v) is an edge,
iEI

then 00 also has this form.

(b) Use the previous result and induction to prove that 0,, is a linear com-
bination of the inputs for all 1) E V.

Show that the logistic function always lies between 0 and 1 and that it is
symmetric about (0, %). The latter means that —(f(3) — %) = f(—s) — %; in
other words, f(—s) = 1 — f(3).

Develop a backpropagation algorithm for computing the gradient when radial
basis functions (11.33) are used.

There are those who believe the logistic function is a poor choice because the
weight change algorithm should react equally to the extremes of the input.
We explore that here.

(a) Show that the wi’j component of the gradient does not behave symmet-
rically with regard to 0i; that is, the values differ radically for 0,- = E
and o,- = 1 — 6.

(b) Suppose the logistic function f(s) is replaced by the hyperbolic tangent
%tanh(s/2) = f(3) — %. Show that the wz-J component of the gradient
now has a symmetry in the two extreme values 0.- = —1 + c and o,- =
1 — c.

(c) Let 125 and 5 be a set of parameters for a feedforward net using the logistic
function. Determine parameters {15* and 5* such that the same feedfor-
ward net with the function f(s) — % will behave in the “same manner.”
The “same manner” means that the inputs and outputs must be trans-
lated from the interval [0,1] to [—%, %] by subtracting %.
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*11.6.6. In this exercise, you look at an alternative to the sum of squares definition
(11.28) for g(fi'),0).

(a) There are those who point out that momentum methods using the logis-
tic function—or any monotonic function to (0,1)—have problems near
0 and 1. Explain why this is so by looking at how f’(s) contributes to
V9 when sis near 0 or 1.

(b) Let’s replace (11.28) with

900,115) = 2 (031(1)) 10g 07(1)) + (1- 0202)) 10g(1 - 07(1)»)-
760

Show that aloga: + (1 — a)log(1 — 2:) has a maximum at :r = a and
use that to argue that minimizing g is a reasonable goal. The new 9 is
related to “cross entropy” and has been proposed by various people. See
Exercise 12.4.7 (p. 541).

(c) What changes must be made in (11.31)?

((1) How does the new value of g change Bg/awfifl. Does this help the prob-
lem discussed in (a)?

(e) How does the new value of 9 change 6g/8wmfi. Does this help the prob-
lem discussed in (a)?

Initialization

A natural choice for starting values would be 172' = 6 and 0—. = 6, but this is
a very bad choice. The major problem with this choice is symmetry. Since
all the nodes in H are connected to all the nodes in I and in 0, permuting
the nodes in H gives the same DAG. To be more precise suppose that 7r is
a permutation of H; that is, 7r : H —> H is one-to—one. You should be able
to easily see that the following are true. (Drawing yourself a picture may be
useful.)

0 The outputs computed by a network with parameters 117' and 0—. will be the
same as those computed by a network with parameters given by

“’51s = wanrm)’ w'pn = “Wm, 923 = 0W9), 99 = ‘97- (ll-34)
o. <51 U)o0 Furthermore, an algorithm that adjusts if} and 5 will adjust 11')" an

that the equalities (11.34) will continue to hold. In particular, if 112' = 212'
and d. = d" at some step, they will remain equal from then on.

In other words, an algorithm does not destroy symmetries. Although it can-
not destroy them, it can create them. Thus, we have a basic principle for
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algorithms:

Always initialize parameters so that no symmetries are present. If
possible, start the parameters so that they are not even near values
with symmetries.

In our case, this means that we want to choose if} and 5. so that if

was = “’0m Wm = 10mm 9a = 0W?) (ll-35)
for all a, ,6, and 7, then 7r is the trivial function 7r(fl) = fl.

One method for doing this is to choose the starting values at random.
If this is done, we can be practically certain that there is no symmetry. To
see this, notice that a nontrivial 1r in (11.35) will require several nontrivial
equalities between parameters, and notice that two randomly chosen numbers
are not likely to be equal. Random initialization is just an application of (11.6)
(p.435).

There are two natural questions at this point: Is random choice the best
we can do? and How should the random numbers be chosen? The answers
aren’t known. Some researchers believe it’s good practice to choose “nor-
mally distributed” (2 “gaussian”) random numbers. These are described on
page 512.

Excessive Para meter Growth

A false balance is an abomination to the Lord,
but a just weight is God’s delight.

—Proverbs

Experimenters have observed that when the parameters of a neural net are
large, the net tends to perform poorly. Apparently the descent algorithm finds
a poor local minimum. They have also observed that if the algorithm is going
to go off the track, it usually starts to do so fairly early.

Given these empirical observations, what should we do? Here are three
possible ways to deal with the weights. The biases 0-. can be handled similarly.

o If some weights are getting too large, restart the algorithm. Assuming
initialization is “random,” a new start may do better. Restarting is not
as drastic as it sounds because we may want to run an algorithm several
times anyway, and then select the best result.

0 Insist that Iwm-I g 112nmx for all i and j. The value of wmax might depend
on the number of steps taken. We can force |w,-,j| g wmz,x by simply
setting a value back to :lzwmax when it becomes too large. Exercise 11.6.8
discusses another method.
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0 Change the function we are minimizing to include a penalty for larger
parameters. For example, we could minimize

. .. -' _. .. /\g<w.0) = g(w.0)+ 5(z: wzj +203), (11.36)
i,j i

where g is given by (11.28). This procedure is often referred to as weight
decay. The value of /\ > 0 must be chosen somehow and might depend on
the number of steps taken. Some aspects of (11.36) are discussed further
in Examples 11.10 (p.485) and 13.5 (p.563).

0 Insist that the algorithm converge after some number of steps. If it has
not, discard the result. Choosing the number of steps correctly is critical
and may be difficult to do. It is probably best to set the number large
and combine this with some other method.

Exercises

11.6.D. Why should symmetries be avoided when initializing parameters?

11.6.E. Describe some methods for preventing excessive parameter growth.

11.6.7. Suppose that we are trying to constrain the weights by using 9 from (11.36).
We’ll look at gradient descent.

(a) Compute Vfi.
(b) Explain how the difference between V5“) and V9 makes it harder for

l'wiJl to get large. (Assume that the learning rates are the same for f]
and g.)

(c) Explain how to modify (11.25) to use 9 instead of g.

11.6.8. Suppose we want IwMI S wmax.
(a) Show that this will be the case if

Wi’j = Wmax (2f(’lti’j) — 1),

where f is given by (11.32). (Incidentally, 2f(s) — 1 = tanh'1(s/2).)
(b) Modify the backpropagation algorithm to use ugh,- instead of 112,-“) as the

parameters.

11.6.9. We consider the effect of weight decay on some parameter 1:. Show that
whenever |(Vg)a,~| < Alzl, the magnitude of a: is decreased by a gradient
step based on f]. In other words, the larger |x| is, the bigger the gradient
component must be to keep a: from moving toward 0.
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Stopping

Stopping encompasses three problems because there’s more than one situation
in which we should stop.

0 How can we tell that we’ve done training sessions with enough different
initial values so that at least one of the trained nets is acceptable?

0 How can we tell that the parameters are close enough to a local minimum
so that we can stop the training session in success?

0 How can we tell that the parameters have gone astray so that we can stop
the training session in failure?

These are all difficult problems. No good solutions are known.

How many starts should we make? If we knew what the domains of attrac-
tion were like, we might be able to answer this. Of course, we could simply
continue making starts until we get a network that is good enough for the
problem at hand—but what if there are no values of u')’ and 0-. that give a good
enough network? Or what if we set our sights too low and could have gotten
a much better network?

“Close enough to a local minimum” is a hard issue—particularly since we
don’t know where the local minima are. In an ideal run of an algorithm, there
will be a period of time when the parameters are changing relatively rapidly
followed by a slowing down as a local minimum is approached. This could be
used as a sign to stop. Unfortunately, other things such as a saddle point can
cause the rate of parameter change to slow down and then increase again.
Various heuristics for stopping have been developed.

It would seem that the only harm in running an algorithm past the time
when we’ve gotten close enough to a local minimum is that we would waste
time getting closer than necessary. The situation is often more serious than
that: Stopping training early may result in better generalization ability. A
graph like Figure 10.3 (p.421) is often obtained, where the horizontal axis
now measures time spent in training rather than network complexity. This
phenomenon is referred to as overtraining. Although overtraining, complexity
and parameter growth seem quite different, the next example shows heuristi-
cally that they may be closely related.
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Example 11.10 Complexity: Overtraining Gives Bad Parameters

The argument in this example is based almost entirely on handwaving and
proof by intimidation. Nevertheless, it seems somehow to capture the essence
of what happens.

We’ll use the number of edges as a rough measure of complexity of the
net. Our first step is to estimate how the size of the set of good weights varies
with complexity. Using this result, we reason that excessive training is likely
to produce unreasonably large weights.

For any set of classification data C and a net with edges E, let W(C, E)
be the set of weights 117' E lRlEI for which the net classifies the data in C
well. In some sense we won’t make precise, W is a space of some dimension,
say d(W). As we increase the number of parameters by increasing E, we can
expect d(W) to increase. We might even expect that the dimensions of both
spaces increase by about the same amount; that is,

d(W(c,E2)) — d(W(c, E») w IE2I_IE1I- (11.37)
How (1 varies with C is unclear, but it should tend to decrease as C gets larger.

Now imagine that we have a classification problem for a feedforward neu-
ral net. The training set will be T and the set of all the data—training data
plus generalization testing data—will be (1. If the problem is reasonable, it’s
reasonable to expect a solution with weights of a reasonable size. Suppose we
need at least edges IE1] to achieve this.

Imagine training a net with |E2| edges where |E2| is rather larger than
IE1 I—unnecessary complexity. From (11.37),

d(W(T, E2» 2 d(WIT, E2» — d(W(T,E1)) z lEzl — IE1l,
which is fairly large. In this large-dimensional space, we hope we have found a
point in the smaller dimensional space W(Zl, E2)—“smaller” because U D T.

Large-dimensional objects tend to have an interesting property: A lot of
the object tends to be far from the origin. This tendency increases rapidly with
dimension. (See Exercise 11.6.10 below.) So what? A large part of W(T, E2)
will probably be far from the origin. A rather smaller part of WU], E2) will
be far from the origin. With a considerable amount of handwaving and some
dubious assumptions we’ve just shown that

Pr(:&' 6 W(U,E2) I a? 6 W(T, E2»
decreases as |:i"| increases, where we’re using the notion of probability loosely.
In words:

Heuristic arguments suggest that the more unnecessary complex-
ity a network possesses, the more likely it is that parameters which. . . . . . (11.38)fit the training data well Wlll prov1de poor generalizatlon. These
poor generalizers tend to contain large parameter values.

What does this tell us? Since an algorithm is usually not started with
large parameter values, it begins by approaching points in W(’T, E2) fairly
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near the origin. The longer it runs, the more likely it will approach points in
W(T, E2) far from the origin since most of the set is there. These points are
more likely to give poor generalizations than those close to the origin.

What can be done about this? We might try to choose E2 close to E1,
but we don’t have any way of estimating what E1 must be except by experi-
menting with 11. Is there another solution? Essentially, (11.38) tells us that we
should try to keep the weights near the central values; that is, avoid excessive
parameter growth, a subject recently discussed.

This discussion is merely suggestive, not a proof. Since researchers have
constructed examples in which the conclusions are wrong, any theorem about
overtraining would have to contain some restrictive hypotheses. I’m not aware
of any useful theorem of this sort. I

Exercises

11.6.F. How are complexity, poor generalization, and overtraining related?

11.6.10. In the example just completed, it was claimed that points in high-dimensional
regions are likely to be far from the center. This exercise provides some
support for the claim.

(a) What fraction of points in the 2n-dimensional cube given by l$il g 1 lie
further than distance 1 from the origin?
Hint. The volume of a sphere of radius r in 2n dimensions is 1rnr2n /n!.

(b) It can be shown that n! > (n/e)". Let f be the fraction of points in our
cube whose distance from the origin is at most val/3. Show that f —> 0
as n —-> 00.

*11.7 Data Issues

Various aspects of data preparation were discussed in Section 10.3 and some
training sets—another data preparation issue—were discussed briefly in the
succeeding section. Additional aspects closely related to (feedforward) neural
nets are discussed here.
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Training Sets

Sometimes a training set may be quite large. In that case it seems wasteful to
go through the entire set before our algorithm can take a step in parameter
space. Wouldn’t it be faster to climb on a random subset of the patterns at
the beginning? Going to extremes, why not let the algorithm take a step after
each pattern?

Our algorithms are based on trying to minimize a sum that is taken
over the entire training set. Actually, this is not what we really want to do.
It would be preferable to sum over all possible patterns—not just training
patterns. Thus, our function 9(13, 6-.) is simply an approximation to what we
want. There is nothing magic about this particular approximation. We could
take a sum over some smaller set of patterns. We could even change the set
we are summing over from step to step. After all, why should we prefer one
approximating sum to another?

If we follow the suggestion in the last paragraph, we’re shooting at a
moving target because the function g keeps changing. This should cause no
problems as long as our approximations are good enough: that is, as long as
we sum over a large enough set of patterns. This gives us a way to modify our
algorithm:

1. Select some number K of patterns at random from our training set. Since
accuracy is less important initially, we may want K to increase somehow
with time rather than stay fixed.

2. Backpropagate errors and cumulate them to compute the needed deriva-
tives.

3. Take the step dictated by whatever minimization algorithm we’re using.

We’ve now introduced K, yet another parameter that we have no idea how to
choose. There’s another problem. Our surface changes at each step because we
change g. Thus, Quickprop (11.27) and momentum (11.21) may be in difficulty
because they use information about the surface from previous steps.

We could go even further with the previous idea and take a step after
each backpropagation provided we use previous information. Simply replace
the first two steps with

1. Select a pattern at random from the training set.
2. Backpropagate the error and add it to or times the “cumulated error” to

produce a new “cumulated error.” We should have 0 S a < 1.

If our algorithm takes fairly small steps, this approach may give good results.
We won’t pursue these ideas.



488 Chapter 11 Neural Networks and Minimization

Data Preparation

For real-life applications, how we represent data is at least as
important as what neural network we choose.

—Vladimir Cherkassky and Hossein Lari-Najafi (1992)

The shape of the surface g(u'5, 0-.) can make the difference between success and
failure. Improved data preparation leads to improved surface shape. That’s
practically a tautology—a definition of good data preparation.

Feature Detection

In Section 10.3 we saw that eliminating irrelevancy is desirable. Using a pre-
processing net for feature detection is a way of trying to do this. The raw
data are the preprocessor’s inputs and the features are somehow read from
the net. These features form the inputs for the classifier we’re training. Some
possibilities for a feature detection net are

0 A net that performs principal-component analysis (p.407). The principal
components form the inputs of the net we wish to train.

0 A multilayer feedforward net with a “bottleneck” hidden layer consisting
of relatively few hidden units. The net is trained with desired output equal
to input. After training, the output of the bottleneck layer is used.

0 An unsupervised net consisting of feedforward layers and inhibitory con-
nections within each layer. The outputs of any layer represent features
based on some sort of clustering of the data.

Clustering has also been used to extract rules for fuzzy controllers. In this
case, a net input pattern consists of both the sensor inputs and the desired
controller action.

Nonlinear Calculations

Suppose the net is using logistic functions.
Consider what happens at a vertex: A linear combination of the inputs is

formed and fed into the logistic function. When its input is small, the output
of a logistic function is nearly a constant times its input. Thus, there’s a lot
of linearity and near linearity in a such a network. This suggests a principle:

Reduce the need for the network to do nonlinear computations.

How can this be done?
As an example, imagine a network-based expert system that is supposed

to evaluate an application for a home mortgage. Annual income I, amount of
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mortgage M, and appraised value of the home H are important, so we might
use them as inputs. The ratios M/I and M/H are more important than the
actual numbers M, and H. As a result, the network will learn to approximate
the ratios. This requires learning time and additional hidden units. We could
have chosen I, M/I, and M/H as inputs instead of I, M, and H. From the
network’s vieWpoint, this elimination of nonlinear operations (division) has
simplified the problem. To summarize:

When you believe that certain nonlinear calculations will need to
be done on the input data, precompute the values and use them as
part of the input data. This will probably give a better net.

11.8 Some History

The development of neural nets began in the 1940s with two biologically
inspired models, one by McCulloch and Pitts [24], the other by Hebb [13].

In our terminology, the McCulloch-Pitts model can be described as fol—
lows:

wm‘ : +1 or —00,

f” = m(s) : {+1’ lfs > 0’ where s = Z oxwmfl. (11.39)
0, otherwise,

xeln(v)

In other words, 0,, is nonzero if and only if it receives at least one positively
weighted input and no negatively weighted inputs. The inputs to v at time
t determine its output at time t + 1. They proved that such units could be
interconnected to produce any two-valued function of the inputs and that
stable cycles of neuron firings could be created to store information.

The McCulloch-Pitts model depends entirely on structural differences to
produce different results because the weights are fixed. In contrast, Hebb
proposed that long-term memory was based on the modification of weights.

McColloch-Pitts neurons can be connected to simulate a Turing machine,
hence any computer and, presumably, the cognitive abilities of human beings.
Von Neumann pointed out that it may happen that a full description of a
mechanism for simulating human cognitive abilities might be more complex
than the human brain itself. This has important implications for designing AI
with human-like abilities. It would be too complex to build piece by piece like
a rule-based expert system. Instead, it must be allowed to grow on its own. A
first step in this direction is the modification of network weights using parallel
algorithms.

In 1957, Rosenblatt introduced his perceptrons, which we discussed ear-
lier. A simple perceptron consists of an input layer, a single output vertex, and
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no hidden vertices. It looks for a linear separator, but as we noted, many cases
of interest lack linear separators. It’s claimed that Minsky and Papert’s 1969
book [25] on the limitations of simple perceptrons sounded the death knell for
neural nets in Al. Actually, most researchers had already turned away from
neural nets. They knew that more general perceptrons were needed, but no
learning algorithm could be found. This is hardly their fault, since even the
supercomputers of the 1960s would require lengthy runs using present-day
training algorithms. In other words, the loss of interest was due at least as
much to lack of computing power as it was to Minsky and Papert’s book.

Interest in neural nets revived in the early 1980s, thanks in part to fund-
ing by DARPA (Defense Advanced Research Projects Agency) and the exis-
tence of more powerful computers. The PDP (Parallel Distributed Processing)
group’s publication of their results in 1986 [30] triggered an explosive growth
in research. Several journals and annual meetings are now devoted to neu-
ral network research and new books are appearing at a rapid rate. In 1992,
the IEEE Standards Board approved a committee to work on standardizing
nomenclature, tools, benchmarks, and software and hardware interfaces.

Since backpropagation is simply a means of computing the gradient effi-
ciently, it has been rediscovered several times. The first discovery may have
been by Werbos who described it in 1974 in his thesis at Harvard. However, it
wasn’t until a decade later that backpropagation found its way permanently
into AI lore after the PDP group publicized the method and their applications
of it.

This isn’t intended to be a comprehensive history. We’ve omitted impor-
tant researchers such as Hopfield and Grossberg as well as many network
architectures. For further information, see the books mentioned in the next
section.

Applications of neural nets are emerging at an ever greater rate. A few of
these are

a traditional types of expert systems such as loan applications and diagnosis
problems,

quality prediction in industrial production,

0 speech recognition and synthesis,
0 character recognition, and
o a backgammon champion.

Thanks to increasing computer power, researchers are building larger and
larger nets. This has brought them face to face with a new problem: It’s nor-
mally impossible to use descent methods to estimate parameters for large nets
because the surface is so poorly behaved. Consequently, interest has been in-
creasing in finding methods for building up large neural nets. The importance
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of this problem will continue to grow since it must be overcome if connection-
ists are going to avoid a perennial AI problem—computational requirements
grow much more rapidly than problem size.

Notes

The hardest part of a controlled experiment, it turns out, is
design; a poorly designed experiment will almost never yield
meaningful and reliable data. One must understand clearly,

from the outset, precisely what one wants to learn.
—Nathaniel S. Borenstein (1991)

Neural nets can be very seductive in two ways that our earlier AI topics were
not. First, they seem to offer something for nothing—an issue partially dis-
cussed in Section 10.3 (p. 415). Second, because there are so many things that
could be tweaked in minimization routines and in net structure, there is a
temptation to replace thinking with programming. To counteract this I’ve de-
voted most of this chapter to thinking about aspects of minimization that
might tempt you to (nearly) thoughtless programming. I applied these ideas
to two types of neural nets—Hopfield and feedforward—and ignored other
areas of neural net research completely. Perhaps the most important neglected
topics are unsupervised learning, training recurrent nets, and building large
networks. The last appears briefly in Chapter 13. Unsupervised learning refers
to training in which no desired outputs are given with the training set. Such
nets are often used to detect potentially interesting features in the data. They
can look for principal components (see below) or clustering. Training occurs
by having units “compete.” (One approach to this is adaptive resonance the-
ory [6].) Algorithms for training recurrent nets exist, but better methods are
needed and research is being done. See some of the texts mentioned below for
an introduction to these as well as other topics.

Are neural networks a better choice than statistical methods of classifi-
cation? Yes and no. Neural nets provide a richer set of models than statistics
and hence are more likely than statistical methods to give good results (low
generalization error). If they can be used, traditional statistical methods are
usually a better choice because they’re quicker and often produce better re-
sults. On the other hand, neural nets can sometimes be viewed as estimating
posterior probabilities in the sense of Bayes’ Theorem. Hampshire and Pearl-
mutter [12] and Richard and Lippman [29] discuss this further.

Isn’t a fuzzy controller like a feedforward net? If so, why bother to think
about rules when we can just use a net? Yes, a fuzzy controller is like a net,
but there’s no free lunch. If you understand the situation well enough to write
rules, you’d be foolish to throw the knowledge away. If you don’t understand
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the situation, then you’re certainly better off with a net since you can’t begin
to use fuzzy logic. There’s another caveat with using a net: As discussed in
Sections 10.3 and 11.7, a net is no better than the training data.

For more information on standard minimization methods in numerical
analysis, see [9]. Adaptations of and variations on these methods appear in
many papers in the neural net literature. Fahlman [8] discusses some of the
problems encountered in designing computer experiments to compare different
methods. He then compares Quickprop with the momentum method. Van der
Smagt [32, Sec. 4] discusses some common methods.

Simulated annealing was introduced in by Kirkpartrick, Gelatt, and Vec-
chi in 1983 [18]. See Azencott’s article [3] for a quick introduction and the
book by Aarts and Korst [1] for an extensive discussion of the connection be-
tween simulated annealing and Boltzmann machines. Freeman and Skapura’s
text [10, Ch. 5] contains a discussion of simulated annealing in the context of
Boltzmann machines—a type of neural net.

Another optimization method having a probabilistic basis is genetic algo—
rithms. These were introduced in the 1970s by John Holland. While simulated
annealing was inspired by the statistical mechanics of cooling, genetic algo—
rithms were inspired by the processes of evolution—selection, recombination,
mutation, and crossover. See Section 14.1 (p. 589) for further discussion.

Researchers have been exploring a variety of other methods for solving
the minimization problem. These methods are generally found only in the
research literature and, I think, haven’t yet raised enough interest to warrant
inclusion here.

Introductory books on neural nets are continually appearing. The texts
by Hecht-Nielsen [14], Freeman and Skapura [10], Kosko [19] and Zurada [36]
have exercises and broad coverage. Over half of Zeidenberg’s book [35] is
devoted to applications. Wasserman [33] presents a collection of relatively
self-contained and elementary chapters on a variety of topics. Gallant [11] also
presents a variety of neural net algorithms and discusses their application in
expert systems. A thorough mathematical discussion of many aspects of neural
nets is provided by Hertz, Krogh, and Palmer [15], including the physical
aspects of Hopfield nets. These physical aspects are also discussed in Miiller
and Reinhardt’s book [26], which is based on a course given in a physics
department.

Chauvin and Rumelhart [ChauvinR] have edited a collection that dis-
cusses many aspects of feedforward nets.

Various proofs that feedforward nets are good approximators have been
developed. For example, see [4] or [22].

Various authors have discussed weight decay. See for example, [21].
My discussion of principal-component analysis in Chapter 10 was ex-

tremely brief. Jolliffe has written a book on the subject [17]. Leen, Rudnik,
and Hammerstrom [23] indicate how to construct a net for extracting principal
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components and discuss its usefulness. Kramer [20] discusses the bottleneck
approach to feature extraction.

Neural net texts often contain some history. In this category, see Hecht-
Nielsen [14]. Johnson and Brown [16] have written a historically oriented ac—
count of neural nets for the layman. Olazaran [27] has written a lengthy
article.

Biographical Sketches

John J. Hopfield (1933-)
Born in Chicago, he received his bachelor’s degree from Swarthmore and his
doctorate in physics from Cornell. He was a MacArthur Prize fellow from
1983 to 1988. (Not well known outside of academic circles, the MacArthur
prize is a grant awarded to particularly creative individuals—not necessarily
academics—to allow them to pursue their ideas.)

After establishing a reputation in physics and biophysics, he became a
professor at Caltech and also became interested in neural networks. His re-
search and lectures in the first half of the 19803 contributed greatly to the
rebirth of research in neural networks. It’s said that, in 1986 about one third
of the researchers were involved because of Hopfield.

Gottfried Wilhelm Leibnitz (1646—1716)
Born in Leipzig, Saxony, he studied at Leipzig and Nuremberg. He worked in
philosophy and mathematics; however, his mathematical work did not really
commence until 1672 when he took up the study of geometry. In 1676, he
was appointed librarian to the Duke of Hanover, a post that allowed ample
free time for his studies. He developed calculus in 1677 and published it in
1684. His work grew out of the geometric problems of finding areas and finding
tangents to curves. We owe our notation, such as dy/da: and f f(a:)da:, to him.

Considerable dispute raged over who developed calculus first—Leibnitz
or Newton. Today it is common practice to publish discoveries as soon as
they are made, but 300 years ago that was often not the case. The issue is
further confused by the fact that Leibnitz visited England and corresponded
with Newton. It is unlikely that the issue will ever be entirely resolved.

See the biographical sketch of Newton for a discussion of foundational
problems.

Isaac Newton (1642—1727)
Born in Lincolnshire, England, he studied at Trinity College, Cambridge,
where he remained until 1696. At Trinity College he worked on mathemat-
ics and natural philosophy, as physics was then called. Building on the work
of others, Newton developed both calculus and physics, using calculus as a
tool for physics. His major publications in physics were the Principz'a (1687),
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in which he developed Newtonian mechanics and his law of gravitation, and
Optics (1704). In the former, he used his method of “fluxions” (derivatives)
to derive results which were then proved geometrically. In the latter, he had
appendices on quadrature (integration), infinite series, and the method of flux-
ions. Newton denoted derivatives by dots as in it and it}, which today is often
used in physics, but is seldom used in mathematics.

Lacking an adequate notion of limit, Newton computed the derivative of
f(:c) by rearranging W so that h was absent from the denomina-
tor and then deleting all terms containing h. Deleting the terms was justified
by regarding h as equal to zero. On the other hand, the initial division by
h was justified by regarding h as not really zero. Bishop Berkeley wrote a
scathing criticism of this approach—h is a quantity and so must be either
zero or nonzero, but not both. It took over a century for mathematicians to
develop an alternative, consistent foundation for calculus—the theory of lim-
its. The concept of limit leads to the dreaded 6-6 arguments found in calculus.
After another century, logicians finally created a firm foundation for the more
intuitive 17th-century approach—nonstandard analysis. In nonstandard anal-
ysis, infinitesimals like h and dc exist in an extension of the real numbers and
the need for 6-6 arguments disappears.
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and
Information

Mathematics is not the art of computation but the art of minimal
computation.

——Anonymous

Probability theory would be effective and useful even if not a
single numerical value were accessible.

—William Feller (1957)

Introduction

In the following sections we’ll discuss mean and variance, continuous ran-
dom variables, some statistical methods, and information theory—all concepts
based on probability theory. In contrast to Chapter 7, the range of random
variables will be limited:

Unless noted otherwise, the ranges of random variables in this chap-
ter will be contained in ER or, for vectors, IR” for some n > 0.

I’ll begin by introducing mean and variance. Although it’s traditional to
introduce them early in the study of probability theory, I haven’t done so
because Chapter 7 already had quite a bit of material and I was able to avoid
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using them. So far, the probability space 8 has been finite. This is too great
a limitation. To simplify the presentation in Section 12.2, I’ll limit attention
to the most important infinite situation and focus on random variables.

Since statistics could easily take up a year-long course, a single section
can give only a skewed and limited view of the field. My discussion of statistics
begins with the problem of estimating generalization error. While this is not
a major area of statistics, it plays a major role in classifier testing. Next I’ll
add a little bit of a major statistical discipline—hypothesis testing.

The twin concepts of information and entropy play important roles in
communications theory. Since statistics is concerned with extracting informa-
tion from data and since information is central to AI, it’s natural that some
statisticians and AI researchers have made use of concepts and tools from in-
formation theory. At present, the subject is still somewhat peripheral, so that
section is starred.

The first section of this chapter is essential for the remainder; however,
the other sections are largely independent of one another so you can skip
whichever you choose.
Prerequisites: Basic probability, Chapter 7, is essential. Some reference is
made to material in Chapter 11, but it’s not essential.
Used in: This material is used in Chapter 13. See that chapter for more
detailed information.

12.1 Mean and Variance

We first encountered random variables in Definition 7.4 (p. 266) and the notion
of their independence in Definition 7.10 (p. 292). You may want to review those
ideas now.

Definition 12.1 Expectation and Variance
Let X : 8 —> R be a random variable on a probability space (8, Pr) and
let B Q 8. The conditional expectation or expected value of X given B is

1E(X | B) _ Z Pr(e | B)X(e) _
P70?)

2 Pr(e)X(e), (12.1)
865 e63

where the latter equality follows from the definition of Pr(e | B). The
variance of X is

var(X | B) = E((X — E(X | 13))2 l B).
Expectation and variance conditioned on some set 32 of random variables
is defined in a similar manner. If there is no conditioning (i.e., B = 8),
we simply drop “IB.”
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The expected value of X is simply its average value. The variance is more
complicated; however, it can be seen from the definition that the variance is
a measure of how much X deviates from its expected value. Why not define
var(X) to be E(|X — E(X)|), where the vertical bars denote absolute value?
The answer is twofold. First, an absolute value is often harder to work with
than a square. (Remember the formulas for d(t2)/dt and d(|t|)/dt. Which is
simpler?) Second, the given definition turns out to be the “right” one because
of its appearance in a variety of theoretical results.

Example 12.1 Computing Mean and Variance of Dice

A fair die is tossed. What are the mean and variance of the number of pips
that appear? The probability space should be obvious—the six die faces, each
with probability %. Let X (e) be the number of pips. Then Pr(X = 2') = % for
1 g i g 6 and so

21E(X)=%X1+%X2+%x3+%x4+%x5+§x6=-6—=

X(i—g)2
_ 2 _ 2 _ 2 2 2 2(3E) +%(73) +%(—§1-) +%(%) +%(%) +%(-3-)

=fi(25+9+1+1+9+25)=§—g.
Now suppose we toss two fair dice and look at the sum of the pips. The
computations are much more complicated, but the answers turn out to be 7
and 36—5, simply twice the previous answers. There’s a way we can pretend to
toss two dice: Toss just one and look at the top and bottom. It turns out that
dice are made so that the sum of the pips on opposite faces is always 7. It
follows immediately from the definition that the mean is still 7 but the variance
is now 0. It appears that the independence of the two values is important for
the variance but not for the mean. This, and other results, appear in the next
theorem. I

MIN

var(X) ll

-- II
M

O)

H

QIH

OED—-

Theorem 12.1 Properties of Expectation and Variance

Let X, X1, . . . ,Xn be random variables and let c1, . . . ,6", be real numbers.

(a) var(X | B): E(X2 | B) — E(X | B)2.
(b) If X has mean ,u and variance 02, then aX + b has mean an + b and

variance a202.
(c) For any c.-’s and Xg’s,

E(c1X1+--.+c,,X,, |B) = c1E(X1|B)+---+a(XnIB). (12.2)

(d) If, for all i 75 j, X; and X_,- are independent given B, then

var(c1X1 + ---+ Ca | B) = c? var(X1 | B) + - . - + c2, var(Xn | B).
(12.3)
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Note that the expectation is always linear, but the linearity result for the
variance requires pairwise independence. This requirement arises because we
need E(Xi | B) = E(X, | B) E(Xj | B). Here’s how this is used. (I left off
the IB to make the formulas more readable.)

var(Xl + ... + Xn) : E((:(Xi — E(Xi)))
2)

== E(Z (Xi — E(Xi))(X.i - E(Xj»)
5J=1

= Z E((Xi - E(Xi))(Xj — E(Xj))), by (12.2).
i,j:1

The terms with i = j in the sum give var(Xi). Ifi 9/: j, we have

E((X. — E(Xi))(X.- — E(Xj»)
= E(XiXJ- — E(X,)X,- — E(X,)X,- + E(X,) E(Xj))
= E(Xi) — E(Xi) E(Xj)
- E(Xj) E(Xi) + E(E(Xa°) E(Xj)), by (122),

= E(Xn) — E(Xg) E(Xj), since E(constant) = constant.

The remainder of the proof of the theorem is left as an exercise.

Example 12.2 Computing Means and Variances of Coins

We return to our friend, the probability space (8],, Prk) of k-long sequences
of heads and tails, all of equal probability 2"3 . Let X,- keep track of heads on
the ith toss; that is,

_ _. _ 1, if e,- (the ith toss) is heads,
X46) ’ {0, if e, is tails.

We’ve seen that Pr(X,; = 0) = Pr(X,- : 1) = % and that the Xi’s are mutually
independent. You should be able to show that E(Xg) = % and var(Xg) = i.

Let X be the total number of heads in the entire sequence. Obviously,
X 2 X1 + -~+ Xk. It follows from Theorem 12.1 that E(X) = k/2. This is
intuitively obvious since it simply says we expect half the tosses to be heads.
The theorem also gives the less obvious result that var(X ) = k/4. Try to derive
these results directly from the definition of the expectation and variance of X
without using the formula X 2 X1 + + X), or Theorem 12.1. It’s not so
easy! I



12.1 Mean and Variance 501

Example 12.3 Estimating Probabilities by Sampling
Suppose we have a weighted die and want to estimate the probability of each
of its six faces’ coming up. This could be done by the frequency approach.
For concreteness, let’s estimate the probability of rolling -. Suppose we
make n rolls and make the reasonable assumption that they’re independent.
Let X,- be 1 or 0 according to whether does or does not appear on the
ith roll. Let X 2 X1 + - - . + X”. By the frequency approach, the estimate is
Pr ( .) = X/n, which we’ll call Y.

We refer to the n rolls as a sample and this method of estimating proba-
bilities as sampling.

You should be able to show that

Em: 9:759: ._E<X_> ._.P.(.)
and

var(Y) : vary‘s)
=

nva;gX1)
:

vari).
In other words, our estimator Y—the average number of s in n rolls—has
an average value equal to the probability we want to estimate, Pr ( ). When
the expected value of an estimator equals what we are trying to estimate,
statisticians say we have an unbiased estimator.

What sense can we make of var(Y)? Since variance measures how much
the square of Y deviates from its expectation, the square root of the variance
should measure how much Y deviates from Pr ( ). In other words \/var(Y)
should give us some idea of how large an error to expect when we use Y as an
estimate for Pr (I) This is indeed the case, in a sense that will be made
more precise in Example 12.7 (p. 515). The difference between Y and Pr ( )
is called the sampling error.

From the previous paragraph, we can expect the estimate Y % Pr ( .)
to have an error that is proportional to \/var(Y) = y/var(X1)/\/n. Thus we
can expect the error to be proportional to l/fi. Notice that, if 72. increases
by a factor of 100, this decreases only by a factor of 10. In other words, we
would have to do one hundred times as many rolls for one more digit of ac-
curacy in our estimate of Pr(.). This is disappointing since it says the
frequency method of estimating probabilities requires large samples. Unfortu-
nately, sampling and outright guessing are often the only available options.

When a simulation program uses the frequency method to estimate prob-
abilities, we call it Monte Carlo Simulation. One of the original applications of
this method was the determination of the critical mass of 235U for an A-bomb.
The probabilities associated with the behavior of individual atoms and parti-
cles were fairly well understood, but the overall rate of neutron capture by a
large mass of atoms was not. I
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*Example 12.4 The Bias—Variance Dilemma for Classifiers

As we saw some time ago, creating a pattern classifier for a problem can often
be viewed as choosing parameters in some specified function, such as choosing
115 and 5 for a neural net. This example uses mean and variance to explore
the errors such functions make.

Imagine a probability space (£,Pr) in which we associate with each el-
ementary event two random variables, X: and Y, the input pattern and the
desired output (classification). In general, I? and Y are vectors of real num-
bers, but we’ll assume that Y 6 HR for simplicity. For simplicity, we’ll also
make the often unrealistic assumption that Y is a function of X; that is, I?
is sufficient to determine Y. The argument for the general case is similar to
that for the special case.

We want to choose f from a specified set so that E((f(}?) — Y)2) is min-
imized. (This expectation is over the probability space (8, Pr) of the previous
paragraph.) To do this, we select a training set T = (X1,Y1), . . . ,(Xt, Yt) and
try to choose f so as to minimize 22:1 E((f(5(1) — Y,-)2). Thus, the training
set leads to a function f(I? ; T) that depends on T.

Now imagine that T is chosen randomly using (8, Pr). We’ll do this by
choosing t independent samples from 8. This can be described by a new
probability space (80), Pr(’)) which is the t-fold product of (8, Pr) with itself.
Let ET denote expectation over this space (so the 565’s and Yg’S in the training
set vary). Let E with no subscript denote the expectation over (8, Pr) (so if
and Y to which the selected function f is applied vary). Since computing ET
involves selecting a training function, f differs from term to term in the sum
for ET. The average square error of f()?;T) is E((f()-(.; T) — Y)2). We would
like to choose our set of allowed f ’s so that the expected value of the average
square error is minimized. In other words, we want to minimize

ET (E((f(X'; 7) — 102)). (12.4)
It can be shown that ET(E(. . .)) = E(ET(. . ..)) (Do it! This requires a

clear understanding of what sums are involved.) Let’s begin by focusing on
E7. Note that X and Y are fixed when computing E7. Using Theorem 12.1
repeatedly, we have

ET ((f()'(';7) — Y)2) = E7(f(X;T)2) — 2y E7006; 7)) + Y2

(ETUd’; 7)) — Y) 2
+ E70027?) — (E70756; T)))’

= (E7003; 7)) — Y)2 bias (12.5)
+ var7((f()?; 7)) variance. (12.6)
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The bias measures how much the average function value at X. deviates from
Y. The variance measures how much the function values at )3 vary from one
training set to another. Note that neither of these is negative, so there can be
no cancellation between them. To average over all (1?, Y), we simply take the
expectations E of (12.5) and (12.6) over (8, Pr).

It follows that, to make the expected mean square error small, we ought
to reduce both the bias and the variance. How can this be done?

If the allowed functions f are too simple, they are unlikely to be able to
capture some of the aspects of the data. In particular, for a particular pair
(I? , Y), there may be a general tendency to overestimate or a general tendency
to underestimate—a bias that will make (12.5) large. The obvious solution is
to choose f(X: ;’T ) from a larger class of functions. In other words, increasing
the set of possible functions should help reduce bias.

On the other hand, this increased complexity causes problems. We may
find a function that fits the training set well but tends to behave wildly off the
training set. For example, given n points (233', y;) with distinct m-coordinates,
we can always fit them exactly with a polynomial of degree n — 1 or greater,
but the polynomial often has large coefficients and thus behaves poorly. In
other words, for any particular pair (If, Y), we may obtain a wide range of
values for f(I? ; T) as we vary the training set T.

This is the bias—variance dilemma: Attempts to decrease bias by introduc-
ing more parameters often tend to increase variance. Attempts to reduce vari-
ance by reducing parameters often tend to increase bias. Figure 10.3 (p.421)
illustrates this problem. When bias is the dominant effect, increasing com-
plexity reduces generalization error; but when variance is the dominant ef-
fect, increasing complexity increases the generalization error. Example 11.10
(p.485) discusses generalization error from a different approach. I

Don’t be misled by the preceding example into thinking that the bias—
variance dilemma is well understood. Experts still debate how to handle the
tradeoff between bias and variance. Many aspects of classifiers relate to the
problem. For example, choosing different classifiers obviously leads to different
possible bias—variance tradeoffs. How the classifier is trained is important:
Example 11.10 (p.485) suggested one approach for neural nets—don’t train
too long. Less obvious is the fact that even data preparation influences the
possible tradeoffs.

Exercises

12.1.A. Define mean and variance.
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12.1.B.

12.1.C.

12.1.D.

12.1.1.

12.1.2.
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State the formulas for computing the mean and variance of a linear com-
bination of X1, . . . ,Xn in terms of the individual means and variances. Be
sure to explain the role of independence.

Explain the concept of estimation by sampling. Why does it often give a
rather poor estimate?

What is the bias—variance dilemma?

A penalty is often given on multiple choice exams to counteract guessing.
What is the effect of guessing?

Suppose a question has 1: answers and someone guesses at random. Con-
struct a probability space in which 63-, 1 S i S k are the possible answers, e1
is the correct answer, e0 is no answer and Pr(e,-) is the probability that e; is
chosen by the student. The value of Pr will be determined by how a person
guesses.

(a) Let X be a random variable equal to the number of points received
where X(eo) = 0, X(e1) = 1, and X(e,-) = —w otherwise. Describe Pr
when the person guesses at random. Show that w = (k — 1)"1 makes
E(X) = 0 when a person guesses randomly.

(b) Determine the variance of X for random guessing

(c) Suppose a person is able to somehow decide (correctly) that j of the
possible answers are wrong and then guesses randomly. What is Pr?
What are the mean and variance of X now?

Tweedledum and Tweedledee have decided to go their separate ways.

(a) Alice is carefully wrapping their collection of 60 distinctive matched cups
and saucers which she passes to the Mad Hatter. He distributes them
randomly between the twins’ boxes. Since each cup and each saucer is
wrapped separately, there’s no telling which goes with which. How many
matched cups and saucers can Tweedledee expect to receive?
Hint. Introduce a random variable X; that is 1 if he receives the ith cup
and ith saucer and is 0 otherwise.

(b) The White Rabbit decides this is unfair and rearranges things so that
each twin gets 30 cups and 30 saucers. Now how many matched cups
and saucers can Tweedledee expect to receive? (He can tell a wrapped
saucer from a wrapped cup, but he can’t match them up.)

(c) Alice and the Mad Hatter repeat the process with the collection of 60
pairs of salt and pepper shakers. How many matched salt and pepper
shakers can Tweedledee expect to receive?

((1) Again the White Rabbit intervenes, but all he can do is make sure each
twin receives 60 wrapped shakers. Now how many matched salt and
pepper shakers can Tweedledee expect to receive?
Hint. Be careful on this one!
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12.1.4.

*12.1.5.

12.1.6.
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Complete the proof of Theorem 12.1 as follows:
(a) Prove the first two parts of the theorem.
(b) Prove (12.2).
(c) Show that var(cX | B) = 02 var(X I B) and that ciXi and ej are in-

dependent given B whenever X,- and Xj are. Conclude that it suffices
to prove (12.3) when all the ci’s equal 1.

(d) Prove the claim in the text that E(Xz-Xj | B) = E(X,- I B) E(Xj | B)
when X,- and Xj are independent given B.

(e) Complete the proof of the theorem.
The parts of this exercise are not stated in the most general form because that
would make the statements and proofs more complex. More general forms
can be obtained by repeatedly applying the results given here. Suppose that
X1, . . . ,Xn, are independent given B.
(a) Let S be a subset of the real numbers. Define

_ 1, if X1(e) E S,
Y( )— {0, ifX1(e) ¢ S.

Prove that Y, X2, . . . ,Xn are independent given B.
(b) Let a and b be real numbers. Prove that (aX1 + bX2),X3, . . . ,Xn are

independent given B.
(e) Let (n+1, . . . , an be real numbers. Prove that X1, . . .,Xt are indepen-

dent given 0 =(Xt+1= at+1 A . - ~ A Xn = an) A B.
Let X and Y be random variables. Define a new random variable Z by

2(8) = E(X(e) Y = Y(e)) A B), if e e B,
anything, if 6 ¢ B.

More briefly, we simply write Z = E(X | Y A B).
(a) Show that E(Z I B) = E(X | B); that is,

E(E(X | YAB) l B) =E(X | B).
(b) It would be nice to extend the idea to make some reasonable sense out

of E(E(X | A A B) B) = E(X | B). Do so.
This exercise returns to the Hopfield net. See Section 11.1 (p. 430) for nota-
tion.

(a) Show that, except for a constant factor, we may think of wi,j as being
E(Pn ), where the training data are regarded as observations of random
variables B.

*(b) In explaining local minima at :l:B(k) in Example 11.1 (p. 436), I assumed
that the patterns were randomly :l:1. Show that my argument breaks
down if the patterns are biased in certain components; that is, if some
E(Pi) are not zero.



506 Chapter 12 Probability, Statistics, and Information

12.2 Probability Spaces and Density Functions

Since computers are finite—state machines, our probability space can always be
considered finite. Nevertheless, there are times when the fiction of an infinite
space is useful because the underlying mathematics is simpler. For example,
we talk about the uniform distribution on [0,1], by which we mean that all
real numbers on [0,1] are “equally likely.” We can’t make sense of this in
terms of the elementary event model: Since the value of Pr(e) would be some
constant c, the sum of Pr(e) over 6 E 8 = [0,1] would be zero or infinity de-
pending on whether c = 0 or not. Unfortunately, this sum is supposed to
Pr(g) = 1.

Calculus suggests a way out—replace the sum by an integral. Then Pr(e)
will be replaced by something like f(a:)da:, which is an infinitesimal, not a
number. Rather than trying to base a theory on infinitesimals, we abandon
simple events in favor of compound events. The interpretation of f(a:)dx as
the probability of an elementary event is then a convenient heuristic aid, like
thinking of dy/dm as a fraction.

A solid, general, mathematical foundation of probability requires fancy
tools, namely sigma algebras and measure theory. This section relies only on
basic calculus. The resulting theory is not the most general, but it’s all we
need.

Probability Spaces

The following definition is not a generalization of the definition of a finite
probability space given in Chapter 7. The more general definition given in
mathematical probability theory subsumes both definitions and requires more
mathematical background. Since we don’t need the general definition, let’s
agree to use the simpler one.

Definition 12.2 Probability Space and Random Variable

Let 8 = IR" for some n. If f : 8 —-> R is such that f(:E') Z 0 for all :3 6 11R."
and such that

f m/ f(i:')d:c1---da:n:1,
—oo —oo

then the pair (8, f) is called a probability space and f is called a probability
density function, or pdf. When 6 = 1R, the function F(a:) : ffoo f(a:)da: is
called the (cumulative) distribution function. By the Fundamental Theo-
rem of Calculus, f = F’.
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If A (_2 HR" is a set over which it is possible to integrate, we define Pr(A)
to be the integral of f(:i:') over the set A.

A function X : E —> R is called a (real-valued) random variable. The
distribution function of X is 0(3) 2 Pr(X S :13) and its density function
is G’ .

We often talk about the pdf g of a random variable without mentioning a
probability space. In this case, we can usually take (1R, 9) to be the probabil-
ity space and take X(:3) = a). To see that this works out correctly, simply note
that

:1:

dPI‘(()l;S$) :90”).Pr(X g at) =/ g(:r)da: and so
-00

Example 12.5 Generating Random Numbers
We saw in the previous chapter that we use random numbers in connection
with neural nets. How are such numbers generated?

The support software for most computer languages includes a procedure
that generates a “uniform random variable” on [0, 1). Let 8 2 JR. The uniform
distribution on [0, 1) is given by the density function

1, ifogm<1,
0, otherwise.f(:v) = {

Obviously f(a:) Z 0 and ffooo f(a:)d:c = 1, so f is a pdf. A random variable
X with pdf f is called uniform on [0,1). More generally, a uniform random
variable on A C IR" is a random variable Whose pdf is constant on A and 0
otherwise. In order to have such a constant and have the integral of the pdf
equal 1, the “measure” of A must be finite. When n : 1, measure is length;
when n = 2, measure is area, and so forth.

A computer installation frequently lacks procedures for generating other
random variables. Here’s a way to do it. Suppose G(m) = Pr(X S 3:). To
generate a random variable Y based on this distribution, first generate U uni-
formly on [0, 1) and then let Y = G‘1(U). Here’s a proof that this works.
Since G is a nondecreasing function, Y S y if and only if G(Y) S G(y). Since
G(Y) = U, we have

G(y)my 5 y) = mu s 0a» = f My = G(y).
This idea can also be used for finite probability spaces. For example, sup-

pose we want to randomly choose an elementary event from 8 = {61, . . . ,en}.
Let pg 2 Pr(ei), let P0 = 0, and let P; 2 p1 + ---+p,-. To choose an 6),, gen—
erate U uniformly at random on [0, 1) and let I: be such that Pk_1 s U < P1,.
The proof that this works is left as an exercise. I
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The ideas and results from finite probability spaces carry over to the new
framework. The differential f(:i:')d:c1~-d:t:n and integration play the same
roles as Pr(e) and summation did for finite probability spaces. In work-
ing out results, it’s sometimes convenient to think in terms of elementary
events, regarding f(:i:°)d:c1 ---da:,, as the “probability” of the event :3. For ex-
ample,

E(X) = ,/_:H,/_: X(a':')f(§:')dx1---d:cn.

In fact, this correspondence is so strong that people (including me) sometimes
write Pr(i") for the pdf. From the previous discussion, the correct analogy is
Pr(i’) for f(:E’))d:i:’, not for f(:E'); however, the df’s make equations messier
and it’s easy to put them in integrals as needed.

Computing something like Pr(X S a) can be tricky—we need to in-
tegrate f(:fi') over {:3 IX(5) _<_ a}. A full study of this problem requires
measure theory. To avoid that, our random variables will usually be of the
form X50?) 2 mi. Since {53' I Xg(:i") g a} = {:E' | x; S a }, Pr(X,- S a) is com-
puted by integrating x,- from —00 to a and all the other xj’s from —00 to
00. When n = 1, this becomes simply Pr(X g a) : F(a), the distribution
function.

Definition 12.3 Marginal Density and Independence

If I g {1, . . . ,n}, define f1 : 1R1 —> HR to be the multiple integral of f(:E')
over all xj with j ¢ I. For example, when n = 4

00 w

f{2,4}($2,$4)=/ / f($1,$2,$3,$4)d$1d$3.

We call f; the marginal density function with respect to I. Write f,- for
in}-

Let X,- : 53' —+ :0,- be random variables and let 26' = {Xi | i E I }. We say
that the variables 26' are independent random variables if f; = Hie] f,.

This definition of independence is quite limited because of the restricted form
of the X5. There’s a general definition, but we don’t need it.

The use of the definition is often more straightforward than its state-
ment. Typically, we have random variables, say X1 and X2, with distribution
functions Pr(X,- g at) : Fi(:c). To create a space in which they are indepen-
dent, we set 8 = IR x R and f(:c1,x2) = F1’(:31)F2’(a:2). (We constructed finite
probability spaces of independent random variables in the same manner.) The
proof that the definition of independence is satisfied follows simply from the
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A: {($41) | min<x.y>2%}
B= {(as,y) | maX($,y)S %}
C={($,y) Ilw—y|_>_%}

‘
r

Figure 12.1 The shaded region is the part of [0, 1]2 that gives rise to triangles, as
discussed in Example 12.6.

statements that

f = F{F2’. / mm = Fawn, / new. = Fm).
The next example uses this idea.

Example 12.6 Making Triangles

Suppose we choose two numbers independently at random according to the
uniform distribution on the interval [0,1] and then divide [0,1] at those two
points. (You can think of this as breaking a stick at two random points.) What
is the probability that the three pieces of the interval [0, 1] can be assembled
to form a triangle? You should convince yourself that the pieces will form a
triangle if and only if the length of the longest piece is less than a To do this,
remember that any two sides of a triangle add up to more than the third side.

We create a new probability space equal to the product of the uniform
distribution space with itself: 8 = IR2 and

1, for 23,31 6 0,12,f(.,..)={ < > [ 1
0, otherwise.

Let’s look at the choices for (:c, y) that fail to give a triangle. To do this,
we check the length of each of the three pieces into which [0,1] is divided.
If min(:c,y) Z %, the left piece [0,min(a:,y)] shows that we do not have a
triangle. Similarly, max(a:,y) g % fails to give a triangle because the right
piece is too long. Finally, if Ia: — y| Z %, the middle piece (between a: and y)
is too long. These three conditions determine regions in [0, 1]2, labeled A, B,
and C' in Figure 12.1. Each of A, B, and C has area %.

Since f = 1, integrating it over a region simply gives the area of the region.
We need not be concerned about whether to include or exclude boundary
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points or boundary lines because they are regions in R2 of zero area and
so they contribute nothing to the integral of f(a:,y). Thus, the probability
that the three pieces form a triangle is the integral of f(a:, y) over the shaded
regions in Figure 12.1. Since f(:L', y) = 1 in those regions, the integral equals
the area of the regions. This proves that the probability that the three pieces
form a triangle is 21;. I

Exercises

12.2.A. Define a probability density function.

12.2.B. Explain the connection between marginal density functions and independent
random variables of the form X;(:'v') = 12,-.

12.2.C. What is the uniform distribution?

12.2.1. Suppose that (R, f) is a probability space. For any set A of real num-
bers, define XA(a:) to be 1 when a: E A and 0 otherwise. Prove that, if
If; X,4(:I:)f(:r)d:v exists, then it equals Pr(A).

12.2.2. Let (IR, fg) be probability spaces for 1 S i S n. Define

f(:i:') = f1(:c1)-~fn(:cn) for if 6 IR".

(a) Prove that (Rn, f) is a probability space.
(b) Let Xg(i:') = 1:5. Prove that the X; are independent random vari-

ables.

12.2.3. Prove that the method described in the last paragraph of Example 12.5
works.

12.2.4. Prove Theorem 12.1 (p. 499), without conditioning on B, for infinite proba-
bility spaces.

12.2.5. Two random numbers are chosen uniformly and independently on [1,3].
What is the probability that their sum exceeds their product?

12.2.6. Let X be a random number (variable) with probability distribution function
F(:c) and density function f(:c) = F'(x). Show the the distribution and
density functions of Y = —X are given by G(a:) = 1 — F(—:r) and 9(12) =
f(-17).

12.2.7. Let X1,...,Xn be independent random variables and let A1,...,An, Q
(—00, 00). Assuming all the integrals involved exist, prove that

Pr((X1 6 A1) A-nA (Xn e An)) = Pr(X1 6 A1) x x Pr(Xn e A...)
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12.2.8. Suppose that n independent random numbers X1, . . . ,Xn are chosen and
that each has the probability distribution function G(a:).

(a) Let Y be the maximum of X1, . . . , Xn. Show that the distribution func-
tion for Y is (G($))n and that the probability density function for Y is
nG'(:c)(G(:c))"—1.

(b) Let Z be the minimum of X1, . . . , Xn. What is the distribution function
for Z?
Hint. min(X1, . . .,Xn) = —max(—X1,...,—Xn)

The Normal. Distribution and the Central Limit Theorem

There must be something mysterious about the normal law since
mathematicians think it is a law of nature whereas

physicists are convinced that it is a mathematical theorem.
—Henri Poincaré (1854—1912)

Recall that a matrix B is called symmetric if bia' = bj,,- for all i, j . The follow-
ing defines one of the most important pdfs.

Definition 12.4 Multivariate Normal (or Gaussian) Distribution

Let 8 = 1R", let [I 6 IR”, and let B be an n x n real symmetric matrix
with positive eigenvalues A1, . . . , An. We call

exp(%(r—mtB-1(a?—m)
fl2n)"A1-~x\n

a normal or gaussian density function.

(12.7)f0?) =

Of course, we have to prove that B‘1 exists and that f satisfies the conditions
for a density function, namely that f 2 0 and that the integral of f over
8 equals 1. It’s obvious that f 2 0. The other conditions are beyond the
mathematics we’ve developed here.

Aside. For those familiar with determinants, the product of the eigenvalues is simply
the determinant of the matrix. Also, a square matrix has an inverse if and only if
its determinant is nonzero, which is equivalent to having no zero eigenvalues.

For those familiar with changing coordinates in n-dimensional integrals, use the
rigid motion in Theorem 11.5 (p.444) to convert the integrand to a simple form.
The Jacobian of a change of basis just involves the change of basis matrix, which
has determinant :l:l for a rigid motion.
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1.0
/

/
0.4

,x’x/ \‘x‘..... / i _$
u—3o ”—20 11—0 It n+0 ”+20 ”+3;

Figure 12.2 The normal distribution with mean u and variance 02. The dotted
curve is the associated density function. The vertical lines are at multiples of 0.50'.
For the distribution function, the horizontal lines are at multiples of 0.1. For the
density function, the horizontal lines are at multiples of 0.1 /0. Thus the vertical
scales differ for the two curves unless a = 1.

The case n = 1 is particularly important, and we’ll limit our attention to
it. If n = 1, then [I and B are just numbers and B = A1. Set a = x/E. Then
(12.7) becomes

exp ((m — p)2/2o2)

x/2_7r a '

The one-dimensional normal distribution and density functions are shown
in Figure 12.2. A random variable with pdf (12.8) is said to be normally
distributed. It’s left as an exercise to show that the random variable’s mean
and variance are ,u and 02.

(12.8)(one-dimensional) normal pdf: f (:13) =

The integral of (12.8) is often evaluated in calculus classes when integra-
tion in polar coordinates is discussed. First, set a: : at + ,u:

1 0° 1 0° _2
m] f(x)d$:fi‘/ 6 t/2dt)
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Multiply the latter integral by itself after replacing t with a: and 3/. Change
to polar coordinates and evaluate. In symbols:

oo 2 oo 00 Zr 00
(/ e“2/2dt) = f / e‘("’2+y2)/2da: dy = f / e""2/2rdrd0

-00 -00 -00 o o
Zr 00 2 2

= (/ d0) (/ e" nrdr) = (27r)(—e-" /2
o 0

It’s left as an exercise for you to show that the mean and variance of the
random variable given by Pr(X S 1:) = ffoo f(m)da: are p and 02, respectively.

00
= 271'.

r=0

Important properties of normally distributed random variables are given
in the next two theorems. The first says that “normality” is preserved by addi-
tion. The second says that addition creates random variables that are close to
normal. We’ll prove the first theorem shortly, but the proof of the second is be-
yond the mathematical level of this text. See Feller [10; vol. 2, pp. 259—262] for
a proof of the Central Limit Theorem and a discussion of other versions of it.

Theorem 12.2 Sums of Independent Normal Variables

The sum of mutually independent, normally distributed random variables
is again normally distributed.

Theorem 12.3 Central Limit Theorem

Let X1,X2, . .. be an infinite sequence of random variables with means
and variances p,- and 0,-2. Assume that the 03’s are bounded and that
X1, . . . ,Xn are mutually independent for all n. Define

p(n)=m+~-+pm o(n)2=of+~-+ai,
and

: (X1+'°°+Xn)-#(n)Y” am)
Then, for any fixed y,

y 2
lim Pr(Yn g y) = (21r)'1/2/ e't /2 dt; (12.9)

—00

that is, the distribution of Yn approaches a normal distribution with mean
0 and variance 1.
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Although the Central Limit Theorem talks about a limit, relatively small
values of n often give a good approximation to a normal distribution. (See
Exercise 12.2.11.) The practical importance of the Central Limit Theorem
lies primarily in the point of view it leads to:

If a variety of primarily additive and rather independent random
effects are contributing to a measurement, we expect the measure-
ment to have a distribution that is close to normal.

As a result, we frequently approximate an unknown distribution by a normal
distribution, even when we have no way of knowing whether the conditions
for near normality are satisfied. In fact, the normal distribution is often used
when it’s known that the approximation is poor! This may be done out of
ignorance (“Isn’t it always done?”), desperation (“I can’t find the true distri-
bution”), or hope (“It’ll probably be good enough”). In fact a normal distri-
bution, or any other reasonable distribution, is often good enough. It’s most
likely to fail when you’re using the tail of the distribution, that is, estimating
the probability of a random variable’s being far from the mean.

Proof (of Theorem 12.2): We begin with a sum of two normally distributed
independent random variables X and Y. If Z = X + Y, what is the distri-
bution of Z? Before attempting to answer this, we need to sort out what it
means. Since these separate functions are normal and since the variables are
independent, their joint pdf is

1
271'0’3 0y

f(a:, y) = exp ((1: — [11,)2/203 + (y — ,uy)2/20'3).

The probability of Z = z in the finite case would be the sum over all a:
and 3/ such that a: + y = z. The analogous statement here is that the proba-
bility density function for Z = z is given by the corresponding integral. Since
a: + y = 2, we substitute 3/ = z — x and then integrate over all :13. This will be
a somewhat messy calculation. At its heart will be the exponential of

—(:c " #02 —(z _ 17 — #31)2
202. °220y

+

When this is rearranged, it has the form —a(:r: — 1(2))2 — (22:2 — cz — d, for some
constants a, b, c, and d and some linear function 1(z). We can move all but
exp (—a(a: — 1(2))2) outside the integral over 2:. When the integral is evalu-
ated, we obtain something of the form Aexp(—b(z + c/2b)2). Thus the result
is a normal distribution.

The proof of the theorem will be complete if we show that the indepen-
dence of X1, . . . ,Xn implies the independence of Y1, . . . ,Yn_1, where Y; = X.-
for i S n—2 and Yn_1 = Xn_1 +Xn. Let f,- be the density function for X; and
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let f be the density function for X. Then the density function for 17 is given by

/00 f(y1,-~,yn_2,yn_1 —t,t)dt

= /_ f1(y1) - . - f.._2(y.._2)f.._1(y.._1 — t)fn(t) dt
= f1(y1)~'fn_2(yn_2) /_ fn_1(yn_1-t)fn(t)dt,

which is just what we need since the density function for Yn_1 is the right-hand
integral. I

Example 12.7 Sampling Revisited: Confidence Intervals
In Example 12.3 (p. 501) we discussed the estimation of parameters by sam-
pling. Specifically, we looked at estimating Pr ( .) by rolling a die n times
and using the frequency of as an estimate for the probability. This esti-
mate was given by Y = (X1 + + Xn)/n where the X.- were independent
random variables. Since the X,- ’s are identically distributed random variables,
E(Y) = E(Xg). Our data give us one sample of the random variable Y. How
close is this sample likely to be to the number we want, that is, the expected
value of Y? We can phrase this more precisely:

What is Pr(|Y — E(Y)] < 6)?
The Central Limit Theorem tells us that the density function f of Y is ap-

proximately a normal with mean [1 and variance 02/72 where p and 02 are the
mean and variance of X5. (This requires a bit of algebra using Theorem 12.1
(p. 499), which you can do in Exercise 12.2.12.) Using this approximation and
setting t = (y — ,u)/0'\/1_z, we have

u+6Pr(IY —E(Y)| < 6) = f . f(y)dy
1 #H 2 2zma/

6
exp(—(y—p) n/2a )dy

6\/H/a

V1 f
_

27" —6\/H/o

The value of the integral can be estimated from Figure 12.2, read from tables,
or obtained from a commonly available computer subroutine. Here’s a table.

e-*’/2 dt. (12.10)

Values of y = (21r)‘1/2 f; e‘fl/2 dt

:1: 0.5 1.0 1.5 2.0 2.5 3.0 3.5
g 0.38 0.68 0.87 0.955 0.988 0.997 0.9998

In order to use our formula, we need an estimate for 0. Since the range
of X,- is {0,1}, we have
var(X.-) = E(X?) — E(X;)2 = Pr(X,- = 1) - Pr(X.- = 1)2 = u — 112 = #(1- u).

(12.11)
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The maximum possible value of this expression is %(1 — %) = i. If p(X,-) = %,
the variance is %. Hence, 0' is probably about 0.37 and certainly no larger
than 0.5.

Now that we have our numbers, we can use (12.10) and (12.11). For ex-
ample, suppose we wanted an estimate that will be within :|:0.01 of the true
value with probability 0.95—that’s one chance in 20 of our estimate’s be-
ing off by more than :l:0.01. According to the table, we want :0 z 2.0. Thus
n z x2a2/62 z 2.02 (5%)/0'012 z 60. This number of rolls is feasible, but if
we reduce the error 6 by a factor of ten to 0.001, the number of rolls needed
is an unreasonably large 6,000. (If, as in this paragraph, an estimate has a
95% probability of being within :l:0.01 of an estimate E, statisticians call
[E — 0.01, E + 0.01] the 95% confidence interval.) l

Exercises

12.2.D. Write down the formula for the pdf of a one-dimensional normal distribution.
Identify the mean and variance.

12.2.E. What important property do sums of independent normal variables have?

12.2.F. What does the Central Limit Theorem say?

12.2.G. What is the practical importance of the Central Limit Theorem?

12.2.H. Suppose you’re trying to estimate the probability of an event by sampling.
How does the expected accuracy of your estimate vary with the number of
samples? Why is this a disappointment?

12.2.9. Let X be a normally distributed random variable with (12.8) as its pdf. Show
that the mean and variance of X are n and 02.

12.2.10. This exercise uses the results and notation of Exercise 12.1.1 (p. 504), which
deals with guessing on multiple-choice exams.

(a) Suppose the student guesses randomly on N problems, each of which has
4 choices. Use the Central Limit Theorem to estimate the probability
distribution of the student’s total score.

(b) Do the same as in the previous part when the student is able to correctly
eliminate one choice in each of the N problems. When N = 5, approx—
imately what is the probability that the student will obtain a negative
score? When N = 30? (Use Figure 12.2.)

12.2.11. In the Central Limit Theorem, let each X, be a random variable that has
Pr(X,' = 1) = Pr(Xi = —1)=%.

(a) Show that the mean and variance of X,- are 0 and 1, respectively.

(b) On a graph of the normal distribution with mean 0 and variance 1,
superimpose a graph of Pr(Y5 S :3). (You can simply trace Figure 12.2.)
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12.2.12. Prove the claim about the mean and variance for the Central Limit Theorem
application in Example 12.7.

12.2.13. Let X1, . . . , Xn be independent identically distributed random variables with
mean a and variance 0'2. We want to use the Xi’s to estimate a and
02. Let Y = (X1 + + Xn)/n. An observation of Y is an estimate of
a. Since 0'2 = E((Xg — 102), it’s tempting to estimate 0'2 by computing

2 2S (Y): %2?:1(X,-— Y) .

(a) Show that E(s2(Y)) = a102°

(b) Use this result to describe a better method for estimating 0'2.
(c) Show that the variance of Y is 02/n and conclude that an estimate of

the variance of Y is

. 1 "’
02m =

mgue-
— Y)2.

(d) Use the Central Limit Theorem to show that Y is roughly normally
distributed with mean u. and variance 62(Y).

12.3 Some Statistics

The great fly in the ointment of controlled experiments is always
variation. Error, bias, and unexplained variance may creep

into experiments in any number of ways.
—Nathaniel S. Borenstein (1991)

There are three kinds of lies: lies, damned lies, and statistics.
—attributed to Benjamin Disraeli (1804—1881)

Statistics is the branch of mathematics that treats the analysis of data. As a
consequence, it is also concerned with how to design experiments so that the
data will be as useful as possible. You’ll need to know a bit about two areas
of statistics: estimation of parameters and hypothesis testing.

We discussed simple Monte Carlo methods for estimating parameters in
Example 12.7 (p. 515). The estimation problem in this section is more specific:
How can we estimate the generalization error of a classifier?

There are two types of hypothesis testing. One is the sure thing. For ex-
ample, I can easily test the hypothesis “This coin is two-headed.” I need only
look at it. Suppose I’m not allowed to look at the coin but am given only the
fact that you tossed it ten times and got heads every time. How confident can
I be that the coin is two-headed? This is an example of the question “Given
the data, what sort of evidence do we have concerning the hypothesis?” This
is dealt with in the theory of hypothesis testing.
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Estimating Generalization Error

[I]t is impossible to justify a correlation between reproduction of a
training set and generalization error of of the training set using
only a priori reasoning. As a result, the use in the real world of

any generalizer that fits a hypothesis function to a training set
(e.g., the use of back-propagation) is implicitly predicated on an

assumption about the physical universe.
——David H. Wolpert (1992)

A pattern classifier might assign a definite class to each input pattern, or it
might assign a probability distribution over the classes (for example, 0.7 prob-
ability that the input pattern represented a “B,” 0.2 probability a “D,” and
so on). We’ll study just the nonprobabilistic classifiers.

We’re interested in the error rate of the classifier. More specifically, the
generalization error rate. Suppose there are only a finite number of possi-
ble patterns e1, . . . , en and that the probability of seeing e,- is pg. (We’ve just
described a probability space.) Define a random variable X by

X(e) _ 1, if e is misclassified,_ 0, if e is correctly classified.
The generalization error is E(X), the expected value of X. This definition can
be extended to an infinite probability space of patterns, but we won’t bother
to do so. Unfortunately, we normally don’t know the probability space and so
must estimate the generalization error rate E(X) rather that computing it.

How can we estimate the generalization error rate? As Wolpert points out
in the opening quote, such estimates are based on either explicit or implicit
assumptions about reality. Since the classifier is expected to be able to gener-
alize beyond the training data, we’ll need to give it a training data set that is
representative of the sorts of patterns it will encounter when it’s being used.
Suppose we’ve done this.

The simplest way to estimate E(X) is by testing the classifier on the train-
ing data. The average error per input is called the resubstitution error rate by
statisticians and the training error rate by connectionists. This rate underesti-
mates the true classifier error rate, sometimes drastically. To see why this is so,
let’s imagine a thought experiment. A good thought experiment can be a useful
method for improving understanding. To conduct a thought experiment, we
create a simple situation and then reason out what will happen. For resubsti-
tution error, imagine a training set that contains only one pattern which the
classifier easily learns. Thus the resubstitution error rate is 0. It’s likely that
other input will be classified almost randomly and so have a high error rate.

An estimator like the training error rate is called biased because it under-
estimates the true value. In general, an estimator whose expected value is the
true value is called unbiased while an estimator whose expected value differs
from the true value is called biased. Obviously, it’s desirable to have unbiased
estimators.
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Bias isn’t the whole story. Variance is also important. For example, you
may be interested in the probability that a coin will land heads. You can ob-
tain an unbiased estimator for each coin by simply tossing the coin once and
reporting either that the probability of heads is 1 or that it is 0 depending on
how the coin lands. This estimator is unbiased—its expected value is the prob—
ability of heads. However, you wouldn’t use it because of it’s high variance. To
achieve low variance, we usually need a large amount of data. Example 12.7
(p. 515) discusses this.

What conclusions does the previous discussion lead to? First, here are
three important points in the discussion.

0 To be sure we have a representative collection of examples, our training
data set must be fairly large.

a To obtain a low variance estimate of generalization error, the testing data
set must be fairly large.

0 To avoid bias in estimating the generalization error, we apparently need
separate testing and training data sets.

Thus we apparently need two rather large sets of data. Often data is difficult or
expensive to obtain. Can we get by with less? That’s what this section is about.

Setting the Stage

Let err(T ,1?) denote the error rate on ’D of a classifier trained on T and let (1
be the (perhaps infinite) set of all possible inputs and desired classifications.
We want err(T,U). You know that the resubstitution error rate err(T,T)
may underestimate err(T,I.l), perhaps severely. So you should be able to see
that err(’]',’D) could also be a bad estimate for err(T,I.l). We must have
(1 to compute the generalization error rate. With less than (1, we can only
obtain estimates. Statisticians have devised various methods for estimating
the generalization error rate. Three of their methods are called

(a) test-sample estimation,
(b) cross-validation, and
(c) bootstrapping.

Statisticians have shown that these methods provide unbiased or nearly
unbiased estimators of the generalization error rate—provided certain condi-
tions are satisfied. (“Conditions” are also called assumptions or hypotheses.)
We won’t state these hypotheses, so our discussion of these methods will be
purely descriptive. Why not state the assumptions? Some assumptions are sat-
isfied only by some simple statistical classifiers and the others can’t be verified
in practice. What good are results based on such assumptions? Hypotheses
in theorems and mathematical theories are seldom satisfied (e.g., geometric
lines don’t exist in the real world, coin tossing is never entirely random) and
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are sometimes unverifiable (e.g., these dice are fair, these events are indepen-
dent). Nevertheless, we apply mathematics. Perhaps the assumptions hold,
perhaps the real world is a close enough approximation, or perhaps weaker
assumptions are enough; whatever the case, mathematicians haven’t managed
to state and prove such a result. People are seldom so careful: They often ap-
ply theorems either in blissful ignorance of the unverified assumptions, or with
their fingers crossed, or simply wishing that things will work out okay. With
generalization error, you have to cross your fingers and wish hard.

Test-Sample Estimation

Test-sample estimation of error is based on an obvious idea for correcting the
resubstitution problem. Divide the data into two parts, the training data and
the testing data. After the classifier has been trained on the training data,
compute its error rate on the testing data. Unfortunately, we’re seldom so
rich in data that we can afford to set aside a large portion of it for testing.
As a result, we’re pushed to make the testing data set small. This leads to
error estimates that have a large variance, a problem we met in Example 12.7
(p. 515). Because of these problems, this method is seldom used in Al.

Cross-Validation

Cross-validation largely avoids the data-wasting problem of test—sample
estimation. It pays for this improvement with greatly increased training time.

First divide the training data 7 into V sets 7} of nearly equal size. Next,
for 1 S i S V, train a classifier C,- on T — 7; and test it on ’1}. Finally, average
the V different classifier error rates to get an overall error rate estimate. We
now have an estimate for the generalization error, but we don’t have a classifier
to use! Rather than selecting one of those that was trained on only part of
the data, train a classifier C' on all the data and use it.

The extreme case in which V = |T| and so I’L-I = 1 is often referred to as
the leave-one-out method.

What can be said pro (+) and con (—) regarding cross-validation?
— The amount of work is an obvious issue: We must train V + 1 classifiers.

+ We’re in the fortunate position of using all the data to train our final
classifier C and using all the data to estimate the generalization error
rate.

+ The fraction of the original data in T — ’1; is about V—J—l. Thus, choosing
V large allows us to use nearly all the data for training the ith classifier.

:l: Since each classifier is tested on only a small fraction of the data, its error
rate estimate will have a large variance. However, averaging all V error
rate estimates will give a number with much smaller variance.
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— The error rate estimate we obtain is not based on any one classifier. In
fact, the classifier C that we finally use has not even been tested! We need
to look at this more closely.

Implicit in the entire procedure is the assumption that the classifiers are,
in some sense, reasonably similar. If the C,- differ greatly from one another,
it hardly makes sense to average their error rates to obtain an estimate for
yet another different classifier C. There is a possible way around this. The
difference between generalization and resubstitution error rate may be more
stable than the generalization error rate. Thus, we could estimate

A(T,U) :2 err(T,U) — err(T,T) (12.12)

and add it to the resubstitution error rate err(T, T) for C to obtain an esti-
mate of C’s generalization error rate. From C; we have the estimate

A(T,U) $3 err(’R.,-,’Z;:) — err(’R.,-,’R,,-),
where R5 = T— 7; is the set C,- is trained on. I’m not aware of any theoretical
or empirical studies that would let us decide when estimating A(T, U) is better
than estimating err(T,Zl).

Bootstrapping

Bootstrapping also requires the construction of more than one classifier, but
there are major differences between it and cross-validation. Perhaps the most
notable is that bootstrapping might be described as an approach rather than
as a specific method. The basic theme behind the method is “sampling with
replacement.” We’ll describe the simplest bootstrap method here. See the
literature for variations. The most popular variant is probably the .632 esti-
mator.

Let n = |T|. Imagine a bag containing T, out of which we draw an item,
note what it is, and return it to the bag. This is repeated for i = 1,. .. ,n.
Now we have some collection T'“, which may not be a set since it can contain
multiple copies of the same element. We say that T* was chosen from T by
sampling with replacement because an element of T may appear more than
once in T*. The bootstrap estimate, which we won’t justify, is given by

A(T,u) a1 ET. (err(T*,T) — err(T*, T*)). (12.13)
The right-hand side contains an expectation that can’t be computed in a
reasonable manner. Instead, it’s estimated by sampling: Repeatedly choose
T* ’s and average the results to estimate the expectations. The variance of
err(T*,T) — err(T*,T*) is often low so that not many T*’s are needed to
obtain a reasonable estimate.

Unlike cross-validation, bootstrapping has the virtue of using all the data
for testing each classifier. What are its drawbacks? It uses only about 63% of T
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for each classifier it trains. To see this, suppose that X,- E T. The probability
that X,- ¢ T* is (1 — 1/12)". It’s a standard calculus exercise to show that this
approaches 1 /e as n —-> 00. Thus, the expected number of elements in T that
are not in T" is

n(1—1/n)"’ % n/e x 0.36872

Using only 63% of the training set might cause problems if the data is very
limited.

Summary

The various error estimates you’ve seen are

0, resubstitution

err(T—D, D) — err(T—D, T—’D), test sample
ACT, 11) z

% 2X=1(err(T—7§,T}) — err(T—’]§, T—72)), cross-validation

ET. (err(T*,T) — err(T* , T*)), bootstrap

The first three of these are also used to provide a direct estimate of err(T,U):

err(T, T), resubstitution

err(T, u) x err(T — ’D,D), test sample

% Eli/=1 err(7 — 7;, 7;), cross-validation

What’s the method of choice? Resubstitution is a clear loser and data limi-
tations often preclude test-sample estimation. Can we choose between cross-
validation and bootstrapping? Not easily, if at all. Applying bootstrapping
blindly can lead to unfortunate results—see Exercise 12.3.3. On the other
hand, there’s evidence that bootstrapping methods give superior results in
some situations. Whether any particular case is such a situation is often best
determined by hindsight. Young’s remark [22, p.411] concerning bootstrap-
ping applies to the other methods, too:

The bootstrap is no surrogate for careful thought on a statistical
problem . . . . Applied blindly, the bootstrap often cannot be trusted, and it
is always necessary to formulate in precise terms the problem being tackled.

Whatever method you use, it’s important to avoid reading too much into
the results. Here are some common errors.

0 Ignoring Bias in Data: It’s difficult—perhaps impossible—to know if T is
a biased sample of U. Regardless of the testing done on T, it only tells
us about a classifier’s behavior on T, never about its behavior on a. To
make any predictions about generalization to ll, we must assume that T
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is “typical” of £1. Remember the classifier that detected tanks by sunlight
(page 417)? No amount of testing with the biased T would have predicted
err(T,U) correctly.

0 Ignoring Bias in Estimates: It can be shown that, under suitable assump-
tions, the estimates of generalization are unbiased. Such assumptions are
usually not satisfied in practice, but we still hope that the estimates will
be unbiased whenever the data is. This is usually the case; however, some
researchers have found that bias was significant in problems they were
looking at, so be careful.

o Ignoring Monte Carlo Variance: Since T is a more or less random sample
of U, we’re dealing with a Monte Carlo type of situation. Consequently,
the estimate of generalization error is expected to be no closer to the true
value than about C/VITI. Unfortunately, C is not known.

0 Ignoring Classifier Variation: Cross-validation and bootstrapping do not
test the classifier C that is finally produced. Instead, they combine data
from other classifiers and expect it to predict the behavior of C. If there’s
considerable variation between classifiers, it may be unwise to have con-
fidence in such estimates.

Some research is being done on these problems, but it’s unclear if much
progress can be expected.

Exercises

12.3.A. What is test sample estimation and why is it seldom used?

12.3.B. What is cross-validation and what are some of its strengths and weaknesses?

12.3.C. What is sampling with replacement? How does bootstrapping use it?

12.3.1. In cross-validation, it’s been suggested that, instead of training a new clas-
sifier, we might use the C,- for which err('R,-, T) is smallest. Explain how you
might use an estimate of A(T,ll) to estimate the generalization error rate
for 05.

12.3.2. Describe sampling with replacement by constructing a probability space
on 8 = T using the uniform distribution Pr(e) = l/n and regarding T“
as the instantiation of n independent random variables each of which has
X(c) = e.
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12.3.3. Suppose we have a classifier that ignores the number of times a sample
is repeated in the test data. Let T* be the sample drawn for a bootstrap
training of the classifier and let T' be T" with duplications eliminated.

(a) Show that err(T*, T) = err(T’, T).
(b) Conclude that err(T*, T) z £93e'—1err(T’, T’) + %err(T', T— T’).

(c) Argue that err(T*, T") z err(T', T’).
(d) Conclude that the bootstrap estimate is about 37% of the cross-validation

estimate, namely

bootstrap A(T,U) z % E(err(T', T — TI) — err(T’, T’)).

*12.3.4. The discussion in the text assumed that the classification algorithm provides
a definite assignment to a class. Suggest a method for measuring the error
rate when the classifier provides only probability distributions. Your method
should agree with the measurement for definite classifiers when the proba-
bility distributions all collapse to certainty—one probability 1 and the rest
0. (This is an open question intended to provoke thought and discussion—
there’s no “right” answer.)

Is It Significant?—Hypothesis Testing

Statistical inference is a kind of inverse to probability theory in
which we start with data and then reason backwards to some

initially unknown information about an underlying random
process

—Fred Kochman (1993)

Probability theory tells us how to compute the probability of a sequence, i,
say, of heads and tails given that Pr(heads) = p. In contrast, statistics tells us
how to decide between competing hypotheses concerning p when we are given
:13.

A hypothesis can be regarded as a statement about parameters; for exam-
ple, “the probability of heads on coin A differs from that on coin B.” Given a
hypothesis, we always have the complementary hypothesis—in this case, the
two probabilities of heads are equal. Statisticians refer to the one hypothesis
as the null hypothesis H0 and the other as the alternative hypothesis H1. In
the coin example, we might choose

H0 is “Coins A and B have the same probability of heads.”

H1 is “Coins A and B have differing probabilities of heads.”
Of course, we could also reverse the roles of Ho and H1. This is important
because statisticians view the null hypothesis and the alternative hypothesis
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asymmetrically—we want to find support for the null hypothesis. We might
decide either that

1. The data makes it likely that H0 is true. (We “accept” Ho.)

2. The data’s evidence is inadequate to support Ho. (We “reject” H0.)

The terminology in the latter case is somewhat unfortunate since “rejecting”
Ho does not imply “accepting” its negation H1—the evidence for H1 may be
inadequate, too, so we remain undecided. If you read much on statistics, you
will run into the expressions Type I error and Type 11 error. A Type I error
is a rejection of Ho when it’s true and a Type II error is an acceptance of H0
when it’s false. In a situation that requires us to accumulate information, a
Type I error results from a failure to decide (or act) and a Type II, from acting
too soon. Thus, Type I is associated with hesitation or inertia and Type II
with rashness.

Although there’s a natural symmetry between H0 and H1 (each is the
complement of the other), acceptance and rejection are asymmetric. Thus, it
can be important to decide which is Ho and which is H1. Various methods
have been advanced for making this decision. Often the null hypothesis is the
simpler one—it says that nothing interesting is going on.

The theory of hypothesis testing is extensive enough to provide material
for an entire course. We’ll discuss only two topics:

0 Given estimates of two numbers, what can we say about the probability
that one number (the actual number, not the estimate) is larger than the
other? For example, suppose we estimate the generalization error rate for
two classifiers. What can we say about the chances of one classifier’s being
better than the other?

0 The other topic is essentially the coin problem we began with: deciding if
two samples come from the same probability distribution. For example,
a vertex in a decision tree splits some training data into two sets. Do the
sets differ significantly; that is, do the outputs appear to be sampled from
different distributions?
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Is This Number Really Larger Than That One?

We’ll phrase this discussion in terms of generalization error to make things
more concrete; however, it applies to many other situations. Suppose that two
classifiers C1 and Cg have generalization error rates 7‘1 and r2, both of which
are unknown. Using test-sample estimation, we obtain estimates 7‘1 and 7‘2 of
1‘1 and r2. What can we say about Pr(r1 > 7'2)? Comparing f1 and 7‘2 is not
enough because they’re estimates—not true values. We need some idea of how
good the estimates are.

Let’s look at a simple general problem: Let 11,32, . . . ,3” be independent
samples from a distribution having unknown mean and variance 1’ and 02.
Estimate the probability that 7° > 0. Assume as little as possible about the
nature of the distribution. (The statement that the m,- are independent samples
from a distribution with pdf f means that each :13,- was selected “at random”
using the pdf f.)

Let 1“: denote the average of $1,132,. . . , an. According to Exercise 12.2.13
(p.517), 7““ is nearly normally distributed with mean equal to the mean 7’
of the underlying distribution and with variance 02, which is approximately
&2 = 620") in the notation of Exercise 12.2.13. In other words, the pdf for 1"
is approximately

. exp(—(f' — 792/262)
f(r | r) _

x/Zr- c}
. (12.14)

We can’t immediately extract information about 1’ from ( 12.14) because
it’s the pdf of 1“ given r. This suggests taking a Bayesian approach: Multiply by
the prior pdf of r and divide by the pdf of 7". As we found in Bayes’ Theorem,
we don’t need the latter since it can be found by summing (integrating in the
continuous case) as was done in (7.19) (p. 281). We must have the pdf of r and
we have no idea what it is. A rather questionable but common approach is to
assume a uniform distribution. In fact, we can’t have a uniform distribution
on (—00, 00). We can have one on [—L, L] and let L —> 00. I’ll skip the details
and simply tell you the result: (12.14) is an estimate of the pdf for 7‘ given 7".
In other words, if

._1n -2_ 1
n

-2
r—n;

and 0'

—m;($l—r),

(12.15)

then (12.14) is approximately the pdf for the mean r of the distribution from
which the values 1:,- were obtained.

We’re almost done. We’ve now estimated the pdf for the unknown mean
1’ based on values 7“: and 6 calculated from the data by (12.15). Thus

2
1 0° —t—f’

Pr(r > 0) = Wig/0 exp (—(—2&2—)) dt.
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The substitution u = L?) converts this into

Pr(r > 0) = ‘ug/zdu (12.16)1
00

\/2—7r [we 6

Numerical values of this integral can be looked up in tables. Since (12.16)
exceeds 0.95 when f/& > 2, statisticians refer to f/& = 2 as the 95% confidence
level. It means that Pr(r S 0) < 1/20 when 73/6 is 2 or larger. In much of
scientific research, the 95% confidence level has become the accepted standard
for a significant result. It means that less than 5% of the conclusions drawn
from such tests are wrong—provided the data has been correctly collected
and the tests have been used correctly.

Let’s apply (12.16) to the original problem: Let gm- 2 1 if the ith classifier
is wrong on pattern j and let it be 0 otherwise. Let a? = 371 — 372 so that {if
and hence 7““ provides information about how the two classifiers differ. Let 6,;
be the number of times the ith classifier is wrong and the other is right. We’ll
show that

7"- : 1;” and a2 < filial (1217)
n n(n — 1)

and so
A

— —
1

—

g >
61 62 77. ~ 61 62

0' v€1+62 n ~\/€1+€2’
As noted after (12.16), this should be at least 2 for the statement that the
first error rate exceeds the second to be considered significant. The 72 value is
straightforward and the 6'2 inequality is obtained from

1 " 1 n
-22— i_a2=__ 2—2.“ «2)0'

n(n—1);($
r)

n(n—1);(x’
mzr+r

:m((61 + e2) — 2(e1 — e2)? + nf’2)

61 + 62 7’= — . 12.18n(n — 1) n — 1 ( )
There are some objections to this approach. Here are two important ones

o The result was based on the assumption of a uniform prior for the mean
of the ith distribution, an assumption some people would take exception
to. Bayesians claim that priors are needed if we want to answer questions
like “what is Pr(r1 > m)?” I believe they’re correct. Given that priors
must be used and we don’t know what they are, what should we do? One
favorite choice of Bayesians is the “conjugate prior.” Various textbooks
contain discussions of it. See for example [5]. Non-Bayesians reject the
notion of creating a prior and look for other approaches. In the remainder
of this section we’ll discuss such a method for testing if two samples come
from the same distribution.



528 Chapter 12 Probability, Statistics, and Information

0 The result was based on test-sample estimation where it’s clear how the
3/5,,- ’s were obtained. In reality, we’re likely to use cross-validation or boot-
strapping. In these cases, we can certainly obtain estimates of the error
rate, but it’s not clear what corresponds to the yin,- ’3. See Exercise 12.3.6
for a partial resolution of this problem.

Exercises

12.3.D.

12.3.E.

12.3.5.

12.3.6.

12.3.7.

Explain Kochman’s statement “Statistical inference is a kind of inverse to
probability theory.”

How do prior probabilities enter when we want the probability that a pa-
rameter r is positive and we have an estimate 1" of r?

In the notation of (12.17), suppose that 62 = 0. What does this mean? How
large must e1 be for r > 0 to be accepted as significant? What does all this
mean?

Let’s return to the problem of Pr(r1 > 7'2). Now assume that 1",- and 6', have
been obtained somehow for T1 and r2. Thus we have (12.14) with subscripts
i = 1, 2 on everything.

(a) Show that f(—r2 | 7‘2) is roughly normal and determine the mean and
variance.

(b) Show that if T1 and T2 are independent, then f(r1 — r2 | i1 Afg) is
roughly normal with mean 1‘1 — 1‘2 and variance 2:? + (“7%.

(c) Obtain a result similar to (12.16) for Pr('r1 > T2).

This is a continuation of the previous exercise. Suppose that 7“,- is determined
from 315,1, . . . ,y,),, where the 31M ’s are as in the text. Suppose also that the
two classifiers make errors independently of each other.

(a) Show that 6,2 in the modified (12.14) is
A. 1— A.a? = ——"52_I“).

(b) In the notation of (12.17), show that E(e1) = 71(1 — r2)n and similarly
for E(62).

(c) Using the results of this exercise, show that the value of 6 in (12.18) is
the same as that in the previous exercise.

((1) Suppose that the errors of the two classifiers are correlated; that is, if
one makes an error then the other is more likely to make an error, too.
The equality of the previous step now becomes an inequality. Which
is larger and why? Which method makes it more difficult to establish
significance and why?
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*Fisher’s Exact Test

Let X and Y be random variables with the same range. Our data consists
of some observations of X and some observations of Y. H0 is the hypothesis
that Pr(X = a) : Pr(Y = a) fOr all a. Since the theory is simpler when X
and Y can take only two values, we’ll assume that the common range of X
and Y is {T,F}.

Fisher’s exact test is a method for deciding on acceptance or rejection.
Let NT; be the number of observations of X that equal T, and define m,
NTy, and p similarly. If we sum on a subscript, we simply replace it with
an asterisk. According to the null hypothesis, we made N*,* observations,
obtaining NT“. values of T and NE... of F. All the observations were then
labeled either X or Y so that a total of NX were labeled X. According to H1,
there are two different distributions present.

We need to formulate Ho (and thus H1) carefully. The values of N = NH,
NT,“ NF,“ N...,X, and N...,y are taken as given. The null hypothesis asserts
that the observed NM have arisen simply from a random sampling.

How can we calculate the probability of the NM given the null hypothesis?
Imagine a bag containing N11,... identical balls labeled T and NF)... identical balls
labeled F. Select N*,X balls at random from the bag and label them X. The
remainder are labeled Y. We can ask for the probability that this process will
lead to the observed values of NM” Note that once NT; is determined, so are
the other Niu’ because

NF,X : N*,X — NT,X) NT,Y : NT,* - NT,X) NF,Y : N*,Y _ NT,Y-

Thus, it suffices to calculate the probability of obtaining NT}. The elementary
events in our probability space will be all ways of choosing N*,X balls and
each will be equally likely. Let (7;) be the number of ways of choosing k- things
from a set of n. The number of ways to take N...)X balls from the bag is then

(Nix). Since each 6 E 8 is equally likely, Pr(e) = 1/(N1Ix) . If we are to get
the correct values of NM: we must have chosen NT’X from the balls labeled
T and NEX from the balls labeled F. How many elementary events have this
property? We can choose the T balls in (155;) ways and the F balls in (1015;)
ways. Their product is the number of elementary events that-have NT,X balls
labeled T and m labeled F. Thus, the probability that we obtained the
observed values of Ni,j is

N13* N13,... 1Pr(NT,x|Ho) _ (NH) (NM)
(Na).

(12.19)

To complete this calculation we need a formula for (2). If the order of choosing
were important, there would be n(n -— 1) - - - (n — k + 1) total choices because
there would be 77. — z' + 1 ways to choose the ith object after removing the first
i—l. This gives all ordered choices. Given k objects, there are k(k—1) - - - 1 = k!
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ways to order them—just choose 1: objects from the set of k with the order
of choosing being important. Thus, for each unordered choice there are k!
corresponding ordered choices. Hence

n _n(n—1)---(n—k+1)_ n!
(It)

_ kl
—

k!(n—k)!°
Combining this with (12.19), we have the desired probability.

What should we do with the probability?
A first thought is to accept H0 if (12.19) is large and reject it otherwise.

There’s a problem with this: Any particular values for the N5“,- will not be
very likely because there are so many possible choices for (i, j).

Presumably NT,X deviates from its expected value, N...,X NT,.../N (see Ex-
ercise 12.3.8 for a derivation). Let’s change Ho to be, “Under the assumption
that X and Y are assigned at random, NT; will deviate from its expected
value by at least the amount observed.” This is easily computed. Let Z be a
random variable defined on the probability space we constructed earlier with
Z(6) equal to the number of selected balls that are labeled T. Then

(N30 (NNF'. k
PI‘(|Z“ N*,XNT,*/N| Z INT.X -- N*,XNT,*/N|) = Z

( N‘,)x_keS N.,X
(12.20)

where

s = {k | U: — N,,XNT,./N| 2 |NT,X — N..,XNT,,../N| }
Some algebra shows that S' is the same as the set of Is outside the open
interval between NT,X and 2N..,x NT,.../N — NT}. Fisher’s exact test rejects
the hypothesis that X and Y have the same probability distribution whenever
( 12.20) is small. How small? That depends on the user.

Example 12.8 Applying Fisher’s Exact Test

Rice [18, p. 434] applies Fisher’s test to some data of Rosen and J erdee. Each
of 48 male supervisors was asked to examine an imaginary employee’s file and
decide whether to promote the employee to a new position or to interview
other candidates. The qualifications in all the files were the same; however,
24 of the files identified the candidate as male and 24 as female. The 48
supervisors made decisions that led to the following table:

X = Y =
Female Male

T = Promote 14 21 NT)... = 35
F = Interview 10 3 NR... = 13

N*,X = 24 N...,y = 24 N = 48
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We want to know if there is sex bias, that is, a significant difference between
the two distributions.

Each supervisor corresponds to an elementary event. The random variable
X is measured at some elementary events and the random variable Y at others.
The expected value of NT,X is N...,XNT/N = 24 x 35/48 = 17.5. Here’s a table
of (12.19) based on the given values of Ni:

NT; 13 14 15 16 17 18 19 20 21 22
Pr from (12.19) .004 .021 .072 .162 .241 .241 .162 .072 .021 .004

Larger and smaller values of NX,T have probability 0 to three places. The
probability that NX,T deviates from its expected value by at least as much as
the observed I 14 — 17.5l is the sum of the values up to 14 and above 21. This
gives us a probability of 0.05 of seeing a deviation as large as or larger than
that which was observed. It seems reasonable to reject H0 and so believe that
sex bias is present. I

Actually, we might argue that the probability in (12.20) is not quite the
appropriate thing to be interested in. It works fine in a situation with certain
symmetries as in the example.

Instead, statisticians look at all 2 x 2 arrays A with the same values of
N...,x, N...’y, NT”, and NF)... For each array, they compute Pr(A). They then
add the probabilities over all arrays that have a probability not exceeding the
probability of the given array; in other words, all arrays that are at least as
unlikely as A. In the previous example, this reduces to (12.20).

This idea has the advantage that it easily carries over to r X c tables.
This is important if we have c > 2 possible classifications and/or allow r > 2
possible splits at a decision. If you want more information on how to compute
the probabilities, see [16] or [17].

When the NM are large, Fisher’s exact test is harder to apply because
of the computation involved. In this case, we can use an approximation, the
chi-square test. In fact, the chi-square test is just as easily stated for r x c
tables. Statisticians usually recommend that all NM be at least 5 before using
the test. Unfortunately, this is neither necessary nor sufficient to guarantee
that the chi-square test is a good approximation. Fortunately, the niceties of
test accuracy are often unimportant in the light of other approximations and
assumptions that are made in designing expert systems. Hence, it’s probably
reasonable to use the chi-square test if the average value of Nm‘ is at least 5.

Here’s the chi-square test for c classifications. Define
c 2

2 _ (Ni)j
_

Ni*,N*:j/N) 12 21X - Z Z N,,.N...,,-/N ’ ( ' )
i='r,F j=1

where a term % is considered to be 0. (Such terms arise when Ng,...N...,j = 0.)
In a table of chi-square, look up Pr(x2 Z X2) for c — 1 degrees of freedom.
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degrees of freedom
Pr 1 2 3 4 5 6 7 8 9 10 15 20 30
.50 0.46 1.39 2.37 3.36 4.35 5.35 6.35 7.34 8.34 9.34 14.3 19.3 29.3
.20 1.64 3.22 4.64 5.99 7.29 8.56 9.80 11.0 12.2 13.4 19.3 25.0 36.3
.05 3.84 5.99 7.82 9.49 11.1 12.6 14.1 15.5 16.9 18.3 25.0 31.4 43.8
.02 5.41 7.82 984 11.7 13.4 15.0 16.6 18.2 19.7 21.2 28.3 35.0 48.0
.01 6.63 9.21 113 13.3 15.1 16.8 18.5 20.1 21.7 23.2 30.6 37.6 50.9

Figure 12.3 The left column is the chi-square probability Pr(x2 Z X2). Each
of the remaining columns gives the value of X2 needed to obtain that probabil-
ity. For larger tables, see almost any statistics text. Many computer systems have
subroutines for chi-square.

This is the approximation to the probability in the generalization of Fisher’s
exact test. A table of chi-square appears in Figure 12.3.

Exercises

12.3.F.

12.3.8.

12.3.9.

12.3.10.

12.3.11.

What is Fisher’s exact test used for?

Suppose the assignment of the labels X and T to our balls is done indepen-
dently. Express the probability that a ball is labeled both X and T in terms
of N, N...’X and NT"... Use your result to compute E(NT,X).

Suppose the experiment described in the example was repeated, but this
0 15

4 9
). Is it reasonable to assume thattime the resulting entries were (

. . . 16 19sex bias 18 present? Why? What if the numbers were (
8 5

)?

You and I each perform an experiment t times. The possible outcomes are
P and Q. All t times that I did it, I obtained P. All t times that you did
it, you obtained Q. What is the result of applying Fisher’s exact test to the
problem of deciding whether or not we were doing experiments with the same
probability of having P as an outcome?

Lynd and Lynd [15] gave 415 female and 369 male high school students
a list of ten attributes and asked them to choose the two they considered
most desirable in a father. The attribute“college graduate” was chosen by 86
males and 55 females. Do males and females rate this attribute differently?
Why?
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12.3.12. For the 2 x 2 case, prove that (12.21) simplifies to

_ 4(NT,XN "' N*,XNT,*)2
X2

N*,XN*,YNT,*NF,*N
.

12.4 Information Theory

Uncertainty has played an important role in most of this text and we’ve dis-
cussed various approaches to dealing with it. Information theory is one more
approach; however, it’s not a tool for manipulating uncertain knowledge. In—
stead, it’s a tool for measuring uncertainty. We can think of the amount of our
knowledge (“information”) and lack of it (“uncertainty”) as complementary
concepts—more of one means less of the other. In information theory, uncer-
tainty is measured by a quantity called “entropy.” It’s similar to, but not the
same as, the concept of entropy in physics.

Imagine constructing a pattern classifier when the set of possible outputs
is finite. For any input A, let dA be the desired output. An ideal classifier
would be a mapping f so that f(A) = dA for all A. In other words, once we
compute f(A) there is no uncertainty about the value of dA. Since the ideal
is usually unattainable, we might look for an f that is nearly correct. Thus,
we want to choose f so that, given f(A), the uncertainty about the value of
(1,4 is as small as possible.

In order to do this, we must have some numerical measure of uncertainty.
We’ll use the axiomatic approach: First we’ll list and defend some properties
we want a measure of uncertainty (or information) to possess. Next we’ll show
that the properties uniquely determine the measure.

Suppose we have a probability space with a random variable X whose
range is finite, say {1, 2, . . . ,n}. What characterizes the uncertainty about the
value of X? Since the uncertainty arises from not knowing the value of X, all
that should matter is Pr(X). For this reason, we’ll assume that the uncertainty
of X is a function H(p1,...,p,,) where pk = Pr(X = 19). (Sometimes we’ll
write H(15')) This gives us

Axiom 1: Uncertainty is measured by a real-valued function H(15') that is de-
fined for all 13' 6 IR” for which 22:1 pk = 1 and pk Z 0 for all k.

(If I were being pedantic, I’d say there are an infinite number of H’s, one for
each value of n.) The next three axioms capture the concepts given in brackets
after them.

Axiom 2: H (15') Z 0 with equality if and only if some 19,: = 1. [Uncertainty is
nonnegative and there is none if and only if the outcome is certain.]]
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Axiom 3: Hi is 15' with all components that are 0 removed, then H03) 2 H(cj').
[[Impossible outcomes are irrelevant.]]

Axiom 4: H(1/n, . . . , 1/72) is an increasing function of n. [When all outcomes
are equally likely, more of them gives more uncertainty]

Axiom 5: H (13') is a continuous function of 13'. [[Uncertainty varies smoothly.]]

These five axioms are straightforward. Unfortunately, they don’t uniquely
determine H. We need one more axiom. Before stating it, let’s explore why
we need it and set up some notation.

Suppose {1,2, . . . ,n} is partitioned into subsets 51, . . . ,Sm. We can imag-
ine obtaining the value of X in two steps: First determine the subset containing
X and then determine its value given the subset it’s in. (The latter sounds
very much like a conditional probability. Indeed, conditional probability plays
a central role in Axiom 6.) The uncertainty about the result of this two-step
process should be the same as the uncertainty in determining Y directly since
the end result is the same.

This should give us a relationship between values of H in the first step
and the “direct” value of H. To do this we need two assumptions: Uncertainty
is additive and, in a random situation, we should take expectations. Exactly
what this means will be made clear in the next paragraph. It may sound
like assuming additivity is rather ad hoc. For example, why not assume that
it’s multiplicative? If it were, its logarithm would be additive and there’s no
reason why we couldn’t use the logarithm as the measure of uncertainty.

You should be able to establish the following simple conditional probabil—
ity formula by simply recalling how 5',- was defined:

Pr(X = k IX 6 5,) = {Pk/8i,
Ifk 6 Si:

0 iflc ¢S°
where s.- = 2 pk.

1665‘

Let H,- be H evaluated at Pr(X I X 6 5;); that is, H,- = H((j') where
qk = Pr(X = k | X 6 5;). Once we know that X 6 Si, the remaining uncer-
tainty is given by H5. Thus, the expected uncertainty after determining which
5',- contains X is

m

f: Pr(X E SOH,‘ = Z SgHi. (12.22)
i=1 i=1

On the other hand, the uncertainty about which set contains X is just H(5')
Thus we have

Axiom 6: In terms of the notation just introduced,
m

11(5) = 11(3) + Z 3,-H,-.
i=1

This completes the list of axioms.
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The axioms are actually stronger than needed; for example, Axiom 4 is
unnecessary. Our goal was to state a reasonable set of axioms from which
the unique form of H can be easily deduced. With the weakest known set of
axioms, the following theorem is harder to prove.

Theorem 12.4 Uniqueness of H

The only functions that satisfy Axioms 1—6 are

H07) = —C 2103' logzpi,
3'

where the constant C’ is an arbitrary positive real number. If p; = 0,
interpret 1),; log 19,- to be 0. By convention, we usually set C = 1.

The function H is often referred to as the entropy. When p,- = Pr(X = a5)
and the range ofX is {a1, . . . , an}, we write H(X) for H(p1,. . . ,pn). In other
words, H(X) = 2X Pr(X)log Pr(X). (Remember that 2X means that we
sum over all instantiations of X.) We can extend this to a set X of random
variables:

H(X) = Z Pr(X) log(Pr(X)).
X

Proof (of the theorem): The proof involves several ideas and steps. Let
f(n) = H(l/n,...,1/n).

0 Since we defined 0 logO to be 0, Axiom 3 allows us to ignore components
of [2' that equal 0. We’ll do so from now on.

0 Because H is continuous (Axiom 5), it’s completely determined by its
values at those 13' whose components are rational. Thus, the proof focuses
on rational 13'.

0 Other axioms make it possible to express H at any rational 15' in terms of
f(n). Thus the proof focuses on f(n).

0 Finally, it’s shown that f behaves like a logarithm: f(bc) = f(b) + f(c).
The monotonicity of f (Axiom 4) is then used to show that f is a loga-
rithm.

Let’s get started.
Applying Axiom 6 to f(n) with ISgl = (1;, we have

f(n) = H(al/n, . . . ,am/n) + Z(a;/n)f(a,-). (12.23)

Thus
m

H(a1 /n, . . . , am /n) = f(n) — 2(ag/n)f(a,-). (12.24)
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H will be known for rational 13’ once f is known. Since H is continuous and
we can approximate any real number closer than 1/71 by a fraction with de-
nominator n, (12.24) allows us to approximate H (13') for any 15' to any desired
degree of accuracy. We’ll use this in the last paragraph of the proof.

We claim that there is a C > 0 such that, for all positive integers b, we
have f(b) = C log b. It will take some time to prove this.

First, apply (12.23) with n 2 be and all a,- = c to conclude that

jaw): f(b) + f(C) (12.25)
for all positive integers b and c. By repeated application of this equation,

f(b’“) = kf(b). (12.26)
We’ll use this to show that f(b)/f(2) = logzb and so f(b) = f(2)log2 b.
Choose 72 so that 2” g b]c < 2”“. Taking logarithms and dividing by k, we
have

2<lo b<E+-1-k- g2 k k'
Multiplying by f(2) and doing a bit of rearranging, you can show that this
implies

L> > 1(2) llam— 3
From Axiom 4, f(2”) S f(bk) S f(2"+1). By (12.26), and some algebra similar
to that in the previous few lines, this implies that

(T2)f>>—|f(b) f(2)—:1
Combine the last two displayed inequalities and use the triangle inequality to
obtain

£%+ fT(2) > f(2)lloogzb —%‘+ |f(b)— @l 2 |f(2)log2b—f(b)l-

As k —> co, the left side goes to 0. Since the right side is independent of Is, it
must equal 0. This completes the proof that f(b) = Clogb for all b.

You should be able to show by a bit of algebra that (12.24) can be written
as

H(a1/n,.. .,am/n)-
—C;(

a,/n) logai/n);

that is, H (15') = -C X: p, log(p,-) for all rational 15'. Both sides of this equation
are continuous—the left by Axiom 5 and the right by standard arguments.
Since they are equal at all rationals, they are equal everywhere. I
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Information Reduces U ncertainty

The notion that “information” reduces H, our measure of uncertainty, is im-
portant because the goal of an information-consuming process is often to re-
duce uncertainty. In particular, this is the goal of pattern classifiers: A trained
pattern classifier “consumes” input information (the pattern) to reduce the
uncertainty about the classification of the input.

Let’s explore this concept of reducing entropy by using information. Since
Axiom 6 was derived by looking at the consequence of obtaining information,
its derivation provides a natural starting point. To begin with, the entropy
of X is H(15') Suppose we ask which 5',- contains X. If the answer is Sj, the
remaining entropy is just Hj. Thus, the expected value of the entropy after
obtaining the answer is given by (12.22). It follows from Axiom 6 that the
information on which 5', contains X reduces the entropy on average by H(5')

If our goal is to reduce uncertainty as much as possible by such questions,
we should choose 5'1, . . . , Sm so as to maximize H(5') It’s left as an exercise
for you to show that

H(31, . . . , 3",) has a unique maximum at (12.27)31 = ...= 3m 2 l/m, namely logz m.
This says we should try to choose the Si’s so that the probability is equally
partitioned; that is, Pr(X E 5,) = l/m for all i. In practice, we usually can’t
achieve exact equality.

Example 12.9 Sorting by Comparisons

Suppose we always have m : 2, such as a series of yes/no questions. Since
log2 m = 1, we’ll have to ask an average of at least H questions to eliminate
all uncertainty.

Let’s apply this to the problem of sorting a list of n distinct numbers by
comparing various numbers in the list with one another. A comparison is a
yes/no question of the form “Is a: > y?”

Construct a probability space (8, Pr) whose elementary events consist of
all n! possible arrangements of the list of numbers, each of which is equally
likely. Let X indicate the correct ordering of the list. Since each 6 E 5 has a
different correct ordering, X takes on 72.! different values each with probability
1/n!. Thus the entropy is H(1/n!,...,1/n!) : log(n!). From the opening
paragraph of this example, it follows that we must make on average at least
log(n!) comparisons to sort the list. This is a fairly tight lower bound.

If certain initial orderings were impossible or highly improbable, the un-
certainty of X would be less and so a clever strategy that took advantage of
this would use fewer questions on average. This situation is not uncommon.
For example, we may have a sorted list of n — 16 elements to which we’ve ap-
pended Ic new elements. Even if k is unknown, we might expect to find an
algorithm that requires, on average, less that log2(n!) comparisons. I
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Example 12.10 Minimizing the Expected Number of Decisions

Let’s explore the idea suggested at the end of the previous example. Imagine
that we’re given N items and must build a decision tree based on yes/no
questions to determine which item is the correct one. We want to ask as few
questions as possible. Unlike the previous case, the probability that the ith
item is correct is known to be p,- and is not, in general, equal to 1/N . What can
we say about the structure of the tree that minimizes the expected number
of questions needed to reach a leaf?

Let d,- be the distance from the root to the leaf associated with the ith
item. You should have no trouble proving by induction that 23:1 2"“ = 1.
(Remember that each nonleaf vertex—including the root—has exactly two
children.)

We claim that the maximum of E p; log(q,-) over all q, 2 0 with Z: q,- = 1
is achieved at q,- 2 pi. The proof is left to Exercise 12.4.3.

Combining the results of the two previous paragraphs, we find that the
expected number of questions is

N N N
Epidi = - Em 1032(2_d‘) Z — 21%10820915):
i i .-

the entropy of 13’. Thus we should try to construct the decision tree so that d,
is close to —log2(p,-). When N = n! and p1 : l/N, we obtain the result in
the previous example. I

I mentioned the use of “conjugate priors” on page 527. Another popular
prior is the maximum-entropy prior. Why? Since entropy is the negative of
information, assuming the maximum entropy distribution as the prior in some
sense involves assuming the least information. The next example illustrates
this idea.

Example 12.11 Maximum Entropy Priors

This example requires a knowledge of Lagrange multipliers. Here’s what you
need to know. Suppose we want to find those :3 6 IR" that give rise to the
critical values (potential local maxima and minima) of f(:i:’) subject to the
equality constraints 95(5) : 0 for 1 _<_ i S 16. Let

WEEK) = 9(5) + A1910?) + ' ' ' + Akgk(5)-

The critical values are found among the solutions if, X of the n + 1:: equations

0h
(9.1:,-

If you’re unfamiliar with this result, you could either look in a text on opti-
mization or you could take it on faith.

2 0 for 1 g i S n. (12.28)
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Suppose someone gives us a die. What should we assume about the prob-
ability of the various possible rolls? Let p,- be the probability of rolling 2' for
1 < z' < 6. Let f(p) be the entropy times ln2. (This means we’re using the
natural log instead of logZ—it makes computing derivatives easier.) The only
constraint is that the probabilities must sum to 1. Thus

6 6

h(15°,/\1)= “ZPi lnPi - A1<ZPi-1).
£=1 5:1

The equations corresponding to (12.28) are
6

—lnp.-—1+A1 =0for1§i$6 and 219521.
i=1

From the first six equations, p, : 6““. From this and the last equation,
66"“‘1 = 1 and so 19.- = % for all 2'. Of course, this isn’t at all surprising since
we already knew that H(13') is a maximum when the components of 15' are all
equaL

Let’s look at something more interesting. Suppose we somehow know (or
believe) that the die is loaded in such a way that the average value is 3 instead
of 3%. The constraint that the expectation equals 3 adds a new constraint.
We obtain

6 6 6
11075:) = —;PilnPi+/\1(ZPi-1)+A2(ZiPi-3)

i=1 i=1

and the equations
6 6

—1np,-—1+,\1+z',\2 =0for 1 gi_<_6, 2p; = 1, and Zip,- :3.
i=1 i=1

It follows that p,- 2 Ab‘- where A = ebl‘l and b = 6"”. The values of A and b
are determined by

6 6

AZb‘ =1 and Azz'bi :3.
i=1 i=1

We obtained A = 0.294 and b = 0.840 by solving these equations numerically.
Is this prior a reasonable choice? Perhaps. If we knew how dice were loaded
and understood the physics of rolling dice, we might be able to work out a
better choice.

What about continuous distributions? In this case there’s an infinite num-
ber of parameters and we’d need the calculus of variations, a subject we won’t
discuss. I
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Exercises

12.4.A. What is the connection between entropy and information?

12.4.B. What does H(ii) measure and how is it computed?

12.4.]. If you’re familiar with Lagrange multipliers, minimize Z 1:,- log 1:,- subject to
the constraints 2 2:; = 1 and :3,- Z 0. Also, maximize 2a,- log 1:, subject to
the same constraints, given that a; Z 0 and Z a,- = 1.

12.4.2. In this exercise you’ll prove (12.27) without using Lagrange multipliers.
(a) Show that maximizing H with log equal to log2 gives the same locations

for maxima as with log equal to In.
(b) Show that a: 1n a:+(a-—a:) ln(a—:c) has a unique minimum at a: = a/2.
(c) Conclude that if H(Ei) is at a maximum, then s,- = Sj for all z' and j.

Hz'nt. Let a = 35 + sj.

12.4.3. In this exercise, you’ll fill in the details of the proof in Example 12.10 without
using Lagrange multipliers.

(a) Prove that 22"“ = 1.
(b) Suppose that a,b, c 2 0, c _<_ 1, and a+b > 0. Show that alnz+bln(c—:c)

has a unique maximum at z: = ac/(a + b).
(c) Suppose a,- Z 0. Conclude that if Ea,- ln(.'c,-) is at a maximum subject

to 2:13,- : 1, then 53' is a multiple of ('1'.
Hint. Using (b), show that sci/a,- = xj/aj and then conclude that this
ratio is independent of z'.

12.4.4. A bag of 17. coins contains exactly one counterfeit coin, which is lighter than all
the other coins, each of which has weight 11). We want to find the counterfeit
coin by using some scale.

(a) Let X be a random variable that indicates which coin is counterfeit.
Explain why it is reasonable to assume that H(X) = log n.

(b) Our scale is the single—pan type—you put the items in a pan and the
scale gives you the weight. Show that we’ll need at least log n weighings
on average.

(G) Our scale is the two-pan type—you put some items in one pan and some
other items in a second pan and the scale tells you which pan is heavier.
Show that we’ll need at least log; n weighings on average.

12.4.5. A patient is known to have one of n diseases. Diagnostic tests may be of the
yes/no or high/medium/low variety. What can you say about the average
number of tests a clever diagnostician would need to make? Be sure to ex-
plain your reasoning.
Hz'nt. This is a rather open question. You should look at various possibili-
ties.
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Let (Pr, 8) be a probability space. You want to select 17. independent elemen-
tary events. This can be described by the usual product approach: Define
(Prn,£") by Prn (E) = Pr(el) - - - Pr(en). Define the real-valued random vari-
able X(é') = log (Prn(é')). You want the expectation of X.

(a) Define a random variable Yg’f (E) to be 1 if the ith component of 3 equals
f and 0 otherwise. Show that

X0?) = EZ n,f(a)log(Pr(f>).
i=1 fee

(b) Show that E(YE’f) = Pr(f) and use this to show that

E(X) = n E Pr(e) log (Pr(e)).
e68

The cross entropy or Kullback-Leibler statistic for two random variables with
the same range R is

D(X||Y) = Z Pr(X = 7') log ($33) .
re}?!

(a) Show that D(X||Y) Z 0.
Hint. Use Exercise 12.4.1 or Exercise 12.4.2.

(b) Look back at the definition of g in Exercise 11.6.6 (p. 481). Explain how,
by adding terms depending only on the desired output 0*, the value of
9 can be made to look like a cross entropy. In spite of this, we should
probably not regard g as related to cross entropy because there is no
underlying probability space in Exercise 11.6.6.

Let X and y be sets of random variables. We define the conditional entropy
of X given y by

H(«1’ I y) = Z Pr(y)H(X I y) = — 2: my) PM I y) log(Pr(x I 32)).
3’ 25,3)

remembering that summing over a random variable means summing over all
instantiations of the variable.

(a) Prove H(X U y) = HM?) + HQ’IX).
(b) Explain why Axiom 6 is just a special case of the previous formula.
(c) Let X; = {X1, . . . ,Xi} and X0 = 0. Prove that

Hm.) = ZH(X5|X¢_1).
i=1
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Notes

Chapter 6 of the AI text by Dougherty and Giardina [6] discusses some of
material in this chapter and also some related subjects.

There are a variety of texts on probability theory. The classic texts by
Feller [10] go well beyond the probability in this chapter. Chung [3] has written
a shorter and easier introduction to mathematical probability.

See Geman, Bienenstock, and Doursat [11] for an extensive discussion of
the bias—variance dilemma. See [20] for another approach. The various ap-
proaches to reducing generalization error, such as cross-validation and boot-
strapping, all involve assumptions about how the training set and the universe
are related to each other. See [21] for a discussion.

I barely touched the surface of statistics. There are a variety of “intro-
ductory” texts available, from cookbook texts that require little mathemat-
ics through theoretical graduate-level texts. Since you are reading this book,
Rice’s text [18] is at about the right level. It begins by reviewing and supple-
menting the probability background you have gained in this text. To study
error rate estimation, you’ll need to look at more specialized literature such
as [7], [13], and [19]. The last is aimed specifically at the interests of the AI
research community.

The subject of information theory was fathered by Claude Shannon in
1948. He used it to define “channel capacity” in the theory of communica-
tion and proved that increasing the transmission rate need not increase the
error rate in a noisy channel, as long as the rate of communication was be—
low the channel capacity. Since then, information theory has been used in
many ways. The text by Cover and Thomas [4] covers essentially the entire
field of information theory and its applications. Khinchin’s articles (translated
in [14]) provide an introduction to the basic mathematical theory. Feinstein [9]
and Behara [1] derive the form of H using a weaker set of axioms than ours,
which follows the approach in [14]. The text [12] by Goldie and Pinch pro-
vides an introduction to both the information-theoretic and algebraic sides of
coding theory. The expository papers in [8] provide more background on the
maximum entropy method and its connection with the Bayesian approach.
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Biographical Sketch

Ronald A. Fisher (1890-1962)
Born in London, he attended Cambridge where he pursued statistics and
genetics and received a degree in mathematics.

Almost singlehandedly, he pioneered the use of statistical methods for
“inductive reasoning” and their applications in biology. This led to his publi-
cation of The Genetical Theory of Natural Selection in 1930 and the founding
of the International Biometric Society in 1947. In this context, inductive rea-
soning refers to the process of reaching conclusions about hypotheses on the
basis of experimental evidence. Statistics is involved both in the design of ex-
periments and in the analysis of the results. This interaction can be seen in
our discussions of generalization error and of decision tree algorithms.

When Fisher began his career with a brief talk to fellow undergraduates
in 1911 on “Mendelism and biometry,” statistics was an undeveloped area
that was seldom used in the sciences. Fisher’s work over the succeeding two
decades changed this: He developed tools and applied them in a variety of
scientific fields, particularly genetics.

Two quotes express Fisher’s philosophy better than any lengthy discussion
here could:

It is the method of reasoning, and not the subject matter, that is distinc-
tive of mathematical thought. A mathematician, if he is of any use, is of
use as an expert in the process of reasoning, by which we pass from a the-
ory to its logical consequences, or from an observation to the inferences
which must be drawn from it. [2, p. 240]

And, in response to criticism for his focus on specific applications:

from my point of view, this is a misapprehension, based on the
belief that the understanding required can be obtained from the math-
ematical background rather than, as I think, from the particular pe-
culiarities of the actual body of data to be examined. [2, p. 244]

This discussion was based on Joan Box’s biography [2] of her father.
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Decision Trees
Neural Nets

and
Search

The study of neural networks in recent years has involved
increasingly sophisticated mathematics .

A reader unfamiliar with the mathematical tools may find this
more technical literature unapproachable.

—Stuart Geman, Elie Bienenstock, and René Doursat (1992)

Introduction

Decision trees were introduced in Chapter 2. They appeared again in Chap-
ter 10 as a type of automatic classifier. Until now, we’ve lacked the mathemat-
ics needed to discuss algorithms for the automatic formation of decision trees.
Now that we’ve developed the tools, we can tackle the algorithms. Next we’ll
discuss neural nets a bit more, including the unfinished business of providing
a heuristic proof for the storage capacity of Hopfield nets. Finally we’ll return
to search—the subject that started our AI investigations. Problem complexity
and time constraints often make complete searches undesirable or impossible.
This makes heuristics and partial search important. Although these ideas were
introduced in Chapter 2, we said very little about them. Now that we have
the appropriate mathematical tools, we can discuss them further.

547
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Since the three sections of this chapter are nearly independent of one
another, you can pick and choose among them.

Prerequisites: The discussion of decision trees depends on Chapter 10 for
terminology and uses the statistics and information theory sections of Chap-
ter 12. The neural net discussion depends on the basic ideas in Chapter 11
and makes some use of the probability theory in Chapter 12. The search tree
discussion requires Chapter 2 and the probability theory in Chapter 12.

Used in: This chapter is not used in later chapters.

13.1 Decision Trees

The dzfiiculty in life is the choice.
—George Moore (1900)

Since decision trees were introduced some time ago, you may want to review
pp. 410—411.

Decision tree data can be almost anything from real numbers to purely
nominal information. For simplicity, our training data will be of the form
(Q, R), where Q E {T,F}"’ and R lies in some finite set ”R. The input is Q,
a vector of true/false values, and the classification (or desired response) is
R. (We’re using 63 to suggest Questions—or, more appropriately, answers to
questions.) Given Q, the ideal decision tree would, after a few decisions based
on Q, yield a leaf that declared the correct classification for Q. If R is a func-
tion of Q, then such a tree can be constructed for the training data. All it
need do is ask enough questions so that each leaf is reached by just one train-
ing pair (Q, R). From previous discussions of complexity versus generalization
error—see Figure 10.3 (p. 421)—it seems likely that such a large tree will be
a poor generalizer. This is usually the case: Good trees are not very large and
yet classify most of the training data correctly.

It seems we should plan to construct relatively small trees. This means
relying on clever questions to divide the data. Consider the following very
simple training set:

’2': {(T,T),0), (T,F),1), (F,T),1), (T,T),0)}

Neither the first component nor the second component of 63 gives any infor-
mation about R; however, the two of them together determine R completely.
Thus, if we look only at single components, we’d need a tree like /<>\’ which
has one data point at each leaf. The question “Is Q1 = Q2?” divides the data
nicely, so we only need the smaller tree /\, which has two data points at each
leaf. Unfortunately, it’s impractical to allow all possible questions. Why? A
true/false question can be thought of as a truth table for some function of the
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n components of 63. Such a table has 2" rows and each row has 2 choices for
the value of the function. Hence there are 2 x x 2 = 22” possible tables.
It’s not computationally feasible to consider this many questions, so we must
limit the number of questions somehow.

We also need a way to measure how good a tree is. With feedforward
nets, we used the function g(u')', 0-.) when training the net and then suggested
cross-validation or bootstrapping for estimating the generalization error of a
trained net. The situation for decision trees is similar. We need some simple
measure of goodness to use while the decision tree classifier is being trained.
After training, we need to estimate generalization error.

In summary, regardless of what algorithm is used for constructing a de-
cision, three things are needed:

a a collection of allowable questions that may be asked about the inputs in
the training data,

0 a way to measure how good a tree is during training, and
o a way to estimate generalization error.

For simplicity, let’s limit the allowable questions to the form “Is Q,- : T?”
Measuring goodness is more complicated. We’ll discuss a method soon, but
first we need to set the stage.

As stated above, training data consists of inputs taken from {T,F}’° and
outputs taken from some finite set 72. It’s useful to think of this in probabilis-
tic terms: There is some unknown underlying probability space (8, Pr). The
training data consists of a collection of pairs of observations of random vari-
ables (Q(e), R(e)). The range of Q is the set of vectors of question answers
{T, F}’°, and the range of R is R. Note that this viewpoint allows the possi-
bility of repeated inputs’ (same Q’s) having different outputs (R’s). In other
words, the data (3 may not uniquely determine the result R. For simplicity,
we’ll limit questions to simply looking at a component of 63(6).

Ideally, we would like to look at all possible decision trees and choose the
“best.” This is computationally impossible in most situations. The training
algorithm we’ll discuss consists of three steps:

0 Grow: We grow a tree one decision at a time by selecting a question at a
leaf: that is, by selecting a component Q,- of Q to examine. (Recall that
a leaf of a decision tree is a vertex at which no decisions are made; that
is, no edges lead out from it.) The question is used to “split” the vertex.
This operation is repeated a sufficient number of times.

0 Prune: Since it’s difficult to decide when to stop, we grow a tree that is
too big and then prune it one decision at a time.

0 Evaluate and Choose: Since it’s difficult to decide when to stop prun-
ing, we consider various levels of pruning and choose the best based on
cross-validation.
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Growing Decision Trees

The following algorithm describes how to split a vertex and then how to use
this process to grow a tree. It does not address the question of when to stop.

Algorithm 13.1 Growing a Decision Tree

We’ll store training data at the leaves of the tree. A leaf 1) can be split
using the ith component of Q as follows:

0 Attach to v the information that we should look at the ith component
of Q.

o Create two edges labeled T and F leading out from v to two new leaves.

0 Move all data (Q, R) at v with Q,- = T to the leaf that is reached
along edge T and the remaining data to the other leaf.

In the process, 1) ceases to be a leaf. To grow a decision tree, initialize
the tree to be a single vertex, called the root, containing all the training
data. Then, repeatedly split leaves. The question for each split is chosen
from among all possible questions at all possible leaves so as to give the
greatest increase in the “goodness” of the tree.

This is a greedy algorithm because it always chooses the split with the greatest
immediate improvement. We’ll discuss the meaning of “goodness” soon.

Greediness is a compromise—a clever algorithm might try to look ahead
at the effect the current split will have on future splits. A mediocre current
split may make a very good future split possible. Such situations can’t be de-
tected with the greedy algorithm. The best we can do is split even when the
gain is small, hoping for future gains. Later, we can undo poor splits; that is,
prune the tree.

Example 13.1 Choosing Questions
The following questions are to be asked of individuals who are living with a
“significant other.” Imagine that Q has three components corresponding to

1. were children conceived with significant other?
2. is respondent female?

3. is significant other female?

For R, we want to determine if the relationship is heterosexual or homosexual.
Algorithm 13.1 would undoubtedly first split the data based on Q1 since know-
ing the sex of only one of the partners is useless. The best tree would ignore Q1
completely and instead split twice using Q2 and Q3. Of course, if we’d allowed
more general questions concerning Q, we could simply ask if Q2 = Q3. l
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What should the stopping criterion be? That’s not very important ex—
cept that it should be liberal in allowing splits. In the extreme case, we might
even split until further splitting is impossible (all Q’s the same at a vertex)
or useless (all R’s the same at a vertex).

Measuring Goodness

Without a measure of goodness, Algorithm 13.1 is meaningless because we
have no way to decide how a vertex should be split. One measure that’s used
is based on information theory. The reason for doing so is the idea that a
decision tree should provide as much information as possible. The leaves pro-
vide the information and entropy provides a measure of information content.
Entropy requires a probability space and the obvious one is (8, Pr) defined
earlier. We need to be more precise. At each leaf 1) we can use the formula for
entropy to define the uncertainty at the leaf: namely,

Hv = — 219,02) logp,.(v), (13.1)
r672

where
pr(v) = Pr(R = r I Q leads to v).

If p(v) is the probability that leaf 1) is reached using a randomly chosen
(6, R) E 8, then the expected entropy is simply

H = Zp(v)H.,. (13.2)

Our goal is to minimize (13.2) and so maximize information.

Since (13.2) is defined for the space (8, Pr) it’s more like generalization er-
ror than like the function 9(13, 5) of feedforward nets. As such, it suffers from
the same problem that generalization error does—we can’t compute it since
we don’t have (8, Pr). All we can do is estimate it by using the training set T.
There’s an obvious approximation. Use frequencies to estimate probabilities:
Replace p(v) with n(v)/n and pr(v) with n,.(v)/n(v), where n is the number
of elements in T, n(v) is the number of these at v, and nr(v) is the number of
these with R = r. In a little while we’ll look at some problems with frequencies.

How is the measure H used? Suppose we’re considering splitting a leaf 1)
into two leaves, which we’ll denote by the labels of the edges T and F leading
to them. The only change in (13.2) caused by the replacement is to remove the
H” term and add HT and HF terms. Since information increases as entropy
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decreases, this change increases the information by

Mm _ mgr 911:)...
= git—”hog (a???)

+ Z #101; ("78%) + 2 1172210,; (PT-Lg) (13.3)
r672aw2—;:>+n<$)ig<:+2»+— animal—zwas»

(The calculations are left as an exercise.)
Except for a factor of l/n, this formula for change in goodness depends

only on parameters that are local to '0. Hence what is done at one leaf has no
effect on any other. This leads to a speed up in the tree-growing algorithm
because we needn’t look at all leaves before deciding on a split.

Algorithm 13.2 Growing a Decision Tree (Revised)
See Algorithm 13.1 (p. 550) for terminology. To grow a decision tree, ini-
tialize the tree to be a single vertex, called the root, containing all the
training data. Mark the vertex splittable. As long as a splittable vertex
1) exists, mark it as unsplittable and find the question that maximizes
(13.3). If the value of (13.3) is large enough, split 1) and mark the two new
vertices as splittable.

The algorithm requires that (13.3) be large enough. If we want to split as long
as possible, “large enough” will be “greater than zero.”

Example 13.2 A Toy Problem
The example in this problem is unrealistically small. I did that to keep the
computations tractable and to highlight the problems caused by small values
of nu.

Representation of digits using subsets of the seven lines Ei should be a
familiar sight. Rather than use these to create a toy problem, we’ll choose a
simpler array using only 4 lines. The possible patterns will be '2', |, |_, and
U, which we refer to as O, I, L, and U, respectively. Positions will be listed
in the order 2:3 and 0 (resp. 1) will be used instead of F (resp. T). Thus, our
input belongs to {1,0}4 and our output to {0,I, L, U} with

1111—>o, 0010—»1, 0101-—>L, 0111—»U.
We’ll allow each line to “fail” (1 replaced by 0) independently with proba-
bility p. The situation can be described analytically; see Exercise 13.1.3. Our
goal is to recover O, I, L, or U given the observed pattern.
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line

4\

line 2 line 3

(0, 10, 0,0) line 1 line 1 line 1

\ /\ /\
line3 (1,0,0,0) line2 (1,0,0,0) line2 (4,0,0,0)
/

(1,0,0,1) (0,0,0,3) (0,0,3,0) (1,0,7,1) (0,0,0,1) (2,0,0,4)

Figure 13.1 See Example 13.2 for a description of the problem. The vector at
each leaf indicates the number of garbled training patterns with each of the classi-
fications O, I, L, and U, respectively. A line number indicates the line in the array
2%,3 on which the decision is based, with a left son corresponding to absent and a
right son to present.

/ 1 1 13/\ 2/\ 2/ (K (KA A A A A
Figure 13.2 The tree on the left is the same as that in Figure 13.1. The other
tree is generated from another random training set on the same probability space.
A number at a vertex indicates the line that was used for the decision, with a left
son corresponding to absent and a right son to present.

By starting with 10 copies of each symbol and a failure rate p = 0.2, a
program produced a random training set with 40 elements. Our tree-growing
algorithm was used to produce Figure 13.1.

Another set of data was generated using the same parameters but a differ—
ent random start. For comparison, this tree is shown in Figure 13.2 together
with the previous result. Note the large difference between the two trees. Such
differences arise from random fluctuations in sampling. These are most notice-
able when the training set is a small random sample or when the information
in Q is woefully inadequate for the classification task. This large difference
between trees is reduced somewhat by pruning. I
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*Example 13.3 The Frequency Problem
In Example 12.7 (p. 515) we saw that frequencies based on small samples pro-
vide poor estimates for probabilities. The situation is even worse when we’re
attempting to split data so as to minimize entropy. To see this, let’s perform a
thought experiment. Suppose that the data at the leaf 2) is {(63, R), (Q’ , R’ )},
where (3 76 Q” and R :,£ R’. If we use any component i such that Q; 75 Q, to
split '0, (13.3) tells us that the information will increase by 1/n. (Do the cal-
culations!) On the other hand, the question chosen is likely to be irrelevant.
Thus, small sets may lead to irrelevant splits. More generally, the process of
splitting based on observed frequencies tends to accentuate random variations
that are present in the training data.

How can we correct the situation? First, let’s explore the situation a bit.
What does fixing it gain? Unless the data set is quite small, fixing the

problem probably won’t alter the numerical values in (13.3) very much. Thus
the question that gives the greatest improvement would probably not change.
If we needed some absolute assessment of a goodness, the effect would be more
pronounced. Fortunately, such assessment is rarely needed.

Since the gain seems to be slight, a time-consuming correction isn’t worth-
while. Can we find a quick one? I don’t know of any when we are dividing
data; however, there is one when we are simply estimating probabilities. The
method is referred to as flattening counts. A greater degree of flattening might
be helpful in constructing decision trees.

In order to explain flattening, we need to carefully explain the problem.
In the simplest case, we have n independent observations of a random variable
whose range is {0, 1}. Of these, 16 have the value 0 and n — k have the value
1. What is the best estimate for Pr(X = 0)?

Let p = Pr(X = 0). What is the probability of obtaining exactly [0 obser-
vations equal to 0? The probability of k observations of 0 followed by n — k of
1 is pk(1 — p)""‘ . In fact, this is the probability regardless of the order of the
zeros and ones. Since we don’t know that order, we must sum 10" (1 — p)"‘k
over all possible orders. Let (2) denote the number of ways to form a sequence
of k zeros and n — k ones. (2) is called a binomial coefi‘icient. You won’t need
to know how to compute it.

One approach to estimating p is called the maximum likelihood estima-
tor. It’s obtained by finding the value of 1) that maximizes the probability
(2)pk(1 — p)”"° of obtaining exactly 16 zeros. It’s a straightforward calculus
problem to show that the solution is given by 15 = k/n. Do it.

Bayesian methods provide another approach. Let’s assume that the prior
pdf of the value of p is uniform on [0, 1]. Since

Pr(observation | p) = (71:) pk(1 — p)n-k,

it follows that the posterior pdf for p is

f(p | observation) = Cpk(1 — p)"’k (13.4)
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for some constant C. We can determine C from
1 1

1 = / f(p I observation)dp = / Cpk(1 — p)"'kdp.
o o

How can we use (13.4) to estimate p? A standard approach is to use the
expected value of p:

1 _
_ f0 PHI“ ‘1’)" d

l

15 = 10019" 1- p ”‘d — .
f0 ( ) f01 p"(1 - 10)“d

Repeated use of integration by parts allows us to reduce the power of (1 — p)
to 0 and gives us an integral we can evaluate. You should carry out these steps
to obtain

1. . j 1
.+1 .1 fig! 1

.+.‘1— ’d:,—— ’ 1— J"d = f "d[0“ p)pz+1/op( p) p (Whp p
z'! j!—m

Thus 13 = $. This result can be interpreted as follows. Increase the count
of zeros by 1 and increase the count of ones by 1. Then use the new counts to
produce a frequency estimate. This result is true in general:

If the range of a random variable X is {71, . . . ,rt}, if n independent
observations have the value 1'; exactly k,- times, and if the prior prob-
ability distribution for X is uniform, then the Bayesian estimator for
Pr(X = m) is (kg+1)/(n +t).

This is the method of flattening counts—increase each count by 1 before using
frequencies to estimate probabilities. Notice that if we thought the range of
X was {11, . . . , 13} with s < t, then we’d obtain a different estimate for the
probabilities. In practice it may be hard to determine t—are values missing
from the observations because they are rare or because they are impossible?
Let’s not pursue this. I

Exercises

13.1.A. Why do we prune decision trees?

13.1.B. Explain how to grow a decision tree?
13.1.C. How is entropy H used to measure goodness?
13.1.D. What is “flattening counts” and why is it used?

13.1.1. Explain how we could think of 6‘ as being {T,F}k x ’R and each (Q,R) as
an elementary event. Now suppose that Q determines R. Explain how we
can think of 5 as being {T,F}k in this case and why this doesn’t work in
general.
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13.1.2. Derive (13.3) and interpret the parenthesized terms in the last two lines in
terms of information.

This exercise refers to Example 13.2. In the following table, each column
gives the probability of the pattern arising from O, I, L, and U. An asterisk
stands for either a 0 or a 1, z is the number of asterisks that are 0, and

13.1.3.

q = 1 —p.

0110 0100
1*** 0111 0011 0101 0001 0010 0000

C) pzq4" pq3 p202 p202 paq paq p4
I 0 0 0 0 0 q p
L 0 0 0 q2 pg 0 p2
11 0 as p02 pq2 p20 p24 p3

(a) Verify the table.
(b) Construct a similar table whose entries are the probabilities of having

started with each of the four possible patterns given the observed pat-
tern. You should need only five columns instead of seven.

(c) Each column of the table gives rise to a rule. State each rule as a
probability distribution on O, I, L, and U. State each rule as a hard
choice—specify one of O, I, L, and U.

((1) Compute the generalization error for your rules in the hard-choice case.

*(e) Compute the generalization error for your rules in the probability dis-
tribution case.

13.1.4. Each leaf in Figure 13.1 gives rise to a rule.
(a) State the ten rules as hard choices—specify one of O, I, L, and U at each

leaf. (For one leaf, it is not clear what the choice should be.)
(b) Combine whatever rules you can to obtain a smaller set.
(c) Compute the generalization error for your rules. The table of probabil-

ities in the preceding exercise may be helpful. (Remember that p = 0.2
in this case.)

Pruning and Evaluating Decision Trees

The riders in a race do not stop short when they reach the goal.
There is a little finishing canter before coming to a standstill.

——Oliver Wendell Holmes, Jr. (1931)

Before discussing pruning, let’s to define our concepts, which will make dis-
cussion a bit easier.
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/\ {w}
T{v,w} = u C'UDUE

.. / \
A B'0 {1MB}/\ /\5 {0,10}

/\ {u,v.w}
C D {r,u,v,w} T{u.v,w}=

AUB C'UDUE

Figure 13.3 A decision tree T is on the left, all prunable sets are in the middle,
and two prunings are on the right. Lowercase letters denote decisions and uppercase
letters denote data sets.

Definition 13.1 Pruning
Let T be a decision tree. A decision vertex 1) all of whose sons are leaves is
called prunable. The pruning Tv of v is the decision tree in which the sons
of 2) have been removed and the data they contained has been moved to
12. More generally, a set W of nonleaf vertices is called prunable if, when-
ever w E W, every nonleaf vertex below w is in W. The pruning Tw of
W is the decision tree obtained by sequentially pruning all the decisions
in W, starting with the lowest vertices and moving upward. In effect, Tw
is T with all of the decisions in W eliminated.

More graphically, a set W is prunable if, when we grab the tree by the root
and remove the vertices in W, only leaves fall off. The decisions in W needn’t
be pruned sequentially. Instead, suppose that w E W has no vertices in W
above it. Remove all descendants of w and move the data at the leaves to W.
Figure 13.3 shows a decision tree and some aspects of pruning.

The measure of goodness used for growing a tree didn’t take the tree’s
complexity into account. Complexity is important: Let T be a decision tree
grown by Algorithm 13.2 (p. 552) and let W be a prunable set. By the way T
was constructed, it will do a better job of classifying the training data than
Tw will do. Thus the goodness of T exceeds that of Tw. On the other hand
T is more complex than Tw because it contains more vertices.

The previous paragraph shows that, in order to select the prunable set
W that gives the best Tw, we must have some way of handicapping trees for
their complexity.

Consider the more general setting of an arbitrary classifier. The number
of parameters the classifier contains provides a measure of its complexity. For
decision trees, the number of parameters is the number of decision vertices.
For neural nets, you can see from (10.1) (p.409) that the number of param-
eters is the number of edges plus the number of vertices. Statisticians have
shown that, in some situations, it’s best to minimize a linear combination of
the number of parameters and the expected cost due to misclassification [27].
(I won’t prove this—you’ll have to take it on faith.)
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Let’s be as simple as possible: The classification at a leaf is just the most
frequent classification among the training data at the leaf. The cost of mis-
classification is 1. Let D(T) be the number of decisions in the tree T and note
that D(Tw) = D(T) — IWI. For some ,6,7 > 0 we want to minimize

fl(error rate) + 7D(Tw) = fl((error rate) + (7/)6) (D(T) — WV”)!

which is equivalent to minimizing

(error rate) — aIWI

for some a > 0. There are four problems with this:

0 What is a? For the time being, let’s assume that a is known.

0 By “error rate” we should mean the generalization error rate, which we
don’t yet know how to estimate for decision trees. For the time being,
we’ll use the training error rate.

0 For all but the smallest decision trees, we’ll have too many prunable sets
W to consider. To avoid this, we’ll use a greedy algorithm.

0 Finally, there’s a theoretical issue: The tree was grown using the expected
entropy as a measure of goodness but it’s being pruned using the error
rate. Why? The answer is simple: Although our concern is the error rate,
we can’t use it while growing a tree since we don’t yet have classifications
at the leaves.

Algorithm 13.3 Greedy Pruning

Let T be the training set used to grow the decision tree and let e(T) be
err(’T,’T) measured using the decision tree T.

Initialize T to be the decision tree grown using T and mark all leaves
as untested. As long as there is an untested leaf in the tree T, carry out
the following sequence of three steps:

0 Find a prunable vertex v of T that was split to provide two untested
leaves or and 121,. Mark 121. and 1),. as tested.

0 Let T, be T with the decision 1) pruned and the new leaf 1) marked
as untested.

o If e(T) > e(Tv) — a, replace T with To.
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It’s important, but not immediately obvious, that the two leaves attached
to a retractable vertex are either both tested or both untested. (You should
prove it.) If this were not true, there could be untested leaves but no prunable
vertices both of whose leaves were untested.

We now have a greedy algorithm that uses training error rather than
generalization error and contains an unknown parameter or. How can this be
fixed? Greediness and training error will stay in the algorithm. What we’ll do
is describe a method for computing generalization error as a function of a.
We then choose the tree with the smallest generalization error.

Here’s the idea. The parameter 0: determines the degree to which complex-
ity is penalized. Larger a means a higher penalty and hence a greater pruning
of the tree. For any particular a, we can grow and prune a tree on a subset of
T. This makes cross-validation possible since it requires training on a subset
of T. In this way, we can associate a generalization error with any value of a.

Since a can be any positive real number, this isn’t quite good enough. We
need to provide a way of limiting attention to finite number of a’s.

Here’s how that’s done. Forget about cross-validation for the time being—
design the tree using all of 7. Every value of a determines a tree T(a) based
on the growing and pruning algorithms 13.2 (p. 552) and 13.3. Each T(a) is as-
sociated with a prunable set W. Since there are only finitely many choices for
W, there will be only finitely many distinct trees T(a). Breiman et a1. [2] show
that T(a) is a nonincreasing function of a and provide a practical method for
finding the sequence of trees and the values of oz at which T(oz) changes values.
Thus we now have

asequence0=a1<~-<an+1=oo

and
a sequence of decreasing trees T = T1, . . . ,Tn = 0

such that

T; is constructed when a; < a < ail-+1.

(The symbol 0 stands for the single-vertex tree.) To evaluate Cl}:

0 Set oz to a value intermediate between a,- and (154.1.

0 Using cross-validation and this value of a, obtain an estimate of the gen-
eralization error.

0 Choose that T,- with the lowest estimated generalization error.

See [2] for details.
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Exercises

13.1.E. What can often be used as a measure of classifier complexity? What does
this measure amount to for decision trees? neural nets?

13.1.F. Describe how to prune a decision tree.

13.1.G. How do we evaluate generalization error and thereby sidestep the problem
of directly determining the weight or of complexity in the pruning algo—
rithm 13.3?

13.1.5. Suppose that all the leaves in the decision tree T are at a distance 12. from
the root. For example, the trees for n = l and n = 2 are /\ and /<>\' Let
P(n) be the number of prunable sets (including the empty set). Show that
P(0) = 1 and P(n +1): P(n)2 +1. Use this to prove that P(k +1) 2 22k
for k > 0.

13.1.6. Let L(T) denote the number of leaves of T. Prove that finding the best Tw
is equivalent to finding W that minimizes e(Tw) + aL(TW).

*13.1.7. Discuss how the tests for 2 x c arrays could be used in pruning. (An example
of such a test is the chi-square on page 531.)

Extracting Rules from Trees

I’ve warned against attributing meaning to rules extracted from classifiers
(p.422). So why does this section exist? I didn’t say you shouldn’t extract
rules. I said you shouldn’t impute causality to them.

For simplicity, we’ll discuss rule extraction in a deterministic framework.
Thus we’ll assume that the pattern 65 is sufficient to determine the classifica-
tion R and that a decision tree has been constructed so that the patterns at
each leaf have only one classification. The questions asked on the path from
the root to a leaf can be interpreted as a rule: If the questions refer to com-
ponents z',j, k of 63, if the answers are a, b, c E {T, F}, and if the value of R at
the leaf is r, then the rule is

((Q, = a) A (o,- = b) A (62;, = c)) —. r. (13.5)
It may be possible to simplify a set of rules; for example, we can combine
(13.5) and

((62.- = 1.) A (Q. = c) A (Q.- = I») a r (13.6)
to obtain ((6), : b) /\ (Q;c :: 0)) —> r.

The decision tree approach to extracting rules has some attractive features
for the design of expert systems:



13.1 Decision Trees 561

0 Decision trees can be constructed from whatever information is available.

0 Given a large amount of data, a decision tree procedure is likely to produce
a better set of rules than a system designer does.

0 If the user wants to know 'why a question is being asked, a response of
the form “It will help me decide if the situation is r,” can be constructed
automatically by choosing the value of r that maximizes information gain.
(See Exercise 13.1.8.) If more than one r gives a large gain, they might
all be mentioned.

As a result, decision trees are a popular method for extracting rules from data,
and expert system shells often contain a decision tree algorithms.

Exercises

13.1.8. In the notation of (13.3) (p.552), show that the information gain at v
attributable to r is given by

Mo m Le), LU")
{ n lg(nr(v))+ n lg<nr(v))}

{ n lg(n(v))+ n lg(n(v))}°

*13.1.9. The information gain computed in the previous exercise could be large pri-
marily because nr(T)/n(T) is closer to an end of the interval [0,1] than
n(T)/n(v), or it could be large primarily because nr (1)) is large. Justify this
claim and show how the two cases could be used to produce different refine-
ments to the explanation suggested in the text for why a question is being
asked.

*13.1.10. Suppose that classification is not always constant at leaves.

(a) Explain how the rule extraction process can be modified to give proba-
bilistic results.

*(b) Due to relatively small sample size, such probabilistic results are often
rather uncertain. How can confidence information be associated with
the probabilities?
Hint. A starred part of a starred exercise is not easy! It could easily be
a research topic.

*(c) Develop a method for deciding if two probabilistic rules should be com-
bined as (13.5) and (13.6) were.
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13.2 Neural Nets Again

Here we’ll apply some of the ideas in the previous chapter to neural nets and
also discuss issues related to network size. The ideas in the first two parts of
this section can be adapted to classifiers other than feedforward nets.

Training and Testing

Random variables arise in a variety of ways in training. As we’ve already seen,
they’re often used to initialize network parameters. Experimenters say that
independent gaussian random variables appear to work better than uniformly
distributed random variables. A good choice for the mean is usually obvious—
often it’s zero. N0 one knows how the variance should be chosen, so it’s done
on the basis of experience or intuition. In this section, we’ll look at a couple
of other uses of random variables.

Example 13.4 Noisy Data Can Improve Generalization

A subtler use of random variables is made in an attempt to improve the gen-
eralization error rate by adding noise to the training data. Suppose the pat-
terns lie in HR". Each time we want to use a pattern/classification pair from
the training set, we use a randomly perturbed version of the pair. Typically,
independent gaussian random variables with mean zero are added to the com-
ponents of the pattern and, perhaps, to the classification. Although it may
seem paradoxical at first, adding such “noise” to the data may improve the
net. How can this be?

An algorithm attempts to fit a complicated function to the given points,
regardless of what happens elsewhere. The training set contains a small col-
lection of isolated points in IR", so there’s a lot of room for the function to
misbehave. By adding noise, we create a large cloud of points that cluster
around a smooth surface close to the training set. As a result, the algorithm
tends to fit a relatively smooth surface to the points.

Is a smooth surface what we want? When we look for generalization, we
expect similar stimuli to give similar responses. In other words, inputs that
are close together should give similar outputs, which is the same as saying the
surface should be smooth.

A better justification for adding random noise to data is provided by
Holmstrom and Koistinen [17], who also propose methods for choosing the
variance of the noise. I
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In addition to improving generalization, adding noise can be useful in
another way. Since noise changes the function f(53') that we want to minimize,
it will also move the local minima. A small amount of noise changes the surface
determined by (53', f(i*')) only slightly. Hence deep minima will be affected only
slightly. On the other hand, shallow minima may move significantly; in fact,
some may disappear and new ones may appear. What effect does this have
on minimization? It provides a way of escaping from local minima. Suppose
the algorithm is close to a shallow local minimum. On the next iteration, the
noise may have moved or destroyed that minimum. Since deep minima are
more stable, they are still able to trap the algorithm.

Example 13.5 Weight Decay

Weight decay was introduced in (11.36) (p.483) as a way of improving gen-
eralization by making it difficult for parameters to get large. Unfortunately,
the justification was completely ad hoc. A probabilistic approach offers a less
ad hoc justification.

Let 1'!" denote the entire set of parameters—both 215 and 67 The statement
that 1r; is more likely than not to be small can be viewed as a statement
about the prior probability distribution for 7;. Thus we can think of 7r,- 6 IR
as a random variable. What is its pdf? Since a normal with mean 0 and
some variance 0‘2 makes calculations easy, favors small values of |7r,-|, and
is a commonly occurring distribution, we’ll use it. Furthermore, we’ll make
7r1, . . . ,7r,, independent. It follows that the pdf of 7? is

f(.i") = CHexp(—:c,?/20'2) = Cexp(—i:'- {if/202) (13.7)
i=1

for some constant C’ = C(n, 0’).
From the talk about priors in the previous paragraph, you may have

guessed that we’re moving in a Bayesian direction. We’ve only stated and
proved Bayes’ Theorem for finite probability spaces. There’s also a version for
infinite spaces in which pdfs play the same role that probabilities do in the
finite case, but we won’t prove it. Because it’s more familiar, let’s phrase the
discussion in terms of Pr—the finite case—rather than pdf—the infinite case.
The training set T consists of a collection of pairs (13;, R1) of patterns and
desired responses. Let P be the list of patterns and ’R, the list of responses.
We want Pr(7'r' | P A R). In the following, C; is something independent of 7?.

Pr(7'r' | P A ’R) = Cl Pr(P /\ ’R I 1?) Pr(7'r') by Bayes’ Theorem
= Cl Pr(R I P /\ 7'1") Pr(P | 7?) Pr(ir’)
= Cg Pr(P. | P /\ 1?) Pr(1'r')

because the patterns are given and do not depend on how we select the pa-
rameters 7'1".
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When we put 13,- into a net with parameters 7?, we get some output Rf.
Somehow we need to compute the probability of R, given that we predicted Rfi.
Insisting on perfect prediction would mean that the only possible outcome for
correct 7? is fig 2 R5. This is unrealistic because nets are usually not perfect
classifiers. It’s also not useful for minimization algorithms because there’s
nothing continuous to climb on. If we imagine that there are random sorts of
errors in either the approximation R; or in the original data R,- or in both,
then it’s reasonable to assume a gaussian distribution for R:- — R; with mean
6. For simplicity, let’s assume the R; — R,- are independent and all have the
same variance 1'2. We can now do the same sort of manipulations as in (13.7).

Translating all this into the neural net terminology found on page 472
tells us that the pdf of the parameters given the training set is proportional
to e" where

P

s=2—LZZ(oy(p)— 0:09)) (2w.,+202)(13.8)
P=17€0

To maximize e", we minimize (13.8). This is equivalent to minimizing (11.36)
(p. 483).

To complete the discussion, we need to describe how a and 1' (or simply A)
are determined. Here’s where the approach runs into some problems. Various
methods have been advocated and the problem is still being researched. I

Exercises

13.2.A. Why might adding noise to the training data improve generalization? con-
vergence?

13.2.B. What is weight decay?

13.2.1. Suppose you’re given a feedforward network and training data. You train
the net obtaining z?) and 5. The values obtained may depend heavily on
how the parameters are initialized since you expect to converge to one of
many local minima, not to the global minimum. Imagine estimating the
generalization error rate using cross-validation. To do so, you must train the
network many times using different training sets. In addition to the problem
caused by the choice of random starts, there’s the problem that training is
a time-consuming process.

There are various ways you might initialize the parameters for cross-
validation training Here are some possibilities:

(i) Use a. random start.
(ii) Use the same start used to train the net you’re cross-validating.

(iii) Start them at the values of 21') and 5 of the net you’re cross-
validating, perhaps with a random (gaussian?) variable added to
each component.
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(a) What can you see as potential strengths of each approach? Potential
weaknesses?

*(b) Can you suggest another approach that might be promising? If so, what
is it and why do you think it is promising?

(c) What method are you inclined to prefer and why? (There is no one right
answer to this.)

((1) What sort of experiments might you perform to determine which method
seems preferable?

13.2.2. Fill in the missing steps in the paragraph containing (13.8).

13.2.3. Imagine a feedforward net with a single output vertex that is designed to
produce outputs in the range (0,1). Introduce a 0/1-valued random vari-
ables X7 and interpret 07 as the probability that X7 = 1 given the input.
The training data consists of input/output pairs in which the outputs are
0/1-valued corresponding to “false” and “true.” A given input may appear
many times in the training data, not always with the same outputs. (See
page 472 for net notation.)

(a) Explain how you could try to use such a neural net to produce the
probability that a patient has a particular disease given the patient’s
symptoms.

(b) Show that the probability of the outputs in the training data given the
training inputs and the nets is

P

H 07(p)°?‘”(1 — «(w-02(9).
p21

(c) Suppose that the training set contains N(52', 1*) copies of the input pattern
:3 with desired output of; = r where r 6 {0,1}. Show that we should
minimize

— Z(N(§:', 1)log(07(i:')) + N(?B',0)108(1- 07(5)»,
if

where 07(5) is the output the net produces when the input is if.

((1) Show that the minimum is achieved when

.. _ M5331)
07(3) ‘ N(5:‘, 0) + N(i’,1)’

provided parameters can be chosen so that the net produces such outputs

07(53)-

Further discussion of this use of entropy as an error measure can be found
in [30].
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*13.2.4. Suppose that there are several output vertices 0, all of which output non-
negative numbers. In some situations people want to interpret the vector of
outputs as an indication that the correct answer is 7 for each 7 E 0. One
way of doing this is by setting Pr(7) = 07/2660 05. Discuss adapting the
ideas in the previous exercise to this situation.

Comments on Large Feedforward Nets

As yet, there seem to be few principles or methodologies for
designing the specific connectivity patterns in these networks. All
network designs in the literature seem to have been rather ad hoc

constructions for specific experiments. This is a major
inadequacy of the discipline.

—J. Stephen Judd (1990)

It’s been estimated that a human brain has about 1011 neurons (“nodes” in
neural net terminology) and about 104 connections (edges) per neuron. To
approach anything like the number and connectivity of the neurons in the
human brain, we must build much larger nets. Researchers have discovered
that building large neural nets (“scaling up”) presents great difficulties. This
is a recurrent problem in Al. To cite just three examples:

0 In the early days, it was thought that simple search was the key to AI.
Unfortunately, search time expands explosively with problem size. Exten-
sive knowledge of the problem domain is often needed to reduce the search
to a manageable size.

0 Another early hope for AI was simple logic approaches. Again, scaling up
led to excessively slow programs. The reasoning domain was structured
by such methods as semantic nets and defeasible logic in an attempt to
reduce running time.

0 Planning, which we haven’t discussed, also becomes bogged down as prob-
lem size increases. Structuring the planning space so that work on strategy
(large-scale steps) precedes work on tactics (refinements of the large steps
into smaller ones) has helped.

Why is it so difficult to train large nets? In the first place, the number of
parameters is quadratic in the number of vertices: If we increase the number
of vertices by a factor of k, the number of possible edges increases by a factor
of about 162. Hence the number of parameters will increase by a factor of about
hz. In the second place, the number of steps required to reach an acceptable
local minimum usually increases rapidly with the dimension of the parameter
space. Improved minimization techniques could allow somewhat larger nets,
but much more than that is needed. At this time, no one knows what to
do. Experiments are being carried out with a variety of methods based on
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analogy and experience rather than theory. Some general design principles
should emerge in the near future. A clear theoretical understanding will take
much longer. What has been achieved is based largely on clever ad hoc ideas,
many or all of which may be supplanted by future research. Here are some
approaches that are being explored. The list is incomplete and some topics
overlap.

Incremental Growth: Start with a small network. Train it. Add one or
more vertices in strategic positions. Continue training, perhaps inhibiting
change in many of the old parameters. (Some may even be frozen.) This
has an effect similar to working in a space with fewer parameters—an
inhibited parameter counts for less than a free one. If the net has reached
some reasonable partial approximation to a solution, the old parameters
should be at or near useful values. As a result, freezing or slowing them
should be okay.
Incremental Training: This is closely related to incremental growth. Here’s
one such strategy. Train a small network N1 on T. Suppose it responds
well on T1 C T and poorly on T2 = T — T1. Train another network N2 to
do well on T2 and then train a third network N12 to decide between using
the output of N1 and using the output of N2. Network N12’s decision
would probably be based on distinguishing between T1 and T2. Taken
together, N1, N2, and N12 provide a network that does well on all of T.
The nets N2 and N12 could be constructed iteratively.
Structure: Structure the network based on the nature of the problem
it is facing. A traditional example is vision where the inputs form a two-
dimensional array. Hidden units are connected to blocks of adjacent inputs
and may have inhibitory connectors to each other. These, in turn, feed
to other hidden units, still preserving some of the metric structure of the
inputs. With this hierarchical structure, the number of edges grows much
more slowly than the square of the number of vertices and the outputs
from one level provide highly informative inputs for the next level.
Modularity: Split the job into subtasks, train nets on the subtasks, and
then build a new net that uses the outputs of the trained nets as in-
puts. Finding subtasks can be difficult, especially since we probably need
more than just a few if we want to obtain very large improvements. We’ve
already discussed one obvious division into two subtasks: See the discus-
sion of cleaning up inputs on page 488. The method described above in
“incremental training” is a form of automated modularity.
Biology: Considerable structure is present in the neural connections of
brains—most are to nearby neurons, but there are also organized long-
distance connections. A large number of synaptic connections (edges) and
neurons (vertices) die in the brains of babies. A better understanding of
the structure of brains and Nature’s “pruning” technique may lead to
useful tools for designing neural nets.
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0 Tool Combining: Don’t use neural nets for large-scale problems. Instead,
use them for preliminary processing of input and then use their outputs
as input to some reasoning-based approach. This is called a hybrid system
because it uses more than one knowledge manipulation technique. Some
cognitive scientists argue that there is support for this approach in brains:
Timing information implies that relatively few “machine cycles” occur
between a brain’s reception of input and the initiation of processing on a
more conscious level. Neural nets may be the best devices for the initial
low-level processing, but other approaches may be more appropriate for
the more conscious type of processing. Even this low-level processing is
more complex than what we can achieve artificially, so we would still need
to improve neural nets.

All these topics are areas of current research.

Exercises

13.2.C. What are some of the difficulties in scaling up neural nets?

13.2.D. What are some avenues of approach for the problem of building large nets?

The Storage Capacity of Hopfield Nets

Let’s return to Theorem 11.1 (p.433), for which we gave a heuristic partial
proof in Example 11.1 (p. 436). At that time, we were faced with the problem
of showing that Pt(k) and

(n—1)P.(k>+ Z Z a(1)P.<I)P.-(k) (13.9)
i: i¢t I: (#1:

have the same sign, where 13“) is an n—long pattern of il’s and 1 g k g s.
This cannot be guaranteed to always be true; however, it can be shown that
it’s probably true for a case selected at random. This is the reason for the
“almost certainly” in the statement of Theorem 11.1. Theorem 11.1 must
be regarded as a probabilistic result—if the components in the patterns are
selected independently, then with high probability :l:13(lc) will be an energy
minimum and points not too far away will be in its basin of attraction.

With this probabilistic approach, we can use the Central Limit Theorem
or something similar.

Let the Pi(j)’s be independent random variables that are as likely to be
+1 as —1. By the definition of the P,-(j)’s each term in the summation in
(13.9) is a random variable X5); that is equally likely to be +1 or —1. Now
let’s cheat and apply the Central Limit Theorem (p.513) to the sum. Why
is this cheating? We don’t know that the terms in the sum are mutually
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independent. In fact, there’s a slight dependency, but it is small enough that
it shouldn’t distort the results too much.

To avoid confusion with the n in (13.9), imagine replacing the n in The-
orem 12.3 (p. 513) by m. That sum contains m = (n — 1)(s — 1) % ns terms.
Since E(X,;,1) = 0 and E(Xi2’,) = 1, the variance of each term is 1. Thus
”(m) = 0 and 0(m) =fl % w/ns in Theorem 12.3. By the theorem,

2 °° _2
Pr(|l>C)zW‘/C; 6 t/2dt,

a function that is quite small when C is large. Since the magnitude of the
summation in (13.9) is mIYI, it’s likely that (13.9) and Pt(k) will have the
same sign if m xfl is small compared to n; that is, if s is small compared
to n. Unfortunately, this is not good enough. This result must hold for all n
components of 13(19) and also for all k. Even though each individual event has
a high probability, the probability of all components of all 16’s working out
correctly may be low.

We need a stronger result than the Central Limit Theorem. Instead of
(12.9), we need

lim r( - Mm» = 1 (13.10)m_’°° (27r)—1/2f_3fg;n)e“2/2dt
even if y(m) —> —00 as long as |y(m)| does not grow too fast. (You should be
able to easily see that (12.9) and (13.10) are the same when y(m) is constant.)
Such “large deviation” results exist. We’ll simply use (13.10) as if everything is
okay—after all, we’ve already cheated once by pretending the Xu’s are inde-
pendent. According to Exercise 13.2.5, the integral in (13.10) can be bounded
above by e‘y(m)2/2/|y(m)|. Suppose n/s is large and let

y(m) : %_;—2) 2fl where n/s is large.

Using (13.10) and arguments like those in the previous paragraph, you should
be able to show that the probability the summation in (13.9) will cause a sign
reversal is less than exp(—y(m)2/2) % e“”/2’.

Assuming the sign-reversal events are independent, the probability that
the sign of (13.9) will be correct for all values of t and k is at least

(1 — e_"/2’)m z exp(—e’"’/2’ns), (13.11)

where we used (1 — 6) x 6-6. How large can we make .9 and still have (13.11)
close to 1? Experimentation or experience may suggest trying 3 : n/C’ 1n n.
Then (13.11) becomes exp(—n2‘C/2/C'ln n). Hence we take 0' = 4.

Since our argument was based on independence assumptions that were
only approximately correct, it isn’t mathematically rigorous. The conclusion
we reached—that s = n/4lnn is a critical value—is correct. But a rigorous
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proof requires additional mathematical background and involves more work
than this heuristic derivation.

Since each pattern contains n components, each of which is :|:1, it can
be thought of as n bits. All the patterns together consist of ns z n2/4lnn
bits. On the other hand, an n-node Hopfield net has about 722/2 weights.
Consequently, it uses about 21m 72 weights per bit of pattern. Thus a Hopfield
net requires many more bits to store the patterns than it would take to simply
list the patterns.

Exercises

13.2.5. Prove that when a: > 0,

—:c 2 00 2 -$2
/ e—t/zdt=/ e4 /2dt<e——.

—oo :1: :1:

Hint. Change variables in the second integral so the limits are 0 and 00.

13.2.6. The estimate of 21nn weights per component stored in a Hopfield net is
actually rather bleak: A weight is a real number and so contains an infinite
number of bits of information since it is an infinite decimal.

(a) Show that our weights are actually integers of magnitude less than 3.

(b) Conclude that we are using about c(log 72.)2 bits to store one bit.

*(c) Perhaps we can round off our weights. Explore the possibility that it
may be sufficient to keep just some of the high-order bits of a weight.

13.3 Heuristic and Partial Search

For this section, you’ll need to review the definitions and concepts associated
with search trees and heuristic search that were introduced in Sections 2.3
(p. 44) and 2.5 (p. 60). You’ll also need to understand the notion of expanding
a vertex; that is, putting all the vertex’s sons on the list E of vertices to be
considered. Best-first heuristic search always removes the vertex v of least
heuristic cost C(22) from .C, and if v is not a goal, expands it.
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Beware of Small Heuristics

Recall that a heuristic with h g h* is called admissible and that an admissible
heuristic guarantees that best-first heuristic search finds a least-cost goal. (See
Theorem 2.4 (p. 62).) So far, admissibility appears to be a good feature for a
heuristic to have. But you’ll soon see that focusing on admissible heuristics
could be a bad strategy. ,

To simplify the discussion, let’s consider a highly structured search prob-
lem. Imagine a maze that is a tree. The tree maze has a branching factor of
b > 2 at the root and b — 1 elsewhere. The goal is one vertex of the tree maze,
and we’ll denote its depth by N. As with most mazes, we must start at the
root and walk to the goal and we may traverse edges of the maze in either di-
rection. The cost of the walk is the number of edges it contains. Equivalently,
each edge has unit length and the cost of the walk is its length.

The tree maze is not the search tree. (You may want to review the con-
struction of search trees.) Because we can traverse edges in both directions in
the maze, each maze vertex corresponds to infinitely many search tree vertices.
The search tree will have branching factor b because we can descend along
any of the b — 1 tree maze edges or go up toward the root. In the search tree,
depth equals cost since depth is simply the number of maze edges traversed,
counting repetition.

Of all the vertices in the search tree that correspond to the goal vertex,
one of them, say 2, corresponds to traversing the maze without backtracking.
It will be at depth N in the search tree, just as it is in the maze. All other
goal vertices involve backtracking in the maze and so have depth greater than
N.

The following theorem contains a completely unrealistic model for the
heuristic cost. It and its proof are here as preparation for a more realistic
theorem.

Theorem 13.1
Let the search space be the tree maze described above. Suppose that
h = Ah“ for some constant A > 0 and that best-first heuristic search is
used. We have the following conclusions:

(a) If A < 1, the number of vertices expanded is exponential in N. This
result is true even if the search keeps track of all vertices it visits in
the maze and never expands the same vertex twice.

(b) If A Z 1, the search expands only those vertices on the path to the
least-cost goal 2.

In other words, A < 1 is bad and A Z 1 is good as far as search time is
concerned.
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Proof: Let’s start with A Z 1. Suppose that we are at some vertex v in the
search tree at depth d and are on the path to the least cost goal vertex 2.
Let {v1, ...,vb} be the sons of v and let 111 be on the path to z. From the
definitions we have

g(v,-)=d+1, h*(v1)=N—d—1, and h*(vj)=N—d+1 f01‘j7’zl,

where the last follows because, if we move to the vertex in the maze that
corresponds to 22,-, we must then backtrack to the vertex corresponding to 12
before proceeding to the goal. Since h = Ah“, the heuristic costs are

C(vl) = d+ 1+ A(N — d— 1) = AN— (A —1)(d+ 1) (13.12)
and

C(vj)=d+1+A(N—d+1):C(v1)+2A forjaé 1.
Thus, we would always move to vl rather than to a 22,- with j 96 1. Of course,
it’s possible that some time later in our search, we may reach a vertex v’ at
depth d’ —1 on the path to z and that W may look more attractive than any of
the sons of 2/. We must show that this can’t happen. By (13.12), the correct
son 1/1 of v’ has heuristic cost

C(v'l) 2 AN — (A —1)(d’ +1) = 0(1),) — (A —1)(d’ — d) + 2A.
SinceA—lZOandd’—d>0,

C(vi) 3 0(1),) + 2A < C(vj) for j 75 1. (13.13)
In other words, an incorrect son of ’0 always has higher cost that a vertex 1/1
on the correct path. This completes the proof for A Z 1.

Now suppose A < 1. The first inequality in (13.13) breaks down because
A — 1 < 0. When (1’ — d is sufficiently large, we can have

—(,\ —1)(d’— d) +2A > 0
and so C(vi) > C(vj). Thus a best-first algorithm would examine the sons of
22,- before those of 1/1. We need to see how far this goes.

Note that C(z) = N and all vertices between the root and 2 have cost
at most N. Thus we must determine what vertices can be reached along a
path whose vertices have heuristic cost at most N. Since C(u) Z g(u), which
is the depth of u, no vertices with depth exceeding N are expanded. Since
the number of vertices at depth d is bd, the number of vertices expanded is at
most

N
Zbdz—llbb <bN
b<N

by the formula for the sum of a geometric series.
To complete the proof, we’ll show that the number expanded is expo-

nential in N even when repeated maze vertices are rejected. This rejection
corresponds to prohibiting backtracking in the maze. Elimination of back-
tracking changes the search tree by eliminating one edge out of each vertex
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except the root. Thus, there are now b(b — 1)""1 vertices at depth d instead
of bd. Of course g, h*, and h are unchanged.

Let 11) be a vertex in the search tree at a depth d. Since its distance from
a goal vertex is at most d + N,

C(w) Sd-l- /\(d+ N) = AN+(1+A)d. (13.14)

Thus, C(w) < N whenever d < 9:33, and so all vertices with depth less
than M will be expanded unless they have been reached by backtracking. It1+A

follows that more than aN'1 vertices will be expanded where

a = (b —1)*/(*+1) > 1.
This proves that the number of vertices expanded is at least exponential in
the depth of the goal 2. I

As already mentioned, the model of search on which Theorem 13.1 was
based is too simple: Since h is a heuristic function, it shouldn’t just be a
function of h*—for then we could probably recover h* from h. (In the model,
h* = h//\.) Some randomness is needed to model the fact that h is a heuris-
tic function. What happens to the conclusions in Theorem 13.1? The bad
result (a) still holds and the good result (b) becomes weaker.

Theorem 13.2 Slowly and Rapidly Growing Heuristics

Let the search space be the tree maze described above. Suppose that there
is some constant /\ > 0 and some nondecreasing function 0 > 0 such that

$13210 0(x)/:c = 0 and |h(v) — /\h*(v)| < 0(h*(v)).

Let best-first heuristic search be used, and suppose that it keeps track of
all vertices it visits in the maze and never expands the same vertex twice.
We have the following conclusions:

(a) If /\ < 1, the number of vertices expanded is exponential in N.
(b) If A Z 1, there are constants A and B such that the search expands

at most AN39(2N) vertices before reaching the goal.

It would be useful to have additional results such as the following:
o Probabilistic results: Relax the bound 0 to a probabilistic statement and

make the conclusion probabilistic.

o A converse result: Under appropriate assumptions, at least ca‘bm) vertices
are expanded for some constants a and c and some function ¢.

0 More general search trees: Both the shape of the search tree and the form
of the cost function are highly restricted.
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Proof: The proof of (a) is essentially the same as that given in Theorem 13.1;
however, we need to take into account the fact that h is not simply Ah’“. The
greatest cost on the path to z is at least N — 0(N). Suppose that the depth of
w is d < N. Since a vertex at depth d is at most d + N from the goal, (13.14)
becomes

C(w) < d+ A(d+N) +0(d+N) g (1 +/\)d+)\N+0(2N).

Thus C(w) < N — 0(N) whenever

< 1 — A — 0(N)/N — 20(2N)/2N N.d 1+A

Since /\ < 1 and 0'(:c)/a: -—> 0, the numerator is bounded away from zero for
large enough N. The proof of (a) now continues as in the previous theorem.

The proof of (b) uses the same idea as the proof of (a) with two excep-
tions. First, we need inequalities in the reverse direction. Second, the reverse
inequalities are most easily obtained by noting when the path first departs
from the path to z.

The greatest cost on the path to z is less than AN + 0(N). Suppose that
the depth of w is d < N and that the path to w departs from the path to
2 starting at the root. Since there is no backtracking, w is a distance d + N
from the goal in the maze tree. Hence

C(w) > d+ A(d+N) — 0(d+N) 2 (1 +A)d+AN — 0(2N).
Since w will not be expanded whenever C(w) 2 AN + 0(N), the greatest
possible depth for w is given by the solution to

AN + 0(N) = (1+ A)d+ AN — 6(2N),
which is

_ 0(2N) + 0(N)
<

20(2N)d 1+A -1+A' (13.15)

It follows that the number of such w is at most AB‘mN) for some constants
A and B.

This takes care of the vertices on paths that leave the path to 2 at the root.
Suppose a path leaves the path to 2 at a vertex v at depth d’. Regarding v as
a new root and measuring depth from there, we see that (13.15) still applies
provided N is replaced by N — d’. Hence there are at most ABOMN‘d,» S
ABOQN) such vertices. Summing over the N values of d’ gives (b). I
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What lessons can be drawn from the discussion, the theorem, and its likely
extensions? Here are some.

0 To control the number of nodes expanded, avoid any h that underesti-
mates h*. You might do this by replacing a small h with Ch for a suffi-
ciently large constant h.

0 Assuming a sort of converse to Theorem 13.2(b), the number of nodes
expanded will grow rapidly unless h is nearly a function of h*; that is,
unless |h — Ah*| is small compared to h* for some A Z 1.

0 Since this limitation on h is often unrealistically stringent, you should
probably look for other ways to reduce branching. The most likely candi-
date is a better search space. Trying to improve the search space may be
more profitable than trying to improve the heuristic.

Partial Search

In Section 2.6, we saw that time constraints frequently make it impossible to
exhaustively examine a search tree. We must then use a partial search and rely
on a heuristic to evaluate vertices of the search tree. As we’ll discuss below,
we frequently use a partial search to select a “move”—a son of the search tree
root. The search may be terminated by either

0 the search algorithm when it decides that the expected additional gains
don’t justify the expected additional time or

a an agent external to the search algorithm, which must then be an anytime
algorithm.

We’ll avoid the problem of when to stop searching by assuming that an outside
agent terminates the search.

Although heuristic and partial search methods are closely related, the
search literature makes it appear otherwise. In heuristic search we usually
look for heuristic cost functions that minimize search time when we use the
strategy of expanding least-cost vertices first. As shown in Theorem 13.2, such
heuristics need not be unbiased, and it may be best if they exceed actual costs.
In partial search we usually look for unbiased heuristics and we speak of gain
rather than cost. We’ll follow that approach here. Changing cost to gain is
a minor issue since one can be taken to be the negative of the other. The
sort of heuristic we should use is not clear because Theorem 13.2 suggests it
may be best to underestimate gain. How can this be resolved? The key lies in
the nature of the search problem. Heuristic search research frequently deals
with problems in which the cost can be viewed as the length of a path, so
the depth of the goal vertex is crucial. In contrast, partial search research
frequently deals with problems in which we’re looking for the largest “pot of
gold” at the end of the search, so distance is irrelevant. For example, what
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matters most in a game is whether we win or lose, not how many moves are
required. In this case, an estimate of the probability of winning could be used
as a heuristic gain.

Two-person games will provide the model for partial search in this section.
Games with complete information were discussed Section 2.7 (p. 76) as a form
of AND/OR tree. Recall that in game trees

0 each vertex is a state of the game,
e the sons of the root correspond to my possible moves,
0 for any particular son 1) of the root, the sons of 1) correspond to my

opponent’s possible moves if I choose '0, and
0 this alternation between my possible moves and my opponent’s continues

on down through the tree.

Players may or may not have complete control over their moves. For example,
the control is incomplete when there is an element of chance, as in card games.
An extreme case of lack of control arises when my opponent is “Nature.” In
that case, my opponent doesn’t make a choice with the idea of winning the
game, and all I can do is assign a probability distribution to my opponent’s
possible moves. In a game like backgammon, it may be best to introduce three
players by making the rolls of the dice into moves by Nature.

Suppose we have a list .6, each entry being a vertex to consider together
with information about the estimated gain if it is chosen. When it’s time to
make a decision, the information at these vertices must somehow be propa-
gated back to the root so that we can make a choice among the various sons
of the root. If the information about gain were exact, it would be clear what
to do:

0 A vertex at which it’s my turn receives the maximum of its sons’ gains.
0 If there’s no randomness in my opponent’s move, a vertex at which it’s

her turn receives the minimum of its sons’ gains.
0 A vertex at which it’s Nature’s turn receives an expected value based on

the probability of Nature’s various move choices.

In partial search the gain is not exact, so it’s unclear what to do. It’s also
unclear which vertices to expand to gain the most improvement in information.
Thus a partial search algorithm contains three components:

0 a heuristic function for estimating gain,
0 a strategy for deciding what vertex to expand next, and
o a method for propagating heuristic information backward toward the root.

Let’s assume that gain estimates are available. The expansion strategy and
propagation method are closely related because an understanding of what
makes the propagated information unreliable will indicate what vertex should
be expanded next.
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Example 13.6 Computing a Heuristic Maximum
Suppose that hl, . . . , hn are unbiased heuristic estimates of h'{, . . . ,hf,. What
should our heuristic estimate of max(h;9') be? At first glance, it seems that the
obvious choice, max(hg), must be correct. That’s not so.

Suppose that the h: all equal h* and that the h,- are independent samples
from a distribution with mean h*. Ideally, we’d like some function h of the h,-
whose expected value is h'“. After all, if the h,- are unbiased estimators of h*,
that doesn’t seem like too much to ask of h.

The expected value of max(h,;) will exceed h*. In fact, it can be shown
that

00

E(max(h1,...,hn)) =/ $(F(m)"’)lda:
‘°°

00 (13.16)
= h* +/ F(a:)(1— F(a:)""1) d1: > h*,

—00

where F(a:) is the distribution function for each of the hi’s. (We won’t prove
this.) Computing (13.16) is difficult unless F(:z:) is simple. To illustrate, sup-
pose that f is uniform on [0,1]; that is, f(a:) = 1 if 0 S a: S 1 and f(:z:) = 0
otherwise. Thus F(a:) = a: for 0 S :c g 1. Using the first integral in (13.16),
you should be able to easily show that E(max(h1, . . . ,hn)) : n—"fi, in contrast
to E(h,~) = %. Clearly, the maximum is far from being an unbiased estimator.

Why not simply let h equal the average of the hi’s? In fact, the average
is an unbiased estimator of the maximum if all the h,- ’5 come from distribu-
tions with the same mean. We don’t even need any independence assumptions!
Unfortunately, we only have the hi’s—we don’t know that the underlying dis-
tributions have the same mean. If they don’t, averaging is bad. You should
be able to see why this is so.

Some researchers have looked at using alternatives to the maximum. As
far as I know, all that’s available are some empirical results using ad hoc
alternatives. I

Since we use expectation for a move by Nature, that part of the prop-
agation doesn’t suffer from the problems that plague propagating maxima.
In fact, if h,- are independent unbiased estimates of gain, p,- is the probability
that alternative i occurs and 0,? is the variance of h. Then the expectation es-
timate is Zpihi and its variance is 2 19,03. For the remainder of this section
we’ll discuss maxima.

Making a choice: Rather than propagating the maximum to the root, we
want to choose a move at the root. In search graph terms, this corresponds
to selecting an action at the root. Thus, instead of estimating a maximum,
we need to decide which son offers the maximum gain. Let’s begin with this
problem.
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GL GR GL GR GR GL
G'L GR GL GRA A,

(a) (b) (c) (d) (e)
Figure 13.4 In each figure the true gains satisfy GL* < G}; and are indicated by
tic marks on the horizontal axes. We want to estimate the maximum true gain (G2)
from the two heuristic gains, GL and GR- Each heuristic gain is an independent
random variable whose density function is shown in the figure. See the text for
a discussion of these five examples. (Note: I’ve used gaussians here merely as a
convenient curve—I don’t intend to imply that the distributions are gaussian.)

Figure 13.4 contains five examples. The caption explains the notation.
It’s important to remember that we don’t actually “see” the subscripts on GL
and GR—we have two estimated gains, but we don’t know which is associated
with the larger true gain. Since we choose the move associated with the larger
heuristic, an incorrect decision will be made if G1, > GR. This is highly
unlikely in (a). Figures (b)—(e) were all constructed to have Pr(G'L > GR) a:
13%. Thus they all have the same probability of error; however, the expected
loss of gain varies. It equals the amount lost times the probability of loss;
that is, (GE — G2) Pr(GL > GR). If we decide to collect further information
in either ((1) or (e), it’s usually more effective to try to improve the estimate
with the higher variance. You should be able to convince yourself of this. In
(b) and (c) it doesn’t matter whether we work on GR or GL.

Computing a maximum: This differs from the previous situation because we
want a good estimate for the maximum, not a good guess for which choice
produces the maximum. In (a), (b), and (d), the larger of GI, and GR is
likely to be a rather good estimate for GE. In cases (c) and (e) the larger of
GI, and GR is likely to be only a fair estimate for GE. You should be able to
explain this. Since we don’t “see” the subscripts, we can’t distinguish selecting
0;, in (d) from selecting GR in (e). Hence, a proposal for gathering further
information in cases (c) and (e) must apparently also include ((1).

The cold, cruel world intrudes: While the previous discussion may be interest-
ing, it’s based on some highly unrealistic assumptions:

0 Independence: It’s quite likely that GL and GR will be dependent: Their
heuristics are based on similar situations in the search space. The more
similar the situation, the more likely it is that what throws one estimate
off will throw the other off, too.

0 Unbiased estimates: As we saw in Example 13.6, producing an unbiased
estimate of a maximum is difficult.
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0 Known variance: The recommendations for expansion require knowledge
of variances.

Here are two ways we might gain some information about variances.

o If deeper exploration of the tree causes relatively large changes in the es-
timates propagated back to a vertex v, the variance is likely to be rather
large. Conversely, if the changes are small, the variance is probably rather
small. When changes are small, we call the vertex quiescent. The observa-
tions concerning Figure 13.4 lead to the rule of thumb that a nonquiescent
vertex should often be expanded deeper than a quiescent one.

0 Another way we might obtain variance information is by comparing dif—
ferent heuristic estimates for the gain in the position. If they vary widely,
it’s reasonable to assume our estimate has a high variance.

The Future of Search in Al

In the early years of AI, many researchers believed that powerful general
search techniques would play an important role. But, as we saw in Chapter 2,
the time required for a tree search usually grows exponentially with the size
of the problem. What can be done? Clever search algorithms can reduce the
rate of exponential growth, but their use only forestalls the computational
difficulties for a little while. As a result, AI researchers turned their attention
to other methods of reducing computation.

One method is to make extensive use of knowledge about the particular
area. This approach has produced a variety of expert systems, but it suffers
from a serious drawback: Since an understanding of the knowledge must be
built into the system, construction of an expert system is time-consuming;
moreover, the system is able to function only in one very circumscribed area
such as chess playing, diagnosis of bacterial diseases, or prospecting for oil.

Another method is to design systems that somehow manage to reduce
search time as they develop. Is this possible? It must be, since one such system
already exists—human beings.

There is evidence that minimization (which is a type of search) also grows
exponentially with problem size. This latter fact has hampered attempts to
“scale up” neural nets.
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Exercises

13.3.A. What is an admissible heuristic and why might it be a bad choice?

1333. If you’re planning to design a heuristic search, why might it be more prof-
itable to attempt to reduce the search space than to attempt to improve the
heuristic?

1330. What are three important components of a partial search algorithm?

13.3.D. Why is it not clear how to compute an unbiased estimate of the maximum
of max(h{, . . . , Ma) given unbiased estimates of the h: ’s?

13.3.1. Prove (13.16). You may assume that lim_,,,._+_oo :cF(:c) = 0 and liqoo 53(1—
F(a:)) = 0.

13.3.2. Suppose that h1 and ’22 are sampled from independent uniform distributions
where In is uniform on [—a., a] and the density function for h2 is that for h1
shifted leftward by 2rd, where r 2 0. Let h = max(h1,h2).

(a) Show that we must have h2 < hl whenever r > 1 and that. the distri—
bution function for h is then the same as the distribution function for
h1.

(b) Show that when 0 _<_ r S 1 we have E(h) = a(1 — r)3/3.

13.3.3. Do Exercise 2.7.3 (p.78).

Notes

Decision Trees

Quinlan introduced his Iterative Dichotomizer 3 (ID3) for building decision
trees in the context of chess playing in 1979. The method has become quite
popular and led to the development of various extensions and modifications
(as in [24]) and to connections with neural networks (as in [9]). The definitive
book on decision trees in the statistical literature is [2], where the “CART”
method is discussed. Tsoi and Pearson [29] briefly discuss and then compare
ID3 and CART.

Chapter 9 of [2] develops a more sophisticated approach to evaluating a
decision tree based on the errors it makes. A correct classification is a gain
and an incorrect is a loss; however, the amount of gain or loss depends on
the seriousness of the situation—diagnosing cancer is more important than
diagnosing the flu.
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Fisher’s test and its generalizations (p.529) provide another possible
method for evaluating the goodness of a split either for growing or prun-
ing a decision tree. Since the test provides a probability, some people may be
more comfortable using it.

Neural Nets

One of several methods for constructing large networks by splitting up the
classification work is discussed in [18].

Two methods for adding nodes are “cascade-correlation” [12] and “adap-
tive resonance theory” (ART) [4] or [5]. The other side of adding nodes is
pruning them, just as we did with decision trees—we make them too big and
then trim. Various researchers have worked on this. See [21] and [3] for two
approaches.

In his thesis Lee [22] discusses some ideas for the general problem of
adjusting the structure of neural networks. Such growing and pruning is akin
to hill climbing in the space of neural nets. The space could be searched in
other ways, such as with “genetic algorithms.”

A more rigorous and thorough analysis of the storage capacity of Hopfield
nets can be found in the literature. See [20] or [16, Ch. 2].

People are interested in the question of what neural nets can learn and
how difficult such learning must be. The subject is still in its infancy. J udd’s
thesis [19] is an example of research in this area.

I’ve not discussed the connections between Bayesian methods and neu-
ral nets. Buntine and Weigand [3] discuss Bayesian methods for training nets.
Richard and Lippmann [25] view things from a different perspective: Neu-
ral networks often estimate Bayesian posterior probability (the probability
of various classifications of the input given the training data). With such an
interpretation, the outputs could then be used as inputs to probabilistic rea-
soning or decision making systems.

The pattern recognition aspects of neural nets are treated in various
places. A somewhat advanced discussion is the special journal issue [15]. A
large amount of material is appearing on higher level aspects of connectionist
systems and hybrid systems. One source of information is the ongoing series
of research papers [1].

The books mentioned here and in Chapter 11 just scratch the surface of
the neural net literature. To mention three more, the text [13] and the more
advanced books [6] and [28] contain interesting material, some of which I’ve
mentioned in passing.
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Search

The topics in the search section need much more research.
Chenoweth and Davis’s general theorem on rapidly growing heuristics [7]

motivated my discussion of the subject. Various people have worked on the
problem of automatically developing a better search space; for example, Ernst
and Goldstein [11]. Nau and others ([8], [23]) have experimented with alterna-
tives to “max” in game trees. Russell and Wefald [26] have begun studying the
problems of propagating heuristic information from a more global perspective.
DeGroot’s text [10] provides an introduction to optimal decision theory.

A search topic I’ve not mentioned is tabu search. It’s a heuristic method
designed to allow escape from local optima. Glover [14] provides an introduc-
tion. I’m not aware of any theoretical results.
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Last Things

A little inaccuracy sometimes saves tons of explanatioa.
—Saki (1924)

Introduction

Final chapters usually tie up loose ends, but this one creates them: It begins
discussions on a variety of topics in AI. Since they’re almost independent, you
can pick and choose pretty much at will. Here’s a brief guide by sections.

1. I discuss optimization again. Two additional methods are presented: ge-
netic algorithms and hidden Markov models (HMMs). Reserachers have
applied genetic algorithms to a variety of problems. The less important
HMMs are used primarily in speech processing.

2. Learning is the process of modifying the knowledge base as new infor-
mation becomes available. I discuss symbolic learning nonmathematically
and briefly introduce the less important but highly mathematical topic of
learning theory.

3. I give a brief, nonmathematical introduction to planning. On one level,
planning is simply a form of reasoning; on another, it’s a separate area
because of its concern with time and with modifying reality.

4. This section has a brief nonmathematical introduction to natural language
in both written and spoken forms.

5. The book draws to a close with a very brief discussion of robotics, es-
pecially vision and motion planning. Although mathematics is important
in these areas, I don’t have the space or inclination for a mathematical
discussion.

Prerequisites: Although material from a variety of previous chapters is
alluded to, deep familiarity with it is unnecessary. The main reference is to
Chapter 11 in the discussion of optimization.

585
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14.1 Optimization Again

Optimization is the process of selecting something “desirable” from a set of
“possibilities.” Some definitions of “desirable” are

0 Best: This is called global optimization.
0 Better than its neighbors: This is called local optimization.
0 Good enough: This is called satisficing.

Search methods depend on the definition of desirable as well as on the struc-
ture of the set of possibilities. We frequently have a complicated function
f : D —> R, where D is the set of possibilities and the best choices are those
for which f is largest (or smallest).

Why do search methods work? Let’s review some methods of search that
we’ve discussed in previous chapters.

0 Decision trees (Chapter 2) give rise to sequences. In the simplest case, a
sequence of T’s and F’s describes a path from the root to a leaf 1 and f gives
the value at I. In Section 13.3 we briefly discussed partial tree search—how
to look for good paths without exploring the entire tree. Partial search
extends those paths that are potentially the most promising because of
either

(a) larger estimated values of f at leaves reached by extending the path
or

(b) greater uncertainty in the estimates.

If we want to view this as exploring D, we need to enlarge D to include
paths from the root to internal vertices. The problem of partial search
is then twofold: How should f be defined for nonleaf vertices and how
should this extended f be used? See Section 13.3 (p. 570) for some further
discussion.

0 Hopfield nets were discussed in Section 11.1. D is finite—it’s just a list
of the values assigned to the vertices of the net. Unlike partial search,
Algorithm 11.1 (p.434) starts at a particular point in D and chooses a
better nearby point. “Nearby” here means differing in the value assigned
to precisely one of the vertices in the net.

0 We discussed f : IR" —> IR in connection with neural nets in Section 11.4.
In this case, D is infinite and so it’s impossible to explore all of D. The
various hill-climbing methods in Section 11.4 conduct partial searches un-
der the assumption that the surface determined by plotting f(:E') against
:E' is reasonably smooth.

What makes it reasonable to conduct a partial search?
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Where we are in D lets us obtain information about other nearby places
in D. Based on this information, we either favor or shun these places:

0 In partial tree search, f(v) gives information about the best we can do by
looking at leaves reached through 1). If this is good, we expand v; if it is
not, we abandon v.

o In Hopfield nets, we simply look around and make a single change that
improves our situation.

0 For functions f : IR” —> 1R, smoothness of the surface allows us to use the
shape of the surface at i: to estimate f at points near 5.

For other examples, see simulated annealing (Example 11.9 (p. 469)) and ge-
netic algorithms (discussed below). Unfortunately this information require-
ment is vague and insufficient. No one has been able to formulate a more
precise and/or stronger requirement that can be checked with reasonable ef-
fort.

The previous paragraph deals with local properties—being at a: E D
should provide information about f at certain other nearby values. Global
properties are also important and hill-climbing methods are usually faced
with a tradeoff problem between time spent on local and global aspects of the
problem:

0 In partial tree search, it may happen that another path leads to better
leaves because f(v) is only an estimate of how well we can do on paths
through 22. To avoid this, we might explore many of the more promising
paths.

0 In both the Hopfield net algorithm and gradient descent methods it is
possible to get stuck in a local minimum because the algorithm is exploring
only one region of D. This is the problem of escaping from local minima.

Escaping from Local Minima

Suppose we want to minimize a function f : D —+ IR and have an algorithm
for attempting to do so. After using the algorithm, we find a point m such
that f(at) > f(m) for all neighbors I: of m. There may be some point 3/ further
from m for which f(y) is much smaller than f(m) In other words, m is a local
minimum of f but not a global minimum. We’d like to find y, but we have no
hope of doing so unless we can escape from the local minimum m. Here are
some ways to modify an algorithm to provide escape routes.

0 Multiple Starts: Restart the algorithm, using a (random) starting value
that’s near the present position. If the starting value doesn’t depend on
the present position, you’d just be doing global exploration.

Instead of starting over, you might change the rules of the game:
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Smoother Functions: By sacrificing some accuracy, we might replace f
with a function f* that has fewer local minima. It’s often very difficult to
find such a function that can be computed in a reasonable time. If you’re
able to find an f*, you could start your search with it and then gradually
shift to f as a local minimum is reached. For example, use the function
/\f + (1 — A)f*, starting with /\ = 0 and increasing A to 1 in a series of
steps.

Delete Minima: Having found m, continue the algorithm using the function
f(2:) + g(:c; m) instead. The function 9 should be designed to “cancel out”
the minimum at 772 without disturbing the function too much. When :L’ 6
IR", a possible choice is g(:c; m) = C'exp (—AIm—l). The constant A > 0
controls how local the modification is—the larger A is, the more local the
modification. The constant C' > 0 controls how strong the modification
is—the larger C is, the more the function is distorted near m. When
you encounter a local minimum using the modified f, you do two things.
First continue minimization using the original f so you find a true local
minimum. Then escape from the new local minimum by adding another
g term to f.

Bigger Neighborhoods: Suppose that D is finite and you look at points
that are near the current point. When at a local minimum m, redefine
the notion of nearby points in D (neighbors of m) so that m has more
neighbors. With a big enough neighborhood you’re bound to succeed, but
larger neighborhoods usually make the algorithm look longer for its next
step. As a result, implementations of this approach usually depend heavily
on the nature of f.

Instead of changing the rules, you could allow some uphill movement. Here
are two methods that imitate physical processes.

Simulated Annealing: Suppose D is finite and you look at the nearby
points There’s a probability of moving to a neighbor even if it’s worse.
The chance of doing so decreases with running time and with how much
worse the neighbor is. See Example 11.9 (p. 469) for more information on
using this for discrete minimization.

Momentum: Suppose D 2 IR". A marble rolling on a surface changes
direction slowly because of momentum. The marble can roll uphill by
converting some of its kinetic energy to potential energy. It eventually
comes to rest because friction dissipates its energy. This can be simulated
with f(:c) being the height of the surface at .72. See Example 11.6 (p. 461)
for further discussion.
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Genetic Algorithms

It may be easier to evolve virtual entities with intelligent behavior
than to design and build them.

——Karl Sims (1994)

The variety, complexity, and abilities of living organisms demonstrate that
evolution is a flexible method for satisficing—obtaining solutions that are
good enough. The idea behind genetic algorithms is simple—mimic some
of the processes that occur in evolution in hopes of reaping similar benefits.
To do that we need a (simplified) understanding of the processes that make
evolution possible.

Living organisms store information on chromosomes, each of which is a
linear array of many genes. These are built from an “alphabet” consisting of
four chemical “letters” that geneticists denote by A, G, P, and T. The genes
are used to produce chemicals that create the organism, often through com-
plex interactions. Interactions among individuals and between individuals and
the environment determine the number of offspring (if any) an individual pro—
duces. This ability to produce offspring is called fitness. Genetic information
is modified in a variety of ways. The most important are sexual reproduc-
tion (combining genes from two organisms), mutation (modifying a gene),
and crossover (exchanging portions of two chromosomes).

Here’s how we might use a genetic algorithm to help us design a neural
net. The fitness of a net is some decreasing function of its error rate. If nets
of different complexity are allowed, fitness is also a decreasing function of
complexity. If we already know the structure we want the net to have, the
complexity is fixed and the genes describe the numerical parameters. On the
other hand, if the structure is to be determined, the complexity is variable and
the genes describe the net’s structure. Fixed structure is simpler than variable
because it’s far from obvious how we should describe structural information
“genetically.” However, it’s not even clear how we should encode numerical
parameters such as edge weights. Although finding good genetic descriptions
is the most important part of designing a genetic algorithm, we won’t discuss
that here.

Let’s look at genetic algorithms from an algorithmic viewpoint. What is
the function we want to maximize? In the simplest case, its domain consists
of all n-long sequences of zeros and ones. In other words, each “organism”
is described by a single, fixed-length chromosome whose alphabet has two
letters. Each organism can be thought of as the current step in a search.
The function maps the domain to a real number—the fitness. Our goal is to
maximize its value. A genetic algorithm can be described as follows.
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Algorithm 14.1 Genetic Algorithm

The following algorithm seeks local maxima for a function from n-long
sequences to the real numbers:

1. Start: Construct a collection (the population) of domain elements
(the individuals).

2. Search (global part): By comparing the function values (fitnesses),
determine how many offspring, if any, each organism will have in the
next generation. This allows us to pursue the most promising searches
in parallel: It decides which “organisms” to focus on, and all those
organisms are studied together.

3. Search (local part): This modifies organisms to produce others which
are, in some sense, near them.

0 Carry out sexual reproduction. This can be accomplished in vari-
ous ways. One possibility is crossover: If c7 and l; are the sequences
of the two parents, then possible sequences for the offspring are

a1,...,ak,bk+1,...,bn and b1,...,bk,ak+1,...,an

Another possibility is recombining chromosomes: Partition the
n-long sequences into “chromosomes” and choose the offspring’s
ith chromosome to be the ith chromosome of one of its parents.
This is a type of multiple crossover.

0 Before, after, or during reproduction, modify individuals. The
simplest method is by randomly changing some sequence ele-
ments (mutation).

This step is vague because there are a variety of ways to carry out
reproduction and modification.

4. lterate: Either decide to terminate the algorithm or go to Step 2
using the new population.

Random number generators are used in Step 3 and often is Step 2.
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The various modifications that occur in Step 3 are a form of random search
in the neighborhoods of high-fitness domain elements. For such a search pro-
cedure to work, we must have reason to expect that modifications of good
elements have a reasonable chance of producing better elements. A “rea-
sonable chance” can be quite small; for example, a mutation in the bio-
logical world has a very low probability of producing a more fit individ-
ual.

The algorithm pursues many possibilities in parallel, with more time spent
on the more promising organisms because they reproduce more often. This is
like a best-first search except that more than one alternative is pursued simul-
taneously. Since such extensive parallelism runs slowly on a serial computer,
why not simply implement a best-first search? The use of sexual reproduction
in Step 3 allows the possibility that good results from different locations may
combine to provide a significant improvement. Best-first search doesn’t allow
that.

Since the success of a search algorithm depends on how well the algo-
rithm is suited to the function being maximized or minimized, we should
ask, “What sorts of functions on sequences are good for genetic algorithms?”
One answer is provided in the preceding paragraph: It should be possible to
combine parts of two good solutions to obtain a better solution. For other an-
swers, we need to look at genetic algorithms mathematically. Holland’s origi-
nal work [28] contains two basic mathematical observations, one of which we’ll
discuss.

A schema (plural: schemata) is a genetic pattern; for example, it might
be the pattern 5' = 01?1??1 in a 7-long sequence with the alphabet {0,1}.
The symbol ? indicates an irrelevant position so the example refers to all se-
quences with a 0 in position 1 and a 1 in positions 2, 4, and 7. Thus, 5' could
be thought of as the set

{0101001, 0101011, 0101101, 0101111, 0111001, 0111011, 0111101, 0111111}

Since four positions matter for this schema, we say that it contains four
genes.

Holland’s first basic observation is that a schema that causes above-
average fitness tends to increase at an exponential rate until it becomes a
significant portion of the population. Let’s prove this. Assume that:

0 There are no recombinations or alterations of genes.

0 Initially, a fraction f of the population possesses the schema S and those
individuals reproduce at some fixed rate r.

o All individuals lacking S reproduce at some fixed rate 3 < r.
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Let N be starting size of the population. After t generations, we have Nfr‘
individuals possessing the schema and N(1 — f)st of the other individu-
als. Thus, after t generations, the fraction of individuals with the schema
is

Nf?“ fr‘ f(T/3)’
Nfr‘+N(1—f)s‘ _ st+f(r‘ —s‘) : 1+f((r/s)‘ — 1).

When f is small and t is not too large, f(r/s)t will be small and so the above
fraction will be about f(r/s)‘. In other words, the fraction of the population
having the schema increases exponentially at a rate r/s.

What happens when other schemata affect reproduction rates? Instead of
r and s, we have a whole range of reproductive rates to consider. Suppose S
improves fitness; that is, if two organisms 01 and 02 differ only in that 01
contains 3, then 01 has a higher reproductive rate than 02. In this case, it’s
still possible to derive an exponential growth result.

What happens when mutations and crossovers occur?
Let pm(.5') and 130(5) be the probabilities that schema S is destroyed

by mutation and crossover, respectively, and suppose that these are inde-
pendent and small. The probability that the schema in an individual is not
destroyed is (1 —pm(S))(1—pc(5')). Thus M individuals with the schema
produce only Mr(1 — pm(.5'))(1 — pc(S')) like individuals instead of M7*. Of
course, some of the general population might mutate or crossover to pro-
duce the schema. Such events are usually very rare and can usually be
neglected. You should now be able to continue as in the previous para-
graph and conclude that we have an exponential growth rate of about
p: (r/s)(1—pm(S))(1—pc(.5')). This is less than r/s. There’s a tradeoff
here:

In effect, exponential growth of favorable schemata consolidates ge-
netic information that is known to be good. Mutation, crossover,
and other genetic modifications are necessary for exploring the space
to find good genetic information, but they interfere with consolida-
tion.

Thus we want relatively high mutation and crossover rates (to ensure rapid
exploration) together with relatively small values for pm(S) and 196(5) (to
make p large). How can we minimize this conflict?

Suppose the alphabet is {0,1} and let n(.S') be the number of zeros and
ones in S. For example, n(01?1??1) = 4. Let pm be the probability that a
particular gene mutates and suppose that the probability of mutation is in-
dependent for different positions in the gene sequence. You should be able to
show that

1— pm(S') = (1 —pm)"(5).
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Hence, the smaller n(S) is, the better the mutation conflict is resolved.

* * * Stop and think about this! * * *

Let ((5') be the number of genes between the first and last non-? gene in
the schema S. For example, I(. . . ??01?1??1?? . . .) = 6. Let pc be the probabil-
ity that a crossover occurs at a particular point, and suppose that probabilities
of crossovers are independent. Then

1— pc(S) = (1-pc)l(s)°

Hence, the smaller ((5) is, the better the crossover conflict is resolved.
In summary, we want a schema to contain relatively few genes (the value

of 72(5)) and to be relatively short (the value of ((5')). Furthermore, for the
schemata concept to be meaningful, the design should be modular. What does
this mean? Simply that the fitness of a gene pattern is roughly determined
by some sort of fitness measure on the good schemata that it contains. That’s
about it for mathematically based practical insights. Like neural network de-
sign, genetic algorithm implementation is still more of an art than a science.
Some design heuristics can be found in the literature. It’s quite possible that
future mathematical research will provide other insights in this difficult area.

*Hidden Markov Models

The application of hidden Markov models (HMM) in AI is rather limited.
They’ve been used in speech analysis and, more recently, in other areas of
language learning. Since they’re easily explained, we’ll do so here in case you
run across them later.

Let X be a finite set. Let X1, X2, . . . , be a sequence of random variables
that lie in X and suppose that

Pl‘(Xn |X1,X2,. . . ,Xn_1) = PI‘(Xn I Xn_1) for n >1; (14.1)

that is, the probability distribution for Xn depends only on its immediate pre-
decessor. In this case the sequence is called a (stationary) Markov chain and
a simple computation with probabilities gives

Pr(X1,X2, . . . ,Xn) = Pr(X1) H Pr(Xk |Xk_1).
16:2

If a sequence of random variables associated with a situation of interest is
assumed to be a Markov chain, we speak of a Markov model for the situa-
tion.
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A hidden Markov model (HMM) is a situation in which the random vari-
ables X,- in (14.1) are not observable. Instead, we see other random variables
Y} where the Y, are in some finite set 3) and

Pr(Y], | (X1,X2,...,X,,)A(Y1,...,Y,,_1)) = Pr(Yk |Xk)

for all n and k with n 2 k 2 1. In other words, the probability distribution
for the lath observed random variable Y], depends only on the value of the lath
hidden random variable Xk. Since we observe the Y5’S, we need to know how
to compute their probabilities. A simple probability computation gives

Pr(Y1,.,,,Yn): Z: Pr((Y1,...,Yn)/\(X1,...,Xn))
X1,.. .,X,,

zzx
PrY1,. .,Y,,|X1,...,X,,) Pr(X1,...,X,,)

X1,-- ax

:2 (121mm |(X1,... ,Xn)/\(Y1,...,Yk_1)))
X1,.. .,Xn k=1

x (Pr(X1)H Pr(Xk l_1))
k=2

2 Pr(Yl |X1)PI‘(X1)

X1,...,Xn

x H Pr(Y,c l) Pr(Xk |X,._1).
k:2

The last equation involves summing IX I” products, which is computationally
intractable for large 77.. There is a recursive formula that reduces the work to
a polynomial in n. It can be found in discussions of HMMs.

In most applications Pr(Yk I Xk) and Pr(Xk | Xk_1) are treated as un-
known probabilities that should be chosen to maximize Pr(Y1,.. .,Yn), the
probability of the observed sequence. Since X and y are finite, we have a
finite number of nonnegative unknowns to determine. We also have the con—
straints 2X, Pr(XI | X) = 1 and ZY Pr(Y | X) = 1. In other words, we have
a constrained optimization problem. Various methods have been proposed for
finding probabilities that give a (local) maximum for Pr(Yl, . . . ,Yn). They re-
quire computing the gradient, which can be done in polynomial time in n by
a method based on the recursive formula mentioned earlier.
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14.2 Learning

The ability to learn, to adapt, to modify behavior is
an inalienable component of human intelligence.

How can we build truly artificially intelligent
machines that are not capable of self-improvement?

—Jaime G. Carbonell (1990)

A wise man changes his mind; a fool never will.
—Spanish proverb

The term “learning” denotes a useful modification of a knowledge base by
an organism or a computer program. In previous chapters, symbolic knowl-
edge bases were static and subsymbolic pattern classifiers had rather limited
learning: We viewed classifiers as proceeding from a state of no knowledge to
a state in which they learned a specific situation, namely the particular set
of patterns and classifications they were supposed to learn. How can we pro-
gram continuing education? In other words, how can we design a system that
is able to modify itself to learn additional material without forgetting what it
already knows?

Some ideas for growing larger neural networks that were discussed on
page 567 can be used to design nets with more general learning abilities.
Similar ideas can be applied to decision trees. Genetic algorithms are another
tool for growing subsymbolic classifiers as the learning tasks emerge. Quite a
bit of research is being done in these areas, but we’ll discuss only symbolic
learning methods.

How knowledge is represented and manipulated determines the strengths
and weaknesses of any learning system. Most symbolic representations are
based on variants and/or extensions of the methods discussed in Chapter 6.
The more expressive the representation and the more varied the possible ma-
nipulations, the greater the potential power of the system and, unfortunately,
the greater the likelihood of computational bottlenecks. We’ve run into this
again and again—Godel’s incompleteness results for logic, the intractability of
general Bayesian nets, and the difficulty of training large neural nets. Theory
and experiment both tell us that completely general reasoning is impossible
(Godel) and even somewhat restricted reasoning is too difficult (NP-hardness
theorems and neural net results). Hence, compromises are inevitable. Humans
are an existence proof that reasonably general learning systems are possible.
Unfortunately, the proof doesn’t provide an algorithm for constructing non-
biological systems.

Let’s look at the different types of learning. Imagine a machine translation
program that queried the user for information whenever a new word was
encountered. The program would then store the information supplied by the
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user in its data base. This is an example of rote learning, the simplest form
of learning. More interesting forms of learning require manipulation of the
data—i.e., reasoning. Researchers distinguish two types of such learning:

0 Deductive: Also called analytic learning, this includes all conclusions that
are a consequence of information in the knowledge base. A classic example
of this is mathematics.

0 Inductive: Also called synthetic learning, this includes all conclusions that
rely on some assumptions beyond the information in the knowledge base.
A classic example of this is the formation of scientific theories.

Truth maintenance systems are closely associated with learning. These are
methods for resolving conflicts that arise when new information is incorpo-
rated into a knowledge base.

The previous discussion dealt with how to learn. Instead, we might ask
what can be learned. Work on this question is called learning theory and is
heavily mathematical.

Inductive Learning

“Induction” has many meanings. There is the notion of mathematical induc-
tion, which is closely related to recursion—see page 40. From the point of view
of logic, mathematical induction is deductive reasoning because the conclu-
sions must be true if the hypotheses are true. This is not the sort of induction
we’re interested in here.

In logic (and learning and reasoning) induction refers to a process that
reaches conclusions that aren’t necessarily true. The main forms of induction
are generalization and analogy.

o Generalization: In this type of reasoning we seek a statement oz such that
some known facts are specializations of 0:. Preschool children use general-
ization to learn some rules of grammar. Sometimes their generalizations
are wrong and so they make errors, as in “I swimmed in the pool.”

0 Analogical Reasoning: Suppose we know that A entails B and we observe
that A and A’ are similar. If B and B’ are similar in the same manner,
then analogical reasoning tells us that it is reasonable to conclude that A’
entails B’. When first learning how to do some type of mathematical word
problem (e.g., percentage problems or calculus minimization problems),
most people consciously use analogical reasoning. Choosing the proper
analogy can be difficult. With time and experience, some people develop
a subconscious knack for choosing the right analogies. Other people never
do.
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Although inductive reasoning methods may fail, they’re often the best we
have.

How can we program generalization? Suppose that we have rules of the
form a; —> fl and we want to construct the minimum generalization a —-> fl.
A generalization is a statement a —> fl such that, whenever some a,- is true, a
is also true; that is, a,- —-> a for all i. A generalization a —> fl is minimum if,
whenever a,- —> a." for all i, we also have a -—+ a’ . Some conditions—at present
unspecified—are imposed on the structure of the ag’s, a, and a’ . You should
be able to convince yourself that this is a reasonable definition.

* * * Stop and think about this! * * *

Depending on the conditions imposed on the form of a, there is no guarantee
that a generalization, much less a minimum one, exists.

If no conditions are imposed on a, we could simply let it be disjunction
of the ai’s. What we have then is equivalent to the set of original statements;
that is,

((alqfl)A(a2—>fl)/\~-)E((a1Va2V---)—>fl). (14.2)
(Prove it!) Hence a —> fl is simply a more compact representation of the
original formulas—not a generalization.

One popular method of generalization is the version space approach. The
ag’s and a are required to be conjunctions of literals. In other words, a,- lists
some conditions such that fl is true whenever all those conditions hold. Let A;
be the set of literals whose conjunction produces on, let A be the intersection
of the sets A;, and let a be the conjunction of the literals in A. We claim that
a —> fl is the minimum version space generalization. The proof is left as an
exercise. There are at least two objections to the preceding:

0 Why use conjunctions of literals? As (14.2) shows, we need to impose
some condition. It’s often natural to phrase specific rules such as a,- ——> fl
in the form “If A and B and -- - , then C.” The constraint that 0: also be
a conjunction of literals is needed if we want to iterate generalization.

o The resulting set A may not contain enough things for a reasonable state-
ment; indeed, it may even be empty. We need some way of deciding when
induction has gone too far—a reality check, so to speak.

How can we program analogy? To do that, we need to be able to measure
when two things A and A’ are similar, or we need to be told that A is like
A’. One way of measuring similarity is by looking at attributes of A and A’
or by seeing if there is a common generalization of A and A’ that is not “too”
general. Using hierarchical systems, discussed briefly in Section 6.5 (p. 234),
to represent data may facilitate this sort of reasoning.
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Since the early 1980s, explanation-based learning (EBL) has become in-
creasingly popular as a learning method. It attempts to explain how conclu-
sions are reached. To do so, EBL progams must obtain a fairly deep under-
standing of the material being learned. EBL requires very few examples to
learn concepts. The knowledge it produces can be used to reduce search time
in reasoning and to automatically provide explanations for how an expert
system reached a conclusion. Case-based reasoning is a form of EBL that fa-
cilitates the building of explanations. In this method, the reasoning program
studies solved problems (“cases”) that are similar to a given problem and uses
their solutions to propose a solution for the current problem. This requires
analogical reasoning. The method learns from both success and failure. The
solved cases provide a ready explanation for the proposed solution. Advocates
claim that CBR and EBL are similar to much human problem solving.

Inductive learning, then, is the process of attempting to infer the impor—
tant aspects of the knowledge so that it can be applied to new problems.
Stated this way, inductive learning appears to be a form of pattern recogni-
tion. It is.

Truth Maintenance Systems

The main problem with inductive learning is that the learner may come to be-
lieve something that conflicts with other information. Resolving such conflicts
gracefully and efficiently is the goal of truth maintenance systems.

The simplest approach may be to use a nonmonotonic logic in which
all inductive conclusions are capable of being retracted when faced with a
contradictory conclusion. We discussed two approaches to this in Chapter 6,
default reasoning and defeasible reasoning. Difficulties arise when we want to
choose between two contradictory conclusions. The default approach is silent
on this issue while the defeasible approach favors the conclusion with the less
general hypothesis. Unfortunately, this is insuflicient for resolving conflicts
like

Dog-like animals are safe to pet.
and

Strange animals are unsafe to pet.

Little Skipper obtained the former by generalization from the observation of
pets, while she was told the latter by her parents. What should Little Skipper
decide about a strange dog? To answer such questions, we need to know how a
piece of information was obtained. Such knowledge not only facilitates conflict
resolution; it also helps to isolate faulty assumptions or reasoning. There are
a variety of approaches to truth maintenance.
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Learning Theory

Here’s a rough idea of one approach to developing a mathematical theory of
learning. Imagine a collection H of possible things to be learned; for example,
a collection of logic functions. We call 7'! the hypothesis space and call the
elements of ’H concepts. Given data, we want to learn which concept each
comes from. Can we write a program that will be able to nearly determine the
correct concept for every element of H? Can the program run in a reasonable
time? Here’s a complicated mathematical definition:

Definition 14.1 Probably Approximately Correct Learning

Let 8 be a probability space and R a set. The hypothesis space is
some set ’H of random variables on 8 taking values in R. Let '6' 6 8m
and F E Rm. Suppose we have an algorithm whose input is a se-
quence (v1,r1), . . . ,(vm,rm) and whose output is a concept L E ’H. For
C E H, let Law) denote the output of the algorithm when the input is
(121, C(01)), . . . , (om,C(vm)). The idea is that L0 should be close to C' if
we have enough data. This is expressed as follows.

We say that the algorithm is a probably approximately correct, or pac,
learning algorithm for ’H if the following is true. For every positive 6 and
6, there is a positive integer m = m(6, 6) such that, for every C E ’H,

Prm (Pr(Lc(z7) ,s C) > c) < 6, (14.3)
where Pr is on 8 and Prm is defined on 8’" by Prm(17) : HE, Pr(v,~).
(See Example 7.16 (p. 286).) We say the algorithm is efficient if

a the running time of the algorithm is bounded by a polynomial in m
and

o m(6,e) is bounded by a polynomial in log(6‘1) and 6—1.

This is worse than the 6-6 definitions from calculus! What does it mean?

* * * Stop and think about this! * * *

Pr(Lc(z7) # C) is the probability that the target concept C and the random
variable produced by the algorithm disagree at points in 6'; that is, it is the
error rate when L007) is used in place of 0. Thus the expression in the large
parentheses in (14.3) simply says that the error rate exceeds 6. Prm applies
to 17' and simply means that the components are chosen independently at
random. Hence (14.3) says that if 27 is chosen randomly, the probability that
the error rate exceeds 6 is less than 6. I won’t justify the definition of efficiency.

If 8 is finite, the definition is useless. Here’s a sketch of the reason. Since
knowing C(v) for all 1) E R determines the random variable 0', it’s easy to
imagine an algorithm that gives L007) 2 C if every element of 8 appears in
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17'. The probability that e does not appear in 17 is (1 — Pr(e))m. Hence the
probability that every e appears is at least

1— 2(1 — Pr(e))m 2 1— Islam,
e68

where a = max(1 — Pr(e)). It then follows that

Prm (Pr(Lc(f)’) 9e 0) > o) g mam,
and so we may take m > (log(6/|£|) / log a), which is linear in log(6’1) and
independent of 6. Should we be concerned about finite 8? Yes. Many pattern
classifiers have inputs taken from 8 = {0,1}". One method for dealing with
the finite case is by embedding it in an infinite situation. For example, any
particular propositional logic formula is finite, but the set of all such formulas
contains formulas of arbitrary size.

To return to the logic functions alluded to earlier, imagine a collection ’P of
propositional letters. We have a probability space because some assignments
of truth values are more likely to be observed than others. An element of
8 is an assignment of T/F values to the letters in ’P. A random variable in
’H is a formula on ’P and its value at any point in 8 is the truth value of
the formula given the assignments of truth values to ’P. Thus R = {T, F}. For
example, if we have assigned meanings to the letters, a random variable might
be a formula that expresses the condition that something is alive (“It takes
nourishment and it reproduces and .. .”).

The pac learning concept has been criticized on several grounds. Here are
some:

0 As just discussed, Definition 14.1 is useless in finite probability spaces,
but learners are only faced with finite situations.

0 In the real world, we are frequently learning several interacting concepts
simultaneously, but pac learning deals with single-concept learning.

0 Learning theory looks only at the reactions of the learner (the value of
Lc(t7)) rather than at concept formation, which is the heart of learning.

We won’t discuss these issues here. You might like to debate them in class.

Learning theory hasn’t produced any useful learning algorithms. Instead,
it’s helping researchers to better understand what’s doable—some things are
not efficiently pac-learnable. Developments in this area may make it necessary
for researchers who are attempting to develop practical learning systems to
revise their concepts and/or goals.
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14.3 Planning

We discussed symbolic reasoning in Chapters 3—6, but we paid little attention
to a special form of reasoning called planning. To plan, we must analyze the
present situation and devise a strategy for achieving a goal. As the strategy
is carried out, new information may cause the planner to modify the strategy.
For example, suppose I am visiting San Diego and want to attend a meeting
that is being held in Los Angeles. I also want to give some books to an
LA. colleague who will be attending the meeting. Since flying is fast, I plan
to fly to Los Angeles and then take ground transportation from the airport.
Because the books are heavy, I decide to ship them by UPS instead of carrying
them in my luggage. The first step in my plan is to find out what ground
transportation to use. While seeking the latter information, I discover that the
meeting is far from the airport. Since this makes the ground transportation
both time-consuming and expensive, I consider modifying my plan. I decide
it is faster and perhaps cheaper to rent a car and drive the eighty miles from
San Diego to the meeting. I also modify my plan for shipping the books since
I can easily carry them in the car. After calling some companies, I choose
the best deal and reserve a car. Having made my plans, I call a colleague
in New York who is also planning to attend the meeting. After discussing
transportation with her, I decide to fly in and share the car she plans to rent
at the airport. I cancel my car reservation, make an airline reservation, make
a shuttle reservation for getting to the San Diego airport and arrange to ship
the books by UPS. This scenario illustrates various features of planning, some
of which are:

0 Top-Down Approach: I worked on the general plan before attending to de—
tails such as making reservations. Furthermore, the order in which reser-
vations were made differs from the order in which they will be used—I
reserved the flight before the shuttle.

0 Interaction: My travel and book transporting plans interacted. Sometimes
this interaction can set up interferences that a planning system must
resolve. A famous example is the Sussman anomaly. Suppose we can move
one block at a time and can move only the top block in a pile. We are
given the two piles

E and.

and have two goals: we want C on A and we want want B on C. Attempting
to achieve either goal separately interferes with the other; however, they
can be achieved by “cooperative” action. (Think about why these claims
are true.)
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0 New Knowledge: Actions produce reactions in the world and so lead to
new knowledge that can significantly affect a plan. First I changed my plan
because of new knowledge that I sought concerning the relative locations
of the meeting and the airport. Then I changed it because of knowledge
gained incidentally by discussing the meeting with my colleague.

0 Time and Change: Planning leads to actions in the real world and deals
with situations where time is important—two issues we haven’t dealt with.
We’ve just alluded to some problems on page 190 and mentioned temporal
logics in passing.

Planning has been of interest to AI researchers for many years. Consider-
able progess has been made, but much remains to be done.

14.4 Language and Speech

Marvin Minsky has characterized machine translation
as the most typical and hardest AI problem .

[It] promises, but will it ever deliver?
—Klaus K. Obermeier (1994)

Natural-language understanding (NLU) and machine translation (MT) were
early goals of AI research. By the mid-19608, the research was generally con-
sidered a failure. In 1971, Winograd’s SHRDLU program proved that natural-
language understanding is possible if the domain is sufficiently restricted. To-
day, a variety of programs exist for processing natural language and speech.
They are still far from achieving the capabilities of a typical seven-year-old
child.

Processing natural language presents a variety of problems. Here are some
major ones.

0 Grammatical Errors: Conversation is filled with grammatical errors, which
we ignore or correct through the use of common sense and context. Some
grammatical errors, such as misplaced modifiers, are so common that
they’re more like ambiguities.

o Ambiguity: Resolving ambiguity is a central problem in natural-language
processing. A simple, commonly used example of ambiguity is “Time
flies.” It may be a statement about temporal phenomena or it may be a
command to make temporal measurements of certain insects. Grammati-
cal errors, such as misplaced modifiers and pronouns and phrases having
uncertain antecedents, often cause ambiguities. Ambiguities at one level
can often be resolved at a higher level; for example, ambiguities in speech
sounds could be resolved by syntactic constraints while syntactic ambi-
guities could be resolved by semantic constraints.
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0 Common Sense: Common sense plays an important part in our use of nat—
ural language. It helps us resolve ambiguity—you just did that in the first
part of this sentence by deciding that “it” did not refer to “our use of nat-
ural language.” Common sense overrode the grammatical rule that a pro—
noun’s antecedent is normally the last preceding noun phrase. Researchers
have had limited success incorporating common sense in software.

0 Context: Common sense is a form of context. In addition, each natural-
language usage has its own context, which is not always easily described.
“I’ll kill them” has different meanings when spoken by

0 a mystery writer about characters in a novel she’s writing,

0 a teenager who has just been frustrated by parents,

0 a gangster in reference to gang members who became informers, and
o a comic referring to the audience he’s about to entertain.

0 Noise: The noise level is usually fairly low in written language, and “iz
usely easu two over come.” In contrast, speech often has a high level of
noise. For example, people frequently carry on conversations in a room
where many other people are also conversing.

Computer languages and compilers deal with these problems by defining them
out of existence: An unambiguous grammar is defined and any errors in using
it are the programmer’s problem—the compiler needn’t try to resolve them.

Understanding Language

A complete understanding of natural language would presumably lead to the
ability to manipulate the information content. This is a difficult problem:
Commercial natural-language interfaces can usually do a limited amount of
manipulation. More is required to extract information from news articles.
Programs that do this are currently rather limited in scope. The need to
manipulate information content has hampered the development of learning
systems having sophisticated knowledge bases.

Although some approaches to NLP (natural-language processing) are un-
sophisticated, others make use of (a) concepts from linguistics, (b) lexicons
that incorporate syntactic, semantic, and commonsense information about
word usage, and (c) statistical information.

Syntax is associated with a grammar, which is something that provides
structural information about what constitutes a legal sentence. This infor-
mation is often phrased in terms of rules, frames, or networks, which were
discussed in Chapter 6. A typical rule for English might look like

{sentence} —> {noun pharase} {verb phrase} {noun phrase}
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except that more information is needed. For example, the first noun phrase
is a subject and so cannot contain pronouns such as “them.” For another,
the subject and verb must both be either singular or plural. These sorts of
constraints can be incorporated by expanding the grammar in various ways.
There are more subtle constraints as well. For example, the verb “to feel” re-
quires animate subjects. These constraints require basic semantic information
about the vocabulary.

A parser is any program that uses a knowledge base of syntactic informa-
tion to determine the grammatical structure of a string of words. There will
often be more than one syntactic interpretation of a phrase or sentence. This
ambiguity can sometimes be resolved by an augmented parser that is able to
handle limited contextual information and some basic semantics (meaning).
More extensive knowledge of the real world and/or the context in which the
ambiguity appears is often required. Hence the parsing and understanding
levels of a sophisticated natural-language program must interact.

Why is it that people are so adept at language understanding and com—
puters are, comparatively, so inept? We don’t know; however, it appears that
human brains contain an innate specialization for language. If we knew how
this specialization worked, the problem of language processing would probably
make a great leap forward. Similar comments apply to vision.

Recognizing Speech

One of the simplest speech-recognition tasks is developing a system to rec-
ognize a limited set of syllables spoken by a particular individual in a nearly
noise-free environment. One of the hardest is developing a system to tran-
scribe someone’s speech in a situation (e.g., a party) where many conver-
sations are going on simultaneously. Researchers have progressed well be-
yond the former and are still far from the latter. Current speaker-independent
speech-recognition systems with restricted vocabularies perform fairly well.

There are commercial programs that do a reasonable job of transcribing
clearly enunciated speech. How is this done?

Since pitch, inflection, duration, and so forth vary from one person to
another, a model used for speech must contain some parameters that are
adjusted to the situation and speaker in some manner. Hidden Markov models
and neural nets are two methods that are used. Since such models are only
as good as their inputs, preprocessing is used in various degrees to extract
relevant information from the acoustic data. This is not enough. Such systems
can only provide lists of likely transcriptions. Syntactic and some semantic
information must be used to resolve the ambiguities. One possible approach
is to make crude estimates of the probabilities of various phonemes (basic units
of speech) in the auditory processing. This information would be combined
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with linguistic requirements and common sense by the rest of the system to
produce a transcription.

Humans behave in a similar manner. It’s been estimated that we often ac—
quire only 70% of a conversation by direct auditory input. The “blanks” are
filled in by our understanding of what is being said. This critical interaction
with natural-language understanding is usually subconscious. It becomes con-
scious only when we are faced with a particularly difficult situation or when
our subconscious choice is obviously wrong.

To read the speech recognition literature, you’ll find that some knowledge
of probability, statistics, and signal processing is useful.

Machine Translation

A variety of machine translation (MT) programs exist. Some even provide
real-time translation of speech. Current MT programs have rather limited vo-
cabularies and/or require human intervention to “clean up” the translation.
Some approaches to machine translation attempt to go from the source Ian-
gauge to the target language without “understanding” the text. In contrast,
“interlingua” approaches are based on understanding the text.

14.5 Robotics

[Cjomputer vision made very little progress. However, simplifying
the scenes to be viewed, essentially to a world of blocks with
uniformly colored faces, did allow for rapid progress. An
intellectual trap had been sprung, and it ensnared computer

vision researchers for the next twenty years.

—Rodney A. Brooks (1992)

Most researchers classify robotics as a part of AI, but some classify it as a
separate discipline. It’s a major research area with an extensive literature.
The mathematics used in robotics falls primarily into two categories: (a) ap-
plications and adaptations of methods commonly used in other areas of AI
and (b) applications specific to robotics, such as the geometric theory used in
some aspects of vision research. It seems better to leave these to more spe-
cialized textbooks than to attempt to include them in an already long text.
Consequently, our discussion will be exceedingly brief.

What is robotics? It includes everything from simple assembly-line au-
tomation to the self-aware, mobile machines of science fiction. The ultimate
goal of robotics is the creation of autonomous devices that, when told what
to do in everday speech, have the “mental” ability to plan how to carry out
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the task in an ordinary environment and have the “physical” ability to imple-
ment the plan. Constructing such devices requires background in many areas,
including the following:

0 Engineering: In addition to producing off-the-shelf computer hardware,
engineering is needed to design equipment for sensory input, locomotion,
and manipulation.

o Sensory-Input Processing: Vision is the most studied input modality.
Robots might also use active “vision” such as radar and sonar which
automatically provide distance and speed information. Robots may also
have tactile input based on pressure sensors. Not only must a robot ex-
tract information from sensory input, it must combine input from multiple
SCHSOI‘S .

0 Planning: Given a task to accomplish, the robot must decide how to do
it. This requires the general-purpose planning discussed in Section 14.3.
It also requires “motion planning”—how to get all or part of the robot
from here to there. Because it’s needed even for simple robots such as
assembly-line arms and because it presents its own peculiar difficulties,
motion planning is a major area of robotics research distinct from general
planning.

0 Speech Processing and NLU: Getting from auditory input to a task de-
scription requires speech processing and some understanding of natural
language. Of course, we might design a robot that accepted only limited,
easily understood input.

0 Learning: To function efficiently, a robot should be able to learn from its
previous planning and execution efforts. It should also be able to learn
from instruction such as “Keep off the grass” or “Here’s how to use a
hammer.”

In addition, a robot must be able to quickly perceive and react to unexpected
danger. This brings to the forefront the tradeoff between thinking longer and
acting quickly illustrated in Figure 1.1 (p. 15) but largely ignored since then.
Robotics cannot afford to ignore it.
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Vision

A considerable portion of the human nervous system is associated with vision.
Significant processing begins before the nerve impulses even leave the eye.
With such warning signs, we might expect vision to be a difficult problem.
And so it is. A variety of mathematical techniques have been brought to bear
on the problem. They’ve been applied at all stages; for example,

0 detecting edges in early processing,
0 obtaining shape information from the location of edges,
0 recognizing an object regardless of distance and orientation.

The richness and the paucity of input data are two central difficulties in
vision. Visual input provides a large amount of data that contains extensive in-
formation. This makes it essential to have efficient methods for extracting the
feature information needed for the task at hand. Unfortunately, visual input is
also poor in data: It seldom contains this needed information in easily accessi-
ble form and may lack information needed to resolve ambiguities. For example,
boundaries of objects must be inferred indirectly and the three-dimensional
nature of the world must be reconstructed from two—dimensional images. As
in natural-language processing, vision processing suffers from ambiguity at all
levels of processing.

Apparent progress was made by limiting attention to artificial worlds of
simple shapes. This reduced input richness and also made it much easier to
extract the information needed to reconstruct the three-dimensional scene.

These early systems often took whatever information was available from
a single picture of the scene and tried to recover as much information about
the scene as possible. In a newer approach, termed active vision, the observer
moves and processes the data with a task in mind and may also move to
obtain additional input. Task orientation allows us to ignore some of the
richness while motion provides data that makes it easier to extract certain
information. To contrast the two approaches:

0 The goal of the early method, “general vision,” is to completely recon-
struct the scene.

0 The goal of active vision is to obtain task-specific information about the
scene.

Because the goal of the active-vision approach is more limited, it is able to
deal with more complicated (i.e., realistic) scenes.

A general-purpose robot is likely to combine active-vision methods with
active probes such as sonar and coherent radiation. Since the robot controls
the active probes, it can more easily gain information from them than it can
from passive illumination.
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Motion Planning

Motion planning could be defined as the process of deciding what movements
a robot should carry out to achieve a task. This would include long-range
planning, such as getting a box of paper from the stockroom and delivering
it to the secretarial pool. It would also include shorter-range planning such
as extracting the box of paper from behind a pile of other supplies. Longer-
range tasks may involve general planning, but shorter-range tasks often belong
entirely to the field of motion planning. Such planning must take into account
the ways in which the robot can move, the need to avoid collisions, and the
physical properties of the world (e.g., gravity).

Action may begin while a motion plan is incomplete. The plan is filled
in and modified as the task is being carried out. One reason for this may be
a lack of information; e.g., we may not know if a door is locked until we try
to open it. Another is the complexity of the planning problem—it may be
more efficient to plan only the initial stages in detail and adapt the plan as
additional information is available. Another reason is the inaccuracy of robot
motion. For example, if a manipulator must be moved 100 cm with an error of
0.1 cm in its final position and the accuracy of motion is only 1%, corrective
motion will be needed as the manipulator approaches its target.

The motion-planning problem lies in a continuous space: The rate at
which a joint moves can be viewed as a real number; a path from point A to
point B that avoids obstacles can be any one of an infinite number of possible
“curves.” (Curves includes paths consisting of sequences of line segments.)
One of the problems in motion planning is to transform the problem from one
with an infinite number of choices to one with a finite number.

Motion planners use computational geometry, search, and other areas of
mathematics.

Notes

From time to time the Association for Computing Machinery (ACM) and the
Institute of Electrical and Electronics Engineers (IEEE) devote issues of their
nonspecialist journals to survey articles written by experts in various fields.
Since the purpose of such issues is to keep members informed, you should find
many of the articles readable and informative. For recent special issues on
Al see [35] and [39]. The roughly annual Advances in Computers, edited by
Yovits and intended for a general computer science audience, frequently has
one or more articles on some aspect of AI. As in Chapter 1, I recommend the
texts by Ginsberg [23] and by Russell and Norvig [46].
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Blackboard systems are a type of AI system that I haven’t even mentioned.
The basic idea is that a collection of problem solvers post problems to a
“blackboard” and wait for solutions. At the same time, solvers work on posted
problems to which they are suited and post solutions. The book [16] is a
tutorial on the subject.

Optimization

John Holland introduced the concept of genetic algorithms and published the
first book on the subject in 1975 [28]. Additional books began to appear about
fifteen years later. These include [17, 18, 24, 33,36]. A brief introduction is pro-
vided in the paper [7] and in Chapter 25 of Winston’s text [54]. Another source
of introductory material is the selected papers in [10]. Harp and Samad [27]
discuss applications to neural nets.

I mentioned that Holland made two mathematical observations. His sec—
ond deals with the connection between results from statistical decision theory,
randomness in genetic algorithms, and exponential growth of good schemata.
This interplay suggests that such exponential growth is just what is needed,
but it does not say that the rate is correct.

Two introductions to hidden Markov models are Rabiner’s paper [43] and
Charniak’s text [12, pp. 39—73]. The HMMs I introduced are called first-order
HMMs. In a jth-order HMM, the probability distribution of Xk depends on
the j previous X values. This general HMM can be reduced to a first-order
HMM.

Yuille and Kosowsky [56] review some algorithms that have migrated from
physics to neural net optimization.

I imagine you’ve been convinced by now that optimization is difficult.
If not, look at one of the journals on the subject: either the long-standing
Journal of Optimization Theory and Applications or the more recent Journal
of Global Optimization.

Learning

Although machine learning was considered important in the early years of AI
research, results were disappointing and interest shifted elsewhere. Interest
revived in the 19808 and many believe that solid progress is now being made.
Many introductory AI texts have some discussion of machine learning. The
two collections of papers [9] and [50] have relatively little overlap and the
former concludes with an extensive introductory bibliography. Carbonell [11]
has edited a collection of papers that were solicited with the goal of providing
an introduction to the various approaches to machine learning. An overview
of some research in robot learning is presented in [14].
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Prieditis [42] edited a volume on various approaches to analogical reason-
ing. For explanation-based learning, see Chapter 5 of [9] or [11]. For case-based
reasoning, see Chapter 7 of [9], the book [32], or the book [45].

For a good introduction to truth maintenance in the context of practical
problem solving, see the text by Forbus and de Kleer [21].

Since it takes time to learn and since too much knowledge can slow a
system down, it’s important to know when to learn as well as how to learn.
Minton [38] explores this problem.

Valiant introduced the notion of pac learning in 1984 [52]. Anthony and
Biggs [6], Kearns and Vazirani [31], and Natarajan [41] have written texts
on learning theory. You may also find the doctoral thesis [48] interesting,
especially the first three or four chapters. It’s possible to regard pac learning
as a form of pattern recognition. As such, it belongs in one of Chapters 10-13.
Wolpert’s article [55] is written from this viewpoint.

From time to time, Machine Learning and other AI journals have infor—
mative special issues that are more up to date than the books I’ve mentioned.

Planning

Although planning is an active research area, there are relatively few books on
this subject. You might read Chapter 14 of [23] or Part IV of [46]. A variety
of papers are collected in [3]. Allen et al. [4] and Dean and Wellman [19]
have written books on planning. The latter discusses the problem of planning
under uncertainty and touches on issues related to robotics. Planning plays
an important role in robotics and considerable research has been done on
robot motion planning. Constraint satisfaction plays a role in planning and
other areas. See Tsang’s book [51] for more information about constraint
programming.

Language

The collection [53] provides a good introduction to the speech-recognition
literature. Although now somewhat dated, [25] is still a good source of infor-
mation. Good introductory texts to mainstream NLP are available: Allen’s [2]
is based on Lisp and Covington’s [15] on Prolog. The book by Gazdar and
Mellish [22] is available in both Lisp and Prolog versions. Charniak’s book [12]
takes a different approach, focusing on statistical approaches, particularly hid—
den Markov models. Neural net approaches are discussed by Miikkulainen [37]
and in the collection [44].

Jackendoff [30] presents a lively defense of the thesis that language ability
is innate.
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Roboflcs

As noted in Section 5.4 (p. 191), combining data from several sources is a major
theoretical problem. It plays at least a minor role in many areas of AI and is
of critical importance in robotic sensory input and in sophisticated learning.
See [1] for a discussion of various methods for dealing with quantitative data.

Many books have been written on robotics and I’m not very familiar with
the literature. The two areas with a large amount of literature are vision and
motion planning.

Schilling’s introductory book [49] deals mainly with motion planning.
Latombe [34] also treats motion planning. Murray, Li, and Sastry [40] dis-
cuss manipulation, which is a form of motion planning.

Some books on vision are those by Chen, Pau, and Wang [13], Faugeras [20],
Haralick and Shapiro [26], Horn [29], and Sarkar and Boyer [47]. The book
edited by Aloimonos [5] and the papers in [8] deal with active vision.
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hill-climbing, 455.
interruptible, 70.
probably approximately correct

(pac), 599.
recursive, 40.

algorithm (specific),
alpha-beta pruning, 80.
backpropagation, 475.
breadth-first search, 49-50.
decision tree, 548—561.
defeasible reasoning, 247—249.
depth-first search, 53.
fuzzy without chaining, 375—379.
gradient method, 457—460.
Hopfield net, 434.
Horn clause resolution, 152.

algorithm (specific) (continued):
irredundant cover, 325.
iterative-deepening search, 56—57,

65.
normal default theory, 222.
Prolog, 120—128.
Quickprop, 464—465.
resolution, 146.
single-layer perceptron, 451.
singly connected Bayesian net,

330—331.
Skolemization, 156.
unification, 159.

almost surely, 435.
alpha-beta pruning, 78—81.
alternative hypothesis, 524.
Amdahl’s Law, 51.
analytic learning, 596.
AND/OR tree, 76—81.
annealing schedule, 469.
annealing, simulated, 469.
antecedent, 374.
anytime algorithm, 70.
Arrow Impossibility Theorem,

193—196.
ART (adaptive resonance theory),

581.

associative binary operation, 100.
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associative memory, 426, 442.
atomic formula, 107.
attraction basin, 468.
autoepistemic logic, 227—229.

overview, 204.
automatic classifier, see pattern

classifier.
axiom, 140.
axiom of choice, 180.
axiomatic method,

Arrow Impossibility Theorem,
193—196.

certainty factors, 345—350.
entropy and information,

533—536.
probability theory, 356—359.

axiomatic reasoning, 140—141, 227,
230.

backgammon, 5, 490.
backpropagation, 474—475.

see also feedforward net.
basic probability assignment, 387.
Bayes’ Theorem, 280-283.

as pattern classifier, 406.
flattening counts, 554—555.
in parameter estimation, 526,

554—555.
maximum-entropy prior, 538.
weight decay and, 563—564.

Bayesian net, 300—354.
bipartite, 315—317, 320—328.
causality and, 302, 306-307.
certainty factor, 318, 345—350.
determined by Pr(X |C(X)), 308.
independence, 336-337.
multiple diagnosis, see abductive

inference.
MYCIN, 22.
pros and cons, 300.
sensitivity, unknown for, 300, 352.
singly connected, 318, 329—343.

belief (in belief theory), 387.
belief network, see Bayesian net.
belief theory, 385—393.

basic probability assignment, 387.
certainty, 387.
combining evidence, 389—393.
Dempster’s rule of combination,

389.
frame of discernment, 387.
plausibility, 387.
possible worlds and, 392.

best-first search, 52, 570.
bias—variance dilemma, 502—503.
biased estimator, 518.
binary operation, associative and

commutative, 100.
binary relation, 235.
blackboard system, 609.
Boltzmann net, 469.
bootstrapping, 521—522.
bound variable, 107.
bounded rationality, 189, 196.
bpa (basic probability assignment

in belief theory), 387.
branching factor, 46.
breadth-first search, 48—50.

C
calculus, 86.

differential, 112, 213.
lambda, 25.
multivariate, 447—450.
predicate, see predicate logic.
propositional, see propositional

logic.
Cartesian product, 36, 266, 286,

368.
case-based reasoning (CBR), 24,

598.
causal network, see Bayesian net.
causality, 184, 299, 301—310.

Bayesian net and, 306-307.
conditional probability and,

306—307.



causality (continued):
implication and, 97-98.
rule systems and, 230, 422.

CBR (case-based reasoning), 24,
598.

Central Limit Theorem, 513—514,
569.

certainty (in belief theory), 387.
certainty factor, 22, 318, 345—350.
chain rule, 448.
chaining,

backward, 231.
forward, 231, 374.
Prolog, backward, 231.

characteristic function, 361.
characteristic value, 443.
characteristic vector, 443.
CHATKB, 24.
chess, 5, 23, 67, 74—75.
chi-square test, 531.
children of a vertex, 38.
circular definition, sec definition,

circular.
circumscription, 225—227.

overview, 204.
classification tree, see decision tree.
classifier, see pattern classifier.
clausal form, 143.
clause, head and body of, 120.
clique, 423.
closed-world assumption (CWA),

169, 189.
cluster analysis, 407.
CNF (conjunctive normal form),

143.
cognitive science, 6, 408.
combinatorial explosion, 13.

see also complexity.
combining information, 192, 606.
common sense, 190, 199.
commutative binary operation, 100.
compactness, 148.
completed data base assumption,
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completeness, 139, 163.
complexity,

see also goals, difficulties, and
compromises.

combinatorial explosion, 13.
computation problem, 13—17.
default extensions and, 217.
generalization error rate and, 420,

485—486, 502—503.
handicapping decision trees for,

557.

minimization and, 566.
nonmonotonic reasoning, 254.
NP-complete, 15—17.
NP-hard, 15—17, 141, 172.

compound events (probability), 261.
independent, 284.

computation problem, 13—17, 397.
conditional entropy, 541.
conditional expectation, 498.
conditional probability, 271—279.

AIB versus B -—> A, 273, 279.
confidence interval, 516.
confidence level, 527.
conjunctive normal form (CNF),

143.
connected digraph, 318.
connective (logical), 93.
consciousness, 7.
consequence, 138.
consequent, 374.
consistency, 137.
continuum hypothesis, 180.
contradiction, localizing, 232—233.
count-based estimation, see

estimation from counts.
countable, 106.
cover, 323.

irredundant, 323-328.
minimal, 323—328.

cross-validation, 520—521.
CWA (closed-world assumption),

169, 189.
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cycle in a (di)graph, 36.

D
DAG (directed acyclic graph), 303,

471.
DARPA (Defense Advanced

Research Projects Agency),
490.

data,
noisy improves generalization,

562.
preparation, 415—418, 488—489.

de Morgan’s laws, 100.
decidable, 165.
decision problem, 150.
decision tree, 24, 39, 410, 548—561.

see also search.
complexity as cost, 557—559.
growing, 550—553.
meaning of rule, 422.
rule extraction, 560.

decisions and information theory,
538.

declarative language, 88.
deductive learning, 596.
DEEP THOUGHT, 23.
deep versus shallow reasoning,

395—396.
default, 203.
default logic, 210—224.

default rule, 210.
default theory, 213.
extension, 212—219.
normal theory, 221—224.
overview, 203.
Prolog negation, 223.
which defaults to assume, 209.

defeasible reasoning, 245—250.
overview, 204.
Prolog, 253.

definition,
circular, sec circular definition.
nonconstructive, 213.

definition (continued):
recursive, 40.

defuzzifying, 378.
Dempster’s rule of combination,

389.
Dempster-Shafer theory of evidence,

see belief theory.
density function, 506.

gaussian, sec gaussian
distribution.

marginal, 508.
normal, sec gaussian distribution.
uniform, 507.

depth (in a tree), 46.
depth-first search, 53—59.
diagnosis problem (abduction), 315.
digraph, 36, 302.

acyclic (DAG), 471.
connected, 318.
cycle, 36.
edge, 36, 302.
path, 36.
singly connected, 318.
vertex, 36, 302.

directed acyclic graph (DAG), 303,
471.

directed cycle, 36.
directed graph, sec digraph.
discriminant analysis, 406, 409.
disjoint sets, 263, 315.
disjunctive normal form (DNF),

151.
distribution,
fiat, 276.
function, 506.
gaussian, see gaussian

distribution.
gaussian normal, see gaussian

distribution.
joint, 291.
probability, 260.
uniform, 276, 507.

divide and conquer, 209.



DNF (disjunctive normal form),
151.

domain of attraction, 468.

E
EBL (explanation-based learning),

598.
edge (of a digraph), 36, 302.
eigenvalue, 443.
eigenvector, 443.
entropy, 533—539.

conditional, 541 .
cross, 541.
decision trees and, 551—552.

Entscheidungsproblem, 150.
error,

see also error rate.
sampling, 501.
Type I, 525.
Type II, 525.

error rate,
generalization, 420, 518.
generalization, and complexity,

420, 485—486, 502—503.
generalization, and noisy data,

562.
generalization, estimating,

518—523.
training, 420, 518.

estimation from counts, 259, 271,
501, 515—516.

flattening, 554—555.
estimators, biased and unbiased,

518.
event set, 260.
events (probability),

compound, 261.
disjoint, 263.
elementary, 260.
independent, 284.
simple, 260.

evidence theory, see belief theory.
evidence, independent, 389.
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evidential reasoning, 355.
exact test, Fisher’s, 529-532.
exercises, lettered and starred, xix.
expectation (of a random variable),

295, 498.
expert system, 18—24.

CHATKB (CBR), 24.
CHATKB (decision trees), 24.
chess (search), 23, 74—75.
CONVINCE and HUGIN

(Bayesian net), 351.
decision trees, 580.
DEEP THOUGHT (search), 23.
fuzzy methods, 400.
LOGIC THEORIST (logic), 21.
MYCIN (certainty factors), 22.
NETtalk (neural net), 23.
neural nets, 492.

expert system construction, 20.
expert system shell, 19.
explanation-based learning (EBL),

598.
extension principle (fuzzy), 372.
extensions in default logic, 212—219.

F

fault tolerance, see sensitivity.
Fault-tree analysis, 352.
feature extraction, 417.
feedforward net, 471.

see also neural net.
backpropagation, 474—475.
data issues, 486-489.
data noise and generalization,

562.
data noise and local minima, 563.
parameter issues, 477-486.
perceptron, 451—453.
weight decay, 482—483, 563—564.

feedfoward net, scaling up, 566—568.
Fisher’s exact test, 529.
flattening counts, 554.
FOL (first-order logic), see

predicate logic.
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formula, 93.
atomic, 107.
satisfiable, 137, 146, 156.
unsatisfiable, 137, 146.
valid, 99, 110, 137.
well formed, 94.

Fourier transform, 419.
frame of discernment (belief

theory), 387.
frame problem, 190.
frame system, 237—239.
free occurrence (of a variable), 107.
frequency-based estimation, see

estimation from counts.
functional programming, 25.
fuzzy arithmetic, 373.
fuzzy reasoning, 369—385.

defuzzifying, 378.
predicate, 369—371.
pros and cons, 384.
rule construction, 381—382, 488.
simple controller, 374—379, 491.
tuning membership function, 382.

fuzzy set, 361—371.
averaging is bad, 366.
Cartesian product, 368.
defuzzifying, 378.
extension principle, 372.
normal, 372.
operations on, 364—368.
predicate, 369—371.
tuning, 382.

G
games, 5, 6.

AND/OR tree, 76.
backgammon, 5, 490.
chess, 5, 23, 67, 74—75.
partial search, 69—75.
TV show with doors, 277—278.

gaussian distribution, 511—516.
parameter estimation, 526—528.
parameter initialization, 482.

gaussian distribution (continued):
weight decay and, 563—564.

generalization error rate, see error
rate, generalization.

genetic algorithm, 581, 589—593.
global optimization, 586.
goal clause (Prolog), 89, 152.
goals, difficulties, and compromises,

abduction (diagnosis) and,
316—317.

Bayesian net and, 318.
certainty factor and, 349.
computation problem and, 17.
generalization error estimation

and, 519, 522.
heuristic functions and, 61.
nonmonotonic reasoning and,

207—210.
partial search and, 69.
predicate logic and, 172.
Prolog and, 172.

gradient, 447.
gradient descent, 457—461.

line search, 459-461.
graph,

chque,423.
cycle in, 36.
directed, see digraph.
path in, 36.
search, 45.

greedy algorithm, 550.

H
halting problem, 14, 150.
Hebb’s rule, 430.
Herbrand universe, 137.
Hessian, 447, 460.
heteroassociative memory, 438.
heuristic, 4.
heuristic cost function, 60—67, 72.
heuristic search, 60-67, 571—575.
hidden Markov model (HMM), 412,

593-594.



hidden vertex (neural net), 408.
HMM, see hidden Markov model.
Hopfield net, 430—436.

see also neural net.
capacity, 568—570.
energy minima, 436.

Horn clause, 130.
Prolog and SLD-resolution, 164.
Prolog form, 130.
SLD—resolution, 152.

hybrid system, 399.
CHIAEFK33,24.
neural net, 568.

hypothesis space (learning theory),
599.

hypothesis testing (statistics),
524—532.

if. . .then, see implication.
ill-conditioned, 191, 352.
implication,

conditional logic and, 273.
conditional probability and, 273.
material (logical), 97.
strict, 98, 228.
various kinds, 97—98.

inconsistent, 137.
independence,

Bayesian net, 336—337.
belief theory evidence, 389—393.
compound events, 284.
in probability, 284—294.
mutual, 284.
random variables, 290-294, 508.

inductive,
inference, 319.
learning, 596—598.
proof, 41—43.
reasoning, 319.

inference, rules of, 140.
influence diagram, see Bayesian net.
information theory, 533—539.
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information theory (continued):
see also entropy.

information, combining, 192.
inheritance system, 236.
instantiated random variable, 314.
interruptible algorithm, 70.
iterative-deepening search, 56—59.

K
knowledge base, 3, 88, 129.
knowledge is central, 3.
knowledge representation, 3, 175,

188, 206, 398, 400.
knowledge system evaluation, 175.

deep reasoning, 395—396.
FOL and Prolog, 176—178.
nonmonotonic reasoning,

395—399.
numerical reasoning, 395—399.
robustness, 396—397.

Kullback-Leibler statistic, 541.

L
Lagrange multiplier, 538.
language understanding (NLU), 3,

602—605.
leaf of a tree, 38.
learning, 396, 595—600.

see also pattern classifier.
analytic (deductive), 596.
case-based (CBR), 598.
explanation-based (EBL), 598.
inductive, 412, 596—598.
machine, 403.
probably approximately correct

(pac), 599.
rate of in minimization, 458, 459.
supervised, 404.
synthetic (inductive), 596—598.
theory, 596, 599—600.
truth maintenance, 598.
unsupervised, 404.

likelihood ratio, 281.
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line search, 459—461.
linear algebra, 442—446.
linearly separable, 451.
link, 235.
Lisp, 25, 132.

texts, 132.
literal, 143.
local optimization, 586.
logic,

autoepistemic, 227—229.
circumscription, see

circumscription.
conditional, 273.
default, see default logic.
defeasible, see defeasible

reasoning.
if. . .then, see implication.
modal, 227—229.
nonmonotonic, see default logic

and defeasible reasoning
and nonmonotonic reasoning.

nonstandard, 186, 253.
predicate, see predicate logic.
propositional, see propositional

logic.
temporal, 229.

logistic function, 478.
Lyapunov function, 434.

machine translation (of language),
605.

manhattan distance, 63.
marginal density function, 508.
Markov model, hidden (HMM), 412,

593—594.
mathematics,

how to read it, xviii.
importance of, xvii.

matrices, 438—446.
max-min tree, 76.
maximum likelihood estimator, 554.
mean (of a random variable), 498.

medical, 318, 321.
medicine, 22.
MEPHISTO, 23.
minimal versus minimum, 215.
minimization, 586—594.

see also minimization in R"
and search.

data, noisy facilitates, 563.
genetic algorithm, 589—593.
Hopfield nets and energy,

433-434.
Lyapunov function, 434.
simulated annealing, 469.

minimization in IR", 454—470.
see also minimization.
backpropagation, 474—475.
gradient descent, 457—461.
Hessian, 460.
learning rate, 458, 459.
line search, 459—461.
momentum, 461—462.
Newton’s method, 456.
Quickprop, 464—465.
time constant, 459—461.

modal logic, 186, 204, 227—229.
modal operator, 227.
modus ponens, 141, 227.
momentum (minimization method),

461—462.
monotonicity, 201.
Monte Carlo Simulation, 501.

see also estimation from counts.
motion (robotic), 608.
MYCIN, 22, 318.

NAND, 101.
navigation aids, xix.
nearest-neighbor pattern classifier,

407.

neat, 6.
necessary cause, 310.
negation as failure, 169—170.



negative literal, 143.
NETtalk, 23.
network,

Bayesian, see Bayesian net.
belief, see Bayesian net.
causal, see Bayesian net.
neural, see neural net.
semantic, 205, 234—244.

neural net, 408, 425—496, 562—570.
ART, 581.
associative memory, 426.
backpropagation, 490.
Boltzman, 469.
data issues, 486—489.
error rate, see error rate.
feedforward, see feedforward net.
hidden vertex, 408.
Hopfield, see Hopfield net.
NETtalk, 23.
nonrecurrent, 426.
parameter growth, 482—483,

485—486.
parameter issues, 477—486.
perceptron, 451—453, 489.
recurrent, 426, 491.
scaling up, 566—568.
symmetry avoidance, 481.

Newton’s method, 456.
NLP (natural-language processing),

602—605.
NLU (natural-language

understanding), 602-605.
Nobel Prize, 28.
noisy-OR, 316.
nominative number, 415.
nonmonotonic reasoning, 186,

199—256.
see also default logic

and defeasible reasoning
and rule system
and semantic net.

core problems of, 201—202,
232—233.

Subject Index 623

nonmonotonic reasoning
(continued):

goals, difficulties, and
compromises, 207—210.

Mollusca, 209, 211, 216, 218, 243,
249.

Nixon, 209, 211, 216, 218, 243, 249.
overview, 202—206.
why so named, 200.

nonstandard logics, 253.
normal distribution, see gaussian

distribution.
normative, 412.
NP-complete, 15—17.
NP-hard, 15—17, 141, 172, 217, 315,

352.
null hypothesis, 524.

O
Ockham’s Razor, 324.
odds, 281.
optimization,

see also minimization.
global, 586.
local, 586.
satisficing, 586.

OR, noisy, 316.
order, partial, 236.
order, transitive, 236.
ordered tree, 37—43.
ordinal number, 416.
overtraining, 484.

p
parameter estimation, 526—528.
parameter growth, 482—483,

485—486.
partial order, 236.
partial search, 69—75, 575—579.

chess, 23.
quiescent vertex, 579.

partition, set, 270.
Parzen estimator, 407.
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path in a (di)graph, 36.
pattern classifier, 13, 404—413.

see also decision tree
and neural net.

applications, 404, 414.
automatic, 403.
data preparation, 415—418,

486—489.
error rate, see error rate.
evaluation, 419—422.
learning, supervised, 404.
learning, unsupervised, 404.
scaling up, 566—568.
statistical, 406—407.
structural and syntactic, 411—412,

598.

training set, 404.
pdf (probability density function),

506.
perceptron, 409, 451—453, 489.
physical symbol hypothesis, 8.
planning, 601—602.
plausibility (in belief theory), 387.
polytree, 318.
positive literal, 143.
possibility theory, 400.
posterior odds, 281.
predicate, 104.
predicate logic, 104—119, 154—165.
first-order: Why first?, 117.
Horn clause, see Horn clause.
incompleteness, 179.
prenex form, 155.
real world and, 184—185.
resolution, 131, 161—165.
resolution is sound and complete,

163.

satisfiable formula, 156.
second-order, 225.
semantics, 110—117.
semidecidability, 165.
Skolemization, 155—158.
SLD-resolution, 164.

predicate logic (continued):
syntax, 105—107.
timidity of, 199.
truth and proof, 136—141.
unification, 158—161.
usefulness of, 175—178.

prenex form, 155.
principal-component analysis, 407,

417, 445—446, 488, 492.
Principle of Inclusion and

Exclusion, 263.
prior odds, 281 .
probability,

A|B versus B ——> A, 273.
almost surely, 435.
axiomatic method, 356—359.
compound event, 261.
conditional, 271—279.
density function, 506.
distribution, 260.
elementary event, 260.
estimation from counts, see

estimation from counts.
expectation, 498-501.
finite space, 257—298, 498—501.
in HR”, 506—517.
independence, see independence.
interpretation, 258—260.
likelihood ratio, 281 .
logical connective, 262.
mean, 498.
odds, 281 .
Pr overloading, 262, 267, 272.
variance, 498—503.

probability space, 260, 506.
problem space (search), 45.
problem, frame, 190.
problem, qualification, 190.
procedural language, 88.
programming tools from AI,

functional programming, 25.
GUI (graphical user interface), 5.
Lisp, 25.



programming tools from AI
(continued):

logic programming, 25.
see also Prolog.

paradigms, 5.
timesharing, 5.

projection, 266.
Prolog,

algorithm, 120—127.
basics of, 88—91.
clause, head and body of, 120.
cut operator, 168.
defeasible reasoning, 253.
history, 132, 181.
Horn clause form, 130.
list, 126.
logic and, 129—131.
negation (failure), 169—170.
negation (failure) and default

logic, 223.
negation (true), 232.
recursion (append), 126—127.
SLD—resolution, 164.
texts, 132.
usefulness of, 175—178.

proof method, 86, 139.
complete, 139.

proposition, 93.
propositional letter, 93, 94.
propositional logic, 93—103.

resolution, 142—154.
semantics, 96—102.
SLD-resolution, 152—154.
syntax, 93—95.
tautology, 99.
truth and proof, 136—141.
truth table, 96.

propositional variable, 270.
pruning, alpha-beta, 78—81.

Q
qualification problem, 190.
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quantifier,
bound variable, 107.
existential, 110.
scope of, 107.
universal, 110.

Quickprop (minimization method),
464—465.

R
radial basis function, 478.
random variable, 266, 507.

and compound events, 266.
expectation of, 295, 498.
independent, 290—294, 508.
instantiated, 314.
mutually independent sets, 292.
normally distributed, 512.
propositional variable, 270.
uniform, 507.
using set notation, 291.
variance of, 295, 498.

rationality, bounded, 189, 196.
Razor, Ockham’s, 324.
reasoning as pattern recognition,

403.
reasoning methods,

see also headings for specific
method.

deep versus shallow, 395—396.
qualitative, 186—187.
quantitative, 187—188.
retrospective on, 395—399.

recursion, 40—43.
recursive algorithm, 40.

see also recursive algorithm.
recursive definition, 40.
recursive proof, 41.
regression analysis, 407.
reification, 241.
resolution, SLD, 140, 152.
resubstitution error rate, see error

rate, training.
robotics, 3, 605—608.
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root, 37.
root of a tree, 38.
RTA“ algorithm, 72.
rule system, 229-233.

depth, 374.
frames as, 238.
fuzzy reasoning, shallow,

374—382.
overview, 205.
shallow, 374.

rule-based system, 22.
rules of inference, 140.

S
sample (probability), 501 .
sampling, 501, 515—516, 526—528.
sampling error, 501.
sampling with replacement, 521.
SAT (satisfiable), 146.
satisfiable formula, 137, 146, 156.
satisficing, 14, 586, 589.
schema, 591.
schema (genetic algorithm), 591.
scope of quantifier, 107.
scruffy, 6.
search, 33—84.

see also minimization
and minimization in R”.

A“, 66.
best-first, 52, 570.
bidirectional, 52.
breadth-first, 48—50.
British Museum, 33.
brute-force, 33.
DEEP THOUGHT, 23.
depth-first, 53—59.
future role in Al, 579.
graph, 45.
heuristic, 60—67, 571—575.
iterative-deepening, 56—59, 65.
line (in minimization), 459—461.
partial, 69—75, 575—579.
Prolog and, 121, 124.

search (continued):
resolution and, 131.
RTA", 72.
simple, 33.
tabu, 582.

search tree, 45.
semantic net, 205, 234—244.
semidecidable, 165.
sensitivity, 396—397.

analysis, 191, 352.
brains degrade gracefully, 425.
in experiment, 456.
logical contradiction, 232—233.

set partition, 270.
Simpson’s paradox, 197, 279.
simulated annealing, 469.
singly connected digraph, 318.
Skolemization, 155—158.
SLD—resolution, 140, 152.
slot, 237.
son of a vertex, 38.
sorting and information theory, 537.
soundness, 139, 163.
Spectral Theorem, 444, 458.
speech, 5, 414, 490, 602—605.
starred material meaning, xix.
statistic, 517—532.
statistical classifier, 406—407.
student aid, xvii.
sufficient cause, 310.
synthetic learning, 596—598.

T
tautology, 99, 138.
taxicab distance, 63.
terminal vertex, 38.
test-sample estimation, 520.
thought experiment, 518.
time constant, 459.
time, cost of, 14.
timesharing, 5.
TMS (truth maintenance system),

596, 593.



training error rate, see error rate,
training.

transitive order, 236.
translation of language, 605.
tree,

AND/OR, 76—81.
children of a vertex, 38.
decision, see decision tree.
depth of vertex, 46.
formation (for unification),

158—161.
leaf of, 38.
max-min, 76.
ordered, 37.
root of, 38.
rooted, 38.
rooted plane, see tree, ordered.
search, 45.

see also search.
son of a vertex, 38.
terminal vertex of, 38.

truth and proof, 136—141.
truth maintenance system (TMS),

596, 598.
truth table, 96.
Turing Award, 26, 27, 28.
Turing test, 10.
Type I error, 525.
Type II error, 525.

U
unbiased estimator, 501.
uncertainty, 22, 184—193, 356—359.
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unification (logic), 123, 158—161.
unifier (logic), 158.
UNSAT (unsatisfiable), 146.
unsatisfiable formula, 137, 146.

V
valid formula, 137.
variable, free occurrence of, 107.
variance (of a random variable),

295, 498.
vector space, 442.
vectors, 438—446.
version space (for generalization),

597.
vertex, 36, 302.
vertex, hidden (neural net), 408.
vision, 3, 414, 417, 607.

W
weak method, 33.
weight decay, 482—483, 563—564.
WFF (well formed formula), 94.
windows, 5.

Y
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